1
|
Zehetner L, Széliová D, Kraus B, Hernandez Bort JA, Zanghellini J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab Eng 2025; 91:103-118. [PMID: 40220853 DOI: 10.1016/j.ymben.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
Collapse
Affiliation(s)
- L Zehetner
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - D Széliová
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - B Kraus
- Institute of Molecular Biotechnology, Institut für Molekulare Biotechnologie GmbH, Vienna, 1030, Austria
| | - J A Hernandez Bort
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, Vienna, 1100, Austria.
| | - J Zanghellini
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
2
|
Jinna N, Rida P, Smart M, LaBarge M, Jovanovic-Talisman T, Natarajan R, Seewaldt V. Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168844. [PMID: 36012111 PMCID: PMC9408190 DOI: 10.3390/ijms23168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Max Smart
- Rowland Hall, Salt Lake City, UT 84102, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
3
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
4
|
Jiang S, Luo Y, Zhan Z, Tang Z, Zou J, Ying Y, Lin H, Huang D, Luo L. AMP-activated protein kinase re-sensitizes A549 to paclitaxel via up-regulating solute carrier organic anion transporter family member 1B3 expression. Cell Signal 2022; 91:110215. [PMID: 34920124 DOI: 10.1016/j.cellsig.2021.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
|
5
|
Barbier RH, McCrea EM, Lee KY, Strope JD, Risdon EN, Price DK, Chau CH, Figg WD. Abiraterone induces SLCO1B3 expression in prostate cancer via microRNA-579-3p. Sci Rep 2021; 11:10765. [PMID: 34031488 PMCID: PMC8144422 DOI: 10.1038/s41598-021-90143-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding mechanisms of resistance to abiraterone, one of the primary drugs approved for the treatment of castration resistant prostate cancer, remains a priority. The organic anion polypeptide 1B3 (OATP1B3, encoded by SLCO1B3) transporter has been shown to transport androgens into prostate cancer cells. In this study we observed and investigated the mechanism of induction of SLCO1B3 by abiraterone. Prostate cancer cells (22Rv1, LNCaP, and VCAP) were treated with anti-androgens and assessed for SLCO1B3 expression by qPCR analysis. Abiraterone treatment increased SLCO1B3 expression in 22Rv1 cells in vitro and in the 22Rv1 xenograft model in vivo. MicroRNA profiling of abiraterone-treated 22Rv1 cells was performed using a NanoString nCounter miRNA panel followed by miRNA target prediction. TargetScan and miRanda prediction tools identified hsa-miR-579-3p as binding to the 3'-untranslated region (3'UTR) of the SLCO1B3. Using dual luciferase reporter assays, we verified that hsa-miR-579-3p indeed binds to the SLCO1B3 3'UTR and significantly inhibited SLCO1B3 reporter activity. Treatment with abiraterone significantly downregulated hsa-miR-579-3p, indicating its potential role in upregulating SLCO1B3 expression. In this study, we demonstrated a novel miRNA-mediated mechanism of abiraterone-induced SLCO1B3 expression, a transporter that is also responsible for driving androgen deprivation therapy resistance. Understanding mechanisms of abiraterone resistance mediated via differential miRNA expression will assist in the identification of potential miRNA biomarkers of treatment resistance and the development of future therapeutics.
Collapse
Affiliation(s)
- Roberto H Barbier
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Edel M McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Kristi Y Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Emily N Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA.
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Sanduleanu S, Jochems A, Upadhaya T, Even AJG, Leijenaar RTH, Dankers FJWM, Klaassen R, Woodruff HC, Hatt M, Kaanders HJAM, Hamming-Vrieze O, van Laarhoven HWM, Subramiam RM, Huang SH, O'Sullivan B, Bratman SV, Dubois LJ, Miclea RL, Di Perri D, Geets X, Crispin-Ortuzar M, Apte A, Deasy JO, Oh JH, Lee NY, Humm JL, Schöder H, De Ruysscher D, Hoebers F, Lambin P. Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiother Oncol 2020; 153:97-105. [PMID: 33137396 DOI: 10.1016/j.radonc.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature. MATERIAL AND METHODS A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features. RESULTS A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80). CONCLUSION The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands.
| | - Arthur Jochems
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Taman Upadhaya
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France; Department of Radiation Oncology, University of California, 1600 Divisadero Street, CA 94115, San Francisco, United States
| | - Aniek J G Even
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Ralph T H Leijenaar
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Frank J W M Dankers
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Remy Klaassen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry C Woodruff
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Mathieu Hatt
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France
| | - Hans J A M Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, Antoni van Leeuwenhoek - Netherlands Cancer institute, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rathan M Subramiam
- Boston University School of Medicine, United States; Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Brian O'Sullivan
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-LAB, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Razvan L Miclea
- Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Dario Di Perri
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Xavier Geets
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Mireia Crispin-Ortuzar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States; Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Philippe Lambin
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| |
Collapse
|
7
|
Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett 2020; 27:17-29. [PMID: 31556849 PMCID: PMC6978646 DOI: 10.2174/0929866526666190926154248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Ting Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Huixia Li
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Taichen Guo
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Shibo Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Pharmacy, Medical College, Nanchang University, Nanchang 330006, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences / Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
8
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
9
|
Jiang Y, Verbiest T, Devery AM, Bokobza SM, Weber AM, Leszczynska KB, Hammond EM, Ryan AJ. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality. Int J Radiat Oncol Biol Phys 2016; 95:772-81. [PMID: 27020103 PMCID: PMC4856738 DOI: 10.1016/j.ijrobp.2016.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/22/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. METHODS AND MATERIALS NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O2) or hypoxic (1% O2) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, daily for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. RESULTS In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O2). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. CONCLUSIONS Our data suggest that hypoxia potentiates the radiation-sensitizing effects of olaparib by contextual synthetic killing, and that tumor hypoxia may be a potential biomarker for selecting patients who may get the greatest benefit from the addition of olaparib to radiation therapy.
Collapse
Affiliation(s)
- Yanyan Jiang
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tom Verbiest
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Aoife M Devery
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sivan M Bokobza
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anika M Weber
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Katarzyna B Leszczynska
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ester M Hammond
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anderson J Ryan
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Harris BHL, Barberis A, West CML, Buffa FM. Gene Expression Signatures as Biomarkers of Tumour Hypoxia. Clin Oncol (R Coll Radiol) 2015; 27:547-60. [PMID: 26282471 DOI: 10.1016/j.clon.2015.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 02/08/2023]
Abstract
Hypoxia is a feature of most solid tumours and is associated with a poor prognosis. The hypoxic environment can reduce the efficacy of radiotherapy and some chemotherapeutics, and has been investigated extensively as a therapeutic target. The clinical use of hypoxia-targeting treatment will benefit from the development of a biomarker to assess tumour hypoxia. There are several possible techniques that measure either the level of oxygen or the tumour molecular response to hypoxia. The latter includes gene expression profiling, which measures the transcriptional response of a tumour to its hypoxic microenvironment. A systematic review identified 32 published hypoxia gene expression signatures. The methods used for their derivation varied, but are broadly classified as: (i) identifying genes with significantly higher or lower expression in cancer cells cultured under hypoxic versus normoxic conditions; (ii) using either previously characterised hypoxia-regulated genes/biomarkers to define hypoxic tumours and then identifying other genes that are over- or under-expressed in the hypoxic tumours. Both generated gene signatures useful in furthering our understanding of hypoxia biology. However, signatures derived using the second method seem to be superior in terms of providing prognostic information. Here we summarise all 32 published hypoxia signatures, discuss their commonalities and differences, and highlight their strengths and limitations. This review also highlights the importance of reproducibility and gene annotation, which must be accounted for to transfer signatures robustly for clinical application as biomarkers.
Collapse
Affiliation(s)
- B H L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - A Barberis
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - C M L West
- Translational Radiobiology Group, Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester M13 9PT, UK
| | - F M Buffa
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
11
|
Abstract
Organic anion-transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs and, finally, covers the transcriptional and posttranscriptional regulation of OATPs.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
12
|
Pettersen EO, Ebbesen P, Gieling RG, Williams KJ, Dubois L, Lambin P, Ward C, Meehan J, Kunkler IH, Langdon SP, Ree AH, Flatmark K, Lyng H, Calzada MJ, Peso LD, Landazuri MO, Görlach A, Flamm H, Kieninger J, Urban G, Weltin A, Singleton DC, Haider S, Buffa FM, Harris AL, Scozzafava A, Supuran CT, Moser I, Jobst G, Busk M, Toustrup K, Overgaard J, Alsner J, Pouyssegur J, Chiche J, Mazure N, Marchiq I, Parks S, Ahmed A, Ashcroft M, Pastorekova S, Cao Y, Rouschop KM, Wouters BG, Koritzinsky M, Mujcic H, Cojocari D. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem 2014; 30:689-721. [PMID: 25347767 DOI: 10.3109/14756366.2014.966704] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 01/06/2023] Open
Abstract
The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.
Collapse
|
13
|
Dayal JHS, Cole CL, Pourreyron C, Watt SA, Lim YZ, Salas-Alanis JC, Murrell DF, McGrath JA, Stieger B, Jahoda C, Leigh IM, South AP. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes. J Cell Sci 2014; 127:740-51. [PMID: 24357722 PMCID: PMC3924202 DOI: 10.1242/jcs.128454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022] Open
Abstract
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Polarity
- Coculture Techniques
- Collagen Type VII/physiology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epidermolysis Bullosa Dystrophica/genetics
- Epidermolysis Bullosa Dystrophica/metabolism
- Epidermolysis Bullosa Dystrophica/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin alpha6/genetics
- Integrin alpha6/metabolism
- Keratinocytes
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Neoplasm Transplantation
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Promoter Regions, Genetic
- Protein Transport
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Solute Carrier Organic Anion Transporter Family Member 1B3
- Transcription, Genetic
- Tumor Cells, Cultured
- beta Catenin/genetics
- beta Catenin/metabolism
- Kalinin
Collapse
Affiliation(s)
- Jasbani H. S. Dayal
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Clare L. Cole
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Celine Pourreyron
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Stephen A. Watt
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Yok Zuan Lim
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Dedee F. Murrell
- St George Hospital, University of New South Wales, Sydney, 2217 NSW, Australia
| | - John A. McGrath
- King's College School of Medicine, St Thomas' Hospital, Guys Campus, London WC2R 2LS, UK
| | - Bruno Stieger
- Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | | | - Irene M. Leigh
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P. South
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
14
|
Han S, Kim K, Thakkar N, Kim D, Lee W. Role of hypoxia inducible factor-1α in the regulation of the cancer-specific variant of organic anion transporting polypeptide 1B3 (OATP1B3), in colon and pancreatic cancer. Biochem Pharmacol 2013; 86:816-23. [PMID: 23924606 DOI: 10.1016/j.bcp.2013.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 01/29/2023]
Abstract
Organic anion transporting polypeptide 1B3 (OATP1B3) was initially considered to be a liver-specific transporter, mediating the uptake of a variety of endogenous and xenobiotic substances. Over the past decade, several investigations reported that OATP1B3 is also expressed across multiple types of cancers. Only recently, our laboratory and others demonstrated the identity of cancer-specific OATP1B3 variants (csOATP1B3) arising from the use of an alternative transcription initiation site, different from the wildtype (WT) OATP1B3 expressed in the normal liver. However, the mechanisms regulating the expression of csOATP1B3 remained unknown. In our current study, we investigated the role of hypoxia and the involvement of hypoxia inducible factor-1α (HIF-1α) in regulating the transcription of csOATP1B3. Our RT-PCR and immunoblotting results indicated that csOATP1B3, but not WT OATP1B3, can be induced in response to ambient or chemical hypoxia (upon exposure to 1% O₂ or cobalt chloride). Reporter assays with deletion and mutated constructs of the csOATP1B3 promoter revealed a functional hypoxia response element (HRE) located in the proximal upstream region. Constructs harboring the HRE displayed the upregulated reporter gene expression in response to hypoxia, but not when mutated. Electrophoretic mobility shift assays using a biotin-labeled csOATP1B3 promoter HRE probe indicated the binding of HIF-1α, which was blocked by an excess of unlabeled csOATP1B3 probe. Furthermore, siRNA-based knockdown of HIF-1α caused a substantial decrease in the expression level of csOATP1B3. Taken together, these findings demonstrate that the transcription of csOATP1B3 is actively engaged during hypoxia, through a commonly utilized pathway involving HIF-1α.
Collapse
Affiliation(s)
- Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|