1
|
Quintana TA, Brewer MT, Chelladurai JRJ. Transcriptional responses to in vitro macrocyclic lactone exposure in Toxocara canis larvae using RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629602. [PMID: 39763735 PMCID: PMC11702694 DOI: 10.1101/2024.12.20.629602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Toxocara canis, the causative agent of zoonotic toxocariasis in humans, is a parasitic roundworm of canids with a complex lifecycle. While macrocyclic lactones (MLs) are successful at treating adult T. canis infections when used at FDA-approved doses in dogs, they fail to kill somatic third-stage larvae. In this study, we profiled the transcriptome of third-stage larvae derived from larvated eggs and treated in vitro with 10 μM of the MLs - ivermectin and moxidectin with Illumina sequencing. We analyzed transcriptional changes in comparison with untreated control larvae. In ivermectin-treated larvae, we identified 608 differentially expressed genes (DEGs), of which 453 were upregulated and 155 were downregulated. In moxidectin-treated larvae, we identified 1,413 DEGs, of which 902 were upregulated and 511 were downregulated. Notably, many DEGs were involved in critical biological processes and pathways including transcriptional regulation, energy metabolism, neuronal structure and function, physiological processes such as reproduction, excretory/secretory molecule production, host-parasite response mechanisms, and parasite elimination. We also assessed the expression of known ML targets and transporters, including glutamate-gated chloride channels (GluCls), and ATP-binding cassette (ABC) transporters, subfamily B, with a particular focus on P-glycoproteins (P-gps). We present gene names for previously uncharacterized T. canis GluCl genes using phylogenetic analysis of nematode orthologs to provide uniform gene nomenclature. Our study revealed that the expression of Tca-glc-3 and six ABCB genes, particularly four P-gps, were significantly altered in response to ML treatment. Compared to controls, Tca-glc-3, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in ivermectin-treated larvae, while Tca-abcb1, Tca-abcb7, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in moxidectin-treated larvae. Conversely, Tca-abcb9.1 and Tca-Pgp-11.3 were upregulated in moxidectin-treated larvae. These findings suggest that MLs broadly impact transcriptional regulation in T. canis larvae.
Collapse
Affiliation(s)
- Theresa A Quintana
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jeba R Jesudoss Chelladurai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
2
|
Jin X, Zhang Y, Hu W, Liu C, Cai D, Sun J, Wei Q, Cai Q. Developing a prognostic model for hepatocellular carcinoma based on MED19 and clinical stage and determining MED19 as a therapeutic target. J Cancer Res Clin Oncol 2024; 150:446. [PMID: 39369139 PMCID: PMC11455706 DOI: 10.1007/s00432-024-05978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUD Mediator complex subunit 19 (MED19), a member of the mediator complex, has been demonstrated to involve in tumorigenesis of hepatocellular carcinoma (HCC). However, the regulation mechanisms of MED19, the immune landscape linking MED19 to HCC and its predictive value of immunotherapy treatment in HCC are so far unknown. METHODS Here, we analyzed data from The Cancer Genome Atlas and other databases to assess the expression of MED19 and its prognosis and therapeutical-targets impact in HCC. RESULTS MED19 expression was upregulated in HCC tissues compared to non-tumorous liver tissues and that its upregulation was positively associated with advanced clinicopathology features. The multivariate analysis showed that MED19 was an independent predictor of outcome in HCC. In vitro experiments revealed that MED19 knockdown suppressed hepG2 cells proliferation, colony forming and invasion and induced apoptosis. Furthermore, MED19 inhibition resulted in G0/G1 phase arrest in hepG2 cells. We screened differentially expressed genes between low and high MED19 expression groups. Enrichment analyses showed that these genes were mainly linked to nuclear division and cell cycle. The pattern of tumor-infiltrating immune was demonstrated to be related with MED19 expression in HCC. TIDE analyses showed that patients in the low-expression group presented significantly better immunotherapy. Moreover, we developed a predicted model for HCC patient's prognosis. Receiver operating characteristic analyses revealed that this model processed a favorable performance in predicting the prognosis of HCC patients. Finally, a nomogram was built for predicting survival probability of individual HCC patient. CONCLUSION These findings suggest that MED19 as a novel biomarker that has significant association with immune landscape and immunotherapy response in HCC. The proposed prediction model composed of MED19 and pathological stage has a better role in determining prognosis and stratifying of HCC.
Collapse
Affiliation(s)
- Xiaojun Jin
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, 57 Xingning Rd., Ningbo, Zhejiang, China
| | - Yun Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, SouthernMedical University, Guangzhou, China
| | - Wei Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Liu
- Department of Hepatological Surgery, Bethune Third Clinical Medical College, Jilin University, Changchun, China
| | - Danyang Cai
- Department of Radiation Oncology, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Jialin Sun
- School of Statistics, East China Normal University, Shanghai, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qun Cai
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, 57 Xingning Rd., Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Maalouf CA, Alberti A, Soutourina J. Mediator complex in transcription regulation and DNA repair: Relevance for human diseases. DNA Repair (Amst) 2024; 141:103714. [PMID: 38943827 DOI: 10.1016/j.dnarep.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
The Mediator complex is an essential coregulator of RNA polymerase II transcription. More recent developments suggest Mediator functions as a link between transcription regulation, genome organisation and DNA repair mechanisms including nucleotide excision repair, base excision repair, and homologous recombination. Dysfunctions of these processes are frequently associated with human pathologies, and growing evidence shows Mediator involvement in cancers, neurological, metabolic and infectious diseases. The detailed deciphering of molecular mechanisms of Mediator functions, using interdisciplinary approaches in different biological models and considering all functions of this complex, will contribute to our understanding of relevant human diseases.
Collapse
Affiliation(s)
- Christelle A Maalouf
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France.
| |
Collapse
|
4
|
Wang M, Min M, Mai J, Liu X. Systematic analysis of the expression profiles and prognostic significance of the MED gene family in renal clear cell carcinoma. Oncol Lett 2024; 28:398. [PMID: 38979551 PMCID: PMC11228927 DOI: 10.3892/ol.2024.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 07/10/2024] Open
Abstract
The mediator complex (MED) family is a contributing factor in the regulation of transcription and proliferation of cells, and is closely associated with the development of various types of cancer. However, the significance of the expression levels and prognostic value of MED genes in kidney renal clear cell carcinoma (KIRC) have rarely been reported. The present study analyzed the expression and prognostic potential of MED genes in KIRC. The Search Tool for the Retrieval of Interacting Genes/Proteins was used to construct the protein-protein interaction network (PPI), the Assistant for Clinical Bioinformatics database was used to perform correlation analysis, GEPIA 2 was utilized to draw the Kaplan-Meier plot and analyze prognostic significance and the Tumor Immune Estimation Resource was used to assess the association of MED genes with the infiltration of immune cells in patients with KIRC. A total of 30 MED genes were identified, and among these genes, 11 were selected for the creation of a prognostic gene signature based on the results of a LASSO Cox regression analysis. Furthermore, according to univariate and multivariate analyses, MED7, MED16, MED21, MED25 and MED29 may be valuable independent predictive biomarkers for the prognosis of individuals with KIRC. Furthermore, there were significant differences in the expression levels of MED7, MED21 and MED25 in KIRC among different tumor grades. Additionally, patients with KIRC with high transcription levels of MED7, MED21 and MED29 had considerably longer overall survival times. The expression levels of MED genes were also linked to the infiltration of several immune cells. Overall, MED genes may have potential significance in predicting the prognosis of patients with KIRC.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, People's Liberation Army, Chengdu, Sichuan 500643, P.R. China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Wang K, Wang X, Fu X, Sun J, Zhao L, He H, Fan Y. Lung cancer metastasis-related protein 1 promotes the transferring from advanced metastatic prostate cancer to castration-resistant prostate cancer by activating the glucocorticoid receptor α signal pathway. Bioengineered 2022; 13:5373-5385. [PMID: 35184651 PMCID: PMC8974197 DOI: 10.1080/21655979.2021.2020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy is currently the main therapeutic strategy for the treatment of advanced metastatic prostate cancer (ADPC). However, the tumor type in ADPC patients transforms into castration-resistant prostate cancer (CRPC) after 18–24 months of treatments, the underlying mechanism of which remains unclear. The present study aimed to investigate the potential pathological mechanism of the conversion from ADPC to CRPC by exploring the function of lung cancer metastasis-related protein 1 (LCMR1). We found that LCMR1 and glucocorticoid receptor α (GRα) were highly expressed in CRPC tissues, compared to ADPC tissues, and were accompanied by high concentrations of inflammatory factors. Knocking down LCMR1 or GRα in CRPC cells led to inhibition of metastasis and proliferation and induction of apoptosis. The expression of HSP90 and IL-6 was upregulated and that of androgen receptor was downregulated by knocking down LCMR1 or GRα in CRPC cells. Luciferase assay results indicated that the transcription of GRα was promoted by the LCMR1 promoter. The growth rate of CRPC cells in vivo was greatly decreased by knocking down LCMR1 or GRα. Lastly, CRPC cell sensitivity to enzalutamide treatment was found significantly enhanced by the knockdown of LCMR1. Taken together, LCMR1 might regulate the conversion of ADPC to CRPC by activating the GRα signaling pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xuliang Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xian Fu
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ji Sun
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Liwei Zhao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Fan
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhang Y, Qin P, Tian L, Yan J, Zhou Y. The role of mediator complex subunit 19 in human diseases. Exp Biol Med (Maywood) 2021; 246:1681-1687. [PMID: 34038190 PMCID: PMC8719036 DOI: 10.1177/15353702211011701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mediator is an evolutionarily conserved multi-protein complex that mediates the interaction between different proteins as a basic linker in the transcription mechanism of eukaryotes. It interacts with RNA polymerase II and participates in the process of gene expression. Mediator complex subunit 19 or regulation by oxygen 3, or lung cancer metastasis-related protein 1 is located at the head of the mediator complex; it is a multi-protein co-activator that induces the transcription of RNA polymerase II by DNA transcription factors. It is a tumor-related gene that plays an important role in transcriptional regulation, cell proliferation, and apoptosis and is closely related to the occurrence and development of the cancers of the lung, bladder, skin, etc. Here, we used the structure of mediator complex subunit 19 to review its role in tumor progression, fat metabolism, drug therapy, as well as the novel coronavirus, which has attracted much attention at present, suggesting that mediator complex subunit 19 has broad application in the occurrence and development of clinical diseases. As a tumor-related gene, the role and mechanism of mediator complex subunit 19 in the regulation of tumor growth could be of great significance for the diagnosis, prognosis, and treatment of mediator complex subunit 19 -related tumors.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Peifang Qin
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Linlin Tian
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
8
|
Jettoo P, Tan G, Gerrand CH, Rankin KS. Role of routine blood tests for predicting clinical outcomes in osteosarcoma patients. J Orthop Surg (Hong Kong) 2020; 27:2309499019838293. [PMID: 30909848 DOI: 10.1177/2309499019838293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This retrospective cohort study aimed to investigate whether simple routine blood tests at presentation (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), alkaline phosphatase and albumin) predict survival in patients with osteosarcoma. METHODS Between January 1998 and February 2015, 134 patients with a histological diagnosis of osteosarcoma were treated in our unit. Of these, 79 patients with high-grade osteosarcomas were included in the study. Demographic and clinical data, and laboratory parameters obtained prior to biopsy (CRP, ESR, alkaline phosphatase and albumin levels), were obtained from patients' records. RESULTS There were 44 males and 35 females. Univariate analysis showed that high pre-biopsy CRP ( p = 0.004), raised pre-biopsy ESR ( p = 0.010), older age ( p < 0.001), poor tumour necrosis rates (≤90%, p = 0.023) and metastasis at presentation ( p < 0.001) were poor prognostic factors. Multivariate analysis showed pre-biopsy CRP and ESR levels to be independent predictors of overall survival ( p = 0.020 and p = 0.025, respectively). Kaplan-Meier survival was significantly lower in patients with elevated CRP ( p = 0.002) and ESR ( p = 0.003). Hypoalbuminaemia and elevated alkaline phosphatase levels did not correlate with overall survival. CONCLUSION Preoperative CRP and ESR levels may have value in building a prognostic model for patients presenting with osteosarcoma.
Collapse
Affiliation(s)
- P Jettoo
- 1 Northern Deanery Training Programme, Newcastle upon Tyne, UK
| | - Gjs Tan
- 2 East Suffolk & North Essex NHS Foundation Trust, The Ipswich Hospital, Ipswich, UK
| | - C H Gerrand
- 3 Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
| | - K S Rankin
- 4 North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,5 Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
10
|
Liu B, Qi X, Zhang X, Gao D, Fang K, Guo Z, Li L. Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer. J Cell Biochem 2019; 120:507-518. [PMID: 30161287 DOI: 10.1002/jcb.27406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Adriamycin (ADM)-based regimens are the most effective chemotherapeutic treatments for breast cancer. However, intrinsic and acquired chemoresistance is a major therapeutic problem. Our goal was to clarify the role of mediator complex subunit 19 (Med19) in chemotherapy resistance and to elucidate the related molecular mechanisms. In this study, ADM-resistant human cells (MCF-7/ADM) and tissues exhibited increased Med19 expression and autophagy levels relative to the corresponding control groups. Additionally, MCF-7/ADM cells showed changes in two selective markers of autophagy. There was a dose-dependent increase in the light chain 3 (LC3)-II/LC3-I ratio and a decrease in sequestosome 1 (P62/SQSTMl) expression. Furthermore, lentivirus-mediated Med19 inhibition significantly attenuated the LC3-II/LC3-I ratio, autophagy-related gene 3 (Atg3) and autophagy-related gene 5 (Atg5) expression, P62 degradation, and red fluorescent protein-LC3 dot formation after treatment with ADM or rapamycin, an autophagy activator. Furthermore, the antiproliferative effects of ADM, cisplatin (DDP), and taxol (TAX) were significantly enhanced after suppressing Med19 expression. Notably, the effects of Med19 on autophagy were mediated through the high-mobility group box-1 (HMGB1) pathway. Our findings suggest that Med19 suppression increased ADM chemosensitivity by downregulating autophagy through the inhibition of HMGB1 signaling in human breast cancer cells. Thus, the regulatory mechanisms of Med19 in autophagy should be investigated to reduce tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Beibei Liu
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Danfeng Gao
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Fang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lihua Li
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Liu HC, Zeng J, Zhang B, Liu XQ, Dai M. Inhibitory effect of MSH6 gene silencing in combination with cisplatin on cell proliferation of human osteosarcoma cell line MG63. J Cell Physiol 2018; 234:9358-9369. [PMID: 30456894 DOI: 10.1002/jcp.27620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies, with the survival rate of patients with OS remaining low. Therefore, we conducted this study to identify the potential role combination of both MSH6 gene silencing and cisplatin (DDP) plays in OS cell proliferation and apoptosis. Microarray-based gene expression profiling was used to identify the differentially expressed genes (DEGs) in patients with OS, as well as microRNAs (miRNAs) that regulate the candidate gene. OS tissues from 67 patients with OS along with normal tissues from 24 amputee patients were collected for detection of the positive expression of mutS homolog 6 (MSH6) protein, mRNA, and protein expressions of c-myc, cyclin D1, l-2, B-cell lymphoma 2 (Bcl-2), Stathmin, proliferating cell nuclear antigen (PCNA), and Bcl-2-associated X (Bax). Moreover, after MSH6 silencing and DDP were treated on the selected human OS cell line MG63 with the highest expression of MSH6, cell viability, cell cycle distribution, and apoptosis were detected. The microarray analysis showed that MSH6 was upregulated in OS chip data. Furthermore, silencing MSH6 combined with DDP reduced expressions of c-myc, cyclin D1, Bcl-2, Stathmin, and PCNA, and elevated Bax expression, whereas inhibiting OS cell viability, impeding cell cycle distribution, and inducing apoptosis. In conclusion, our preliminary results indicated that the combination of MSH6 gene silencing coupled with DDP may have a better effect on the inhibition of OS cell proliferation and promote apoptosis, potentially providing targets for the OS treatment.
Collapse
Affiliation(s)
- Hu-Cheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Zeng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Qiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Wang WT, Qi Q, Zhao P, Li CY, Yin XY, Yan RB. miR-590-3p is a novel microRNA which suppresses osteosarcoma progression by targeting SOX9. Biomed Pharmacother 2018; 107:1763-1769. [PMID: 30257395 DOI: 10.1016/j.biopha.2018.06.124] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy and arises primarily in the metaphyseal ends of long bones in children and adolescents. m iR-590 has been found to have anti-tumor effects in many other cancers. However, the role of miR-590-3p in osteosarcoma is poorly understood. In this study, we show that miR-590-3p was significantly decreased both in osteosarcoma tissues and cell lines, suggesting a potential role of miR-590-3p in osteosarcoma. Over-expression of miR-590-3p inhibited U2OS cell viability as shown by the CCK-8 assay and clonogenic assay. Ki-67 immunofluorescence staining and cell cycle analysis revealed that up-regulation of miR-590-3p inhibited U2OS cell proliferation. Transfection with miR-590-3p mimics suppressed PCNA, Cyclin D1 and CDK4 expression and increased p53 and p21 expression. In addition, U2OS cells transfected with miR-590-3p mimics exhibited reduced cell invasion and migration, characterized by the wound healing assay and transwell assay. Furthermore, bioinformatics analysis demonstrated that SOX9 was a potential target of miR-590-3p. SOX9 was up-regulated in osteosarcoma tissues. Transfection with miR-590-3p mimics markedly suppressed SOX9 expression both at the mRNA level and protein level. Dual luciferase assay validated the direct binding site of miR-590-3p on SOX9. Exogenous SOX9 expression in U2OS cells at least partially reversed the effects of miR-590-3p in U2OS cells. Enforced SOX9 expression restored cell viability in osteosarcoma cells transfected with miR-590-3p mimics. In addition, over-expression of SOX9 restored decreased cell metastasis properties caused by transfection with miR-590-3p mimics in osteosarcoma cells. In summary, these results indicated that miR-590-3p is an anti-cancer miRNA that can inhibit proliferation and metastasis in osteosarcoma cells. Our findings provide a novel insight into the biological function of miR-590-3p in osteosarcoma and SOX9 may be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Wan-Tao Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Quan Qi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China.
| | - Peng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Chen-Yong Li
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xun-Yi Yin
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Rong-Bao Yan
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
13
|
Lumbar puncture-administered resveratrol inhibits STAT3 activation, enhancing autophagy and apoptosis in orthotopic rat glioblastomas. Oncotarget 2018; 7:75790-75799. [PMID: 27716625 PMCID: PMC5342778 DOI: 10.18632/oncotarget.12414] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Trans-resveratrol suppresses glioblastoma growth in vitro, but its effects on intracranial glioblastomas remain untested. Resveratrol crosses the blood–brain barrier, and lumbar puncture (LP) greatly increases its bioavailability in rat brains; therefore, we investigated the effectiveness of LP-administered resveratrol on orthotopic rat glioblastomas. Twenty-four tumor-bearing rats were separated into two groups: Group 1 receiving 100 μl saline containing 0.3% DMSO and Group 2 receiving 100 μl resveratrol (300 μM). Treatments started 3 days after transplantation in 2-day intervals until death. Intracranial drug availabilities, tumor sizes, average life spans and the impacts on STAT3 signaling, apoptosis and autophagy rates were evaluated. MRI imaging revealed that average tumor size in the LP group (495.8 ± 22.3 mm2) was smaller than the control groups (810.3 ± 56.4 mm2; P<0.05). The mean survival time in the LP group (22.2 ± 2.1 d) was longer than control animals (16.0 ± 1.8 d; P<0.05). LP resveratrol-treated glioblastomas showed less Cyclin D1 staining, enhanced autophagy with up-regulated LC3 and Beclin1 expression, and widely distributed apoptotic foci around tumor capillaries with suppressed STAT3 expression and nuclear translocation. In conclusion, LP-delivered resveratrol efficiently inhibited orthotopic rat glioblastoma growth by inactivating STAT3 signaling and enhancing autophagy and apoptosis.
Collapse
|
14
|
Xu Y, Liang Z, Li C, Yang Z, Chen L. LCMR1 interacts with DEK to suppress apoptosis in lung cancer cells. Mol Med Rep 2017; 16:4159-4164. [PMID: 28765911 DOI: 10.3892/mmr.2017.7095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
To win the war against lung cancer, the molecular mechanisms underlying its oncogenesis and metastasis must be identified in order to develop novel diagnosis and treatment strategies. We previously identified a novel gene, namely lung cancer metastasis related protein 1 (LCMR1; GenBank accession no. AY148462), which was demonstrated to be overexpressed in non‑small‑cell lung cancer. LCMR1 expression was significantly associated with clinical stage. To further understand the mechanism of LCMR1 in lung cancer, the present study screened a cDNA library from the lung cancer cell line 95D for proteins interacting with LCMR1 by yeast two‑hybrid assay, and the protein DEK was identified. Co‑immunoprecipitation and glutathione S‑transferase pull‑down assays were performed to confirm the interaction between LCMR1 and DEK in vivo and in vitro. The results demonstrated that the interaction was mediated primarily by the N‑terminal region of DEK, suggesting that LCMR1 may be involved in the regulation of cell apoptosis. Using RNA interference, DEK and LCMR1 were demonstrated to cooperate in the inhibition of apoptosis in lung cancer cells, and this effect was associated with the induced myeloid leukemia protein cell differentiation protein 1 pathway. The present findings suggest that LCMR1 might serve as a potential molecular target for lung cancer therapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhixin Liang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chunsun Li
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhen Yang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Liangan Chen
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
15
|
Yuan H, Yu S, Cui Y, Men C, Yang D, Gao Z, Zhu Z, Wu J. Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway. J Cell Mol Med 2017. [PMID: 28631286 PMCID: PMC5706513 DOI: 10.1111/jcmm.13229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Hejia Yuan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shengqiang Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Changping Men
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Diandong Yang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhenli Gao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
16
|
Agaësse G, Barbollat-Boutrand L, Sulpice E, Bhajun R, El Kharbili M, Berthier-Vergnes O, Degoul F, de la Fouchardière A, Berger E, Voeltzel T, Lamartine J, Gidrol X, Masse I. A large-scale RNAi screen identifies LCMR1 as a critical regulator of Tspan8-mediated melanoma invasion. Oncogene 2017; 36:446-457. [PMID: 27375018 DOI: 10.1038/onc.2016.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
Abstract
Melanoma is the deadliest form of skin cancer owing to its proclivity to metastasise, and recently developed therapies have not yielded the expected results, because almost all patients relapse. Therefore, understanding the molecular mechanisms that underlie early invasion by melanoma cells is crucial to improving patient survival. We have previously shown that, whereas the Tetraspanin 8 protein (Tspan8) is undetectable in normal skin and benign lesions, its expression arises with the progression of melanoma and is sufficient to increase cell invasiveness. Therefore, to identify Tspan8 transcriptional regulators that could explain the onset of Tspan8 expression, thereby conferring an invasive phenotype, we performed an innovative RNA interference-based screen, which, for the first time, identified several Tspan8 repressors and activators, such as GSK3β, PTEN, IQGAP1, TPT1 and LCMR1. LCMR1 is a recently identified protein that is overexpressed in numerous carcinomas; its expression and role, however, had not previously been studied in melanoma. The present study identified Tspan8 as the first LCMR1 target that could explain its function in carcinogenesis. LCMR1 modulation was sufficient to positively regulate endogenous Tspan8 expression, with concomitant in vitro phenotypic changes such as loss of melanoma cell-matrix adherence and increase in invasion, and Tspan8 expression promoted tumourigenicity in vivo. Moreover, LCMR1 and Tspan8 overexpression were shown to correlate in melanoma lesions, and both proteins could be downregulated in vitro by vemurafenib. In conclusion, this study highlights the importance of Tspan8 and its regulators in the control of early melanoma invasion and suggests that they may be promising new therapeutic targets downstream of the RAF-MEK-ERK signalling pathway.
Collapse
Affiliation(s)
- G Agaësse
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - L Barbollat-Boutrand
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - E Sulpice
- Université Grenoble-Alpes, Grenoble, France
- CEA, BIG-BGE, Biomics, Grenoble, France
- Inserm, BGE, Grenoble, France
| | - R Bhajun
- Université Grenoble-Alpes, Grenoble, France
- CEA, BIG-BGE, Biomics, Grenoble, France
- Inserm, BGE, Grenoble, France
| | - M El Kharbili
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - O Berthier-Vergnes
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - F Degoul
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP, Clermont-Ferrand, France
- Inserm, U 990, Clermont-Ferrand, France
| | | | - E Berger
- Laboratoire CarMeN (INSERM 1060, INRA 1397, INSA), Université de Lyon, Lyon, France
| | - T Voeltzel
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, Lyon, France
| | - J Lamartine
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - X Gidrol
- Université Grenoble-Alpes, Grenoble, France
- CEA, BIG-BGE, Biomics, Grenoble, France
- Inserm, BGE, Grenoble, France
| | - I Masse
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| |
Collapse
|
17
|
Li Y, Liu X, Zhang J, Yao W. Prognostic role of elevated preoperative systemic inflammatory markers in localized soft tissue sarcoma. Cancer Biomark 2016; 16:333-42. [PMID: 26835589 DOI: 10.3233/cbm-160571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Systemic inflammation has been implicated in cancer development and progression. The aim of the present study was to evaluate whether pre-operative systemic inflammatory markers can predict outcomes in bone and soft tissue sarcomas. METHODS Relevant literature was mainly identified using Pubmed, EMBASE and CNKI. Patients' clinical characteristics, overall survival (OS), disease/relapse free survival (DFS/RFS) with high-level CRP or neutrophils to lymphocytes ratio (NLR) were extracted. The statistics extracted from Kaplan-Meier survival curves with log-rank p value were calculated with methods developed by Parmar, Williamson, and Tierney; multivariate Cox hazard regression analysis data were used directly in STATA 10.0. Pooled hazard ratio (HR) and 95% CI were calculated to evaluate the prognostic role of these systemic inflammatory markers (CRP/NLR). RESULTS After full text review, 11 articles containing 1809 patients were identified as eligible articles. The meta-analysis for survival outcome showed significant prognostic value of systemic inflammatory markers including CRP and NLR in pre-operative blood. The combined HRs (95% CI) for five year overall survival (OS) and disease/recurrence free survival (DFS/RFS) were 2.54 [2.04, 3.16] and 2.28 [1.72, 3.04]. Specifically, higher NLR was associated with decreased 5-year OS (HR 3.75, 95% CI 1.24 to 11.37) and 3 year RFS/DFS (HR 2.43, 95% CI 0.84 to 7.05). Besides, the pooled HR showed a higher risk of 5-year disease progression (HR 2.55, 95% CI 1.60 to 4.08, I2 = 52%) and lower 5-year OS (HR 2.50, 95% CI 2.00 to 3.12, I2 = 0%) in sarcoma patients with high CRP level. We then grouped the meta-analysis by patient source (Asian and non-Asian), tumor stage (I/II or III/IV) and grade (high or low), respectively. All the subgroup analysis showed significant prognostic role in survival condition. The CRP/NLR levels are also found closely related with patient age, tumor stage and size. CONCLUSION Higher level of pre-operative CRP and NLR demonstrated a significantly higher risk of recurrence and overall decreased survival rates in sarcomas.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoxiao Liu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqiang Yao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
18
|
Abstract
Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.
Collapse
Affiliation(s)
- Vadim V Maximov
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rami I Aqeilan
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.,Department of Molecular Virology, Immunology & Medical Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Wei L, Wang XW, Sun JJ, Lv LY, Xie L, Song XR. Knockdown of Med19 suppresses proliferation and enhances chemo-sensitivity to cisplatin in non-small cell lung cancer cells. Asian Pac J Cancer Prev 2015; 16:875-80. [PMID: 25735376 DOI: 10.7314/apjcp.2015.16.3.875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mediator 19 (Med19) is a component of the mediator complex which is a coactivator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The involvement of Med19 in sensitivity to the chemotherapeutic agent cisplatin was here investigated. We employed RNA interference to reduce Med19 expression in human non-small cell lung cancer (NSCLC) cell lines and analyzed their phenotypic changes. The results showed that after Med19 siRNA transfection, expression of Med19 mRNA and protein was dramatically reduced (p<0.05). Meanwhile, impaired growth potential, arrested cell cycle at G0/G1 phase and enhanced sensitivity to cisplatin were exhibited. Apoptosis and caspase-3 activity were increased when cells were exposed to Med19 siRNA and/or cisplatin. The present findings suggest that Med19 facilitates tumorigenic properties of NSCLC cells and knockdown of Med19 may be a rational therapeutic tool for lung cancer cisplatin sensitization.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
20
|
Li X, Tian F, Wang F, Li Y. Serum C-reactive protein and overall survival of patients with osteosarcoma. Tumour Biol 2015; 36:5663-6. [PMID: 25986475 DOI: 10.1007/s13277-015-3240-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 02/09/2015] [Indexed: 01/29/2023] Open
Abstract
Increased level of serum C-reactive protein (CRP) has been identified as an important prognostic factor in several types of cancers. However, the prognostic significance of serum CRP levels in patients with osteosarcoma was still unclear. A retrospective cohort study of 85 patients was performed to assess the prognostic significance of serum CRP level in osteosarcoma. Both log-rank test and multivariable analysis by Cox regression model were used to assess the impact of serum CRP levels on the overall survival in patients with osteosarcoma. Among those 85 patients, 28 (32.9 %) had high serum CRP level (>1 mg/dL), while the other 57 (67.1 %) patients had normal serum CRP level (≤ 1 mg/dL). There was no obvious difference in the baseline characteristics between high CRP group and normal CRP group. Kaplan-Meier product-limit method showed that patients with high serum CRP levels had significantly poorer overall survival than those patients with normal serum CRP levels (log-rank test P = 0.0008). Multivariable analysis by Cox regression model further showed that high serum CRP level was an independent predictor of poor overall survival (hazard ratio [HR] = 2.39; 95 % confidence interval [95 % CI] 1.22-4.67, P = 0.01). Thus, serum CRP level has an important prognostic significance in patients with osteosarcoma, and high CRP level is associated with worse overall survival.
Collapse
Affiliation(s)
- Xiaochuan Li
- Department of Hand & Foot Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, People's Republic of China,
| | | | | | | |
Collapse
|