1
|
Becker AS, Kluge C, Schofeld C, Zimpfer AH, Schneider B, Strüder D, Redwanz C, Ribbat-Idel J, Idel C, Maletzki C. Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers (Basel) 2023; 15:5597. [PMID: 38067301 PMCID: PMC10705351 DOI: 10.3390/cancers15235597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 10/27/2024] Open
Abstract
The 5-year survival rate for head and neck squamous cell carcinoma (HNSCC) is approximately 65%. In addition to radio-chemotherapy, immunotherapy is an approach in the treatment of advanced HNSCC. A better understanding of the immune context would allow personalized treatment by identifying patients who are best suited for different treatment options. In our discovery cohort, we evaluated the expression profiles of CMTM6, PD-L1, CTLA-4, and FOXP3 in 177 HNSCCs from Caucasian patients of all tumor stages and different treatment regimens, correlating marker expression in tumor and immune cells with outcomes. Patients with CMTM6high-expressing tumors had a longer overall survival regardless of treatment. This prognostic benefit of CMTM6 in HNSCC was validated in an independent cohort. Focusing on the in the discovery cohort (n = 177), a good predictive effect of CMTM6high expression was seen in patients receiving radiotherapy (p = 0.07; log rank), but not in others. CMTM6 correlated with PD-L1, CTLA-4 and FOXP3 positivity, with patients possessing CMTM6high/FOXP3high tumors showing the longest survival regardless of treatment. In chemotherapy-treated patients, PD-L1 positivity was associated with longer progression-free survival (p < 0.05). In the 27 patients who received immunotherapy, gene expression analysis revealed lower levels of CTLA-4 and FOXP3 with either partial or complete response to this treatment, while no effect was observed for CMTM6 or PD-L1. The combination of these immunomodulatory markers seems to be an interesting prognostic and predictive signature for HNSCC patients with the ability to optimize individualized treatments.
Collapse
Affiliation(s)
- Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Cornelius Kluge
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Carsten Schofeld
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Annette Helene Zimpfer
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Koerner”, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Christian Idel
- Department of Oto-Rhino-Laryngology & Head and Neck Surgery, University of Lubeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
2
|
Tawk B, Rein K, Schwager C, Knoll M, Wirkner U, Hörner-Rieber J, Liermann J, Kurth I, Balermpas P, Rödel C, Linge A, Löck S, Lohaus F, Tinhofer I, Krause M, Stuschke M, Grosu AL, Zips D, Combs SE, Belka C, Stenzinger A, Herold-Mende C, Baumann M, Schirmacher P, Debus J, Abdollahi A. DNA-Methylome-Based Tumor Hypoxia Classifier Identifies HPV-Negative Head and Neck Cancer Patients at Risk for Locoregional Recurrence after Primary Radiochemotherapy. Clin Cancer Res 2023; 29:3051-3064. [PMID: 37058257 PMCID: PMC10425733 DOI: 10.1158/1078-0432.ccr-22-3790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in head and neck squamous cell carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. EXPERIMENTAL DESIGN A DNA-methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA (The Cancer Genome Atlas)-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of human papillomavirus (HPV)-negative patients with HNSCC treated with primary radiochemotherapy (RCHT). RESULTS Although hypoxia-GES failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (HR, 4.3; P = 0.001) and overall survival (HR, 2.34; P = 0.03) but not distant metastasis after RCHT in both cohorts. Hypoxia-M status was inversely associated with CD8 T-cell infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR, 1.83; P = 0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS Our findings highlight an unexplored avenue for DNA methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. See related commentary by Heft Neal and Brenner, p. 2954.
Collapse
Affiliation(s)
- Bouchra Tawk
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Rein
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Knoll
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Wirkner
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Liermann
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), partner site, Frankfurt, Germany
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), partner site, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Steffen Löck
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Ingeborg Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Mechtild Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anca Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Freiburg, Germany
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, German Cancer Consortium (DKTK), partner site Tuebingen, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Munich, Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany
- Department of Radiation Oncology, University Hospital Ludwig-Maximilians-University of Munich, Munich, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Albrecht Stenzinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Rodney AR, Skidmore ZL, Grenier JK, Griffith OL, Miller AD, Chu S, Ahmed F, Bryan JN, Peralta S, Warren WC. Genomic landscape and gene expression profiles of feline oral squamous cell carcinoma. Front Vet Sci 2023; 10:1079019. [PMID: 37266381 PMCID: PMC10229771 DOI: 10.3389/fvets.2023.1079019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 06/03/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a cancer of the squamous cell lining in the oral cavity and represents up to 80% of all oral cancers in cats, with a poor prognosis. We have used whole exome sequencing (WES) and RNA sequencing of the tumor to discover somatic mutations and gene expression changes that may be associated with FOSCC occurrence. FOSCC offers a potential comparative model to study human head and neck squamous cell carcinoma (HNSCC) due to its similar spontaneous formation, and morphological and histological features. In this first study using WES to identify somatic mutations in feline cancer, we have identified tumor-associated gene mutations in six cats with FOSCC and found some overlap with identified recurrently mutated genes observed in HNSCC. Four samples each had mutations in TP53, a common mutation in all cancers, but each was unique. Mutations in other cellular growth control genes were also found such as KAT2B and ARID1A. Enrichment analysis of FOSCC gene expression profiles suggests a molecular similarity to human OSCC as well, including alterations in epithelial to mesenchymal transition and IL6/JAK/STAT pathways. In this preliminary study, we present exome and transcriptome results that further our understanding of FOSCC.
Collapse
Affiliation(s)
- Alana R. Rodney
- Department of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, United States
| | - Jennifer K. Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, United States
| | - Andrew D. Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Shirley Chu
- Department of Oncology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Faraz Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jeffrey N. Bryan
- Department of Oncology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wesley C. Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Xie Y, Song X, Du D, Ni Z, Huang H. Identification of cuproptosis-related lncRNAs to predict prognosis and immune infiltration characteristics in alimentary tract malignancies. BMC Bioinformatics 2023; 24:184. [PMID: 37142949 PMCID: PMC10161432 DOI: 10.1186/s12859-023-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alimentary tract malignancies (ATM) caused nearly one-third of all tumor-related death. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in ATM is unknown. METHOD Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to identify prognostic lncRNAs by Cox regression and LASSO. Then a predictive nomogram was constructed based on seven prognostic lncRNAs. In addition, the prognostic potential of the seven-lncRNA signature was verified via survival analysis, the receiver operating characteristic (ROC) curve, calibration curve, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score and immune landscape, and somatic gene mutation. RESULTS We identified 1211 cuproptosis-related lncRNAs and seven survival-related lncRNAs. Patients were categorized into high-risk and low-risk groups with significantly different prognoses. ROC and calibration curve confirmed the good prediction capability of the risk model and nomogram. Somatic mutations between the two groups were compared. We also found that patients in the two groups responded differently to immune checkpoint inhibitors and immunotherapy. CONCLUSION The proposed novel seven lncRNAs nomogram could predict prognosis and guide treatment of ATM. Further research was required to validate the nomogram.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xue Song
- Department of Pneumology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Danwei Du
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Zhongkai Ni
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Hai Huang
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
5
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
6
|
Peng C, Ye H, li Z, Duan X, Yang W, Yi Z. Multi-omics characterization of a scoring system to quantify hypoxia patterns in patients with head and neck squamous cell carcinoma. J Transl Med 2023; 21:15. [PMID: 36627705 PMCID: PMC9830846 DOI: 10.1186/s12967-022-03869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The 5-year survival rate of patients with head and neck squamous cell carcinoma (HNSCC) remains < 50%. Hypoxia patterns are a hallmark of HNSCC that are associated with its occurrence and progression. However, the precise role of hypoxia during HNSCC, such as the relationship between hypoxia, tumor immune landscape and cell communication orchestration remains largely unknown. The current study integrated data from bulk and single-cell RNA sequencing analyses to define the relationship between hypoxia and HNSCC. METHODS A scoring system named the hypoxia score (HS) was constructed based on hypoxia-related genes (HRGs) expression. The predictive value of HS response for patient outcomes and different treatments was evaluated. Single-cell datasets and cell communication were utilized to rule out cell populations which hypoxia targeted on. RESULTS The survival outcomes, immune/Estimate scores, responses to targeted inhibitors, and chemotherapeutic, and immunotherapy responses were distinct between a high HS group and a low HS group (all P < 0.05). Single-cell datasets showed different distributions of HS in immune cell populations (P < 0.05). Furthermore, HLA-DPA1/CD4 axis was identified as a unique interaction between CD4 + T Conv and pDC cells. CONCLUSIONS Altogether, the quantification for hypoxia patterns is a potential biomarker for prognosis, individualized chemotherapeutic and immunotherapy strategies. The portrait of cell communication characteristics over the HNSCC ecosystem enhances the understanding of hypoxia patterns in HNSCC.
Collapse
Affiliation(s)
- Cong Peng
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Huiping Ye
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhengyang li
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaofeng Duan
- grid.459540.90000 0004 1791 4503Department of Oral and Maxillofacial Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wen Yang
- grid.452244.1Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhuguang Yi
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
7
|
D’Angelo A, Kilili H, Chapman R, Generali D, Tinhofer I, Luminari S, Donati B, Ciarrocchi A, Giannini R, Moretto R, Cremolini C, Pietrantonio F, Sobhani N, Bonazza D, Prins R, Song SG, Jeon YK, Pisignano G, Cinelli M, Bagby S, Urrutia AO. Immune-related pan-cancer gene expression signatures of patient survival revealed by NanoString-based analyses. PLoS One 2023; 18:e0280364. [PMID: 36649303 PMCID: PMC9844904 DOI: 10.1371/journal.pone.0280364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.
Collapse
Affiliation(s)
- Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Oncology Department, Royal United Hospital, Bath, United Kingdom
- * E-mail:
| | - Huseyin Kilili
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Robert Chapman
- Department of Medicine, The Princess Alexandra Hospital, Harlow, United Kingdom
| | - Daniele Generali
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charite´ University Hospital, Berlin, Germany
| | - Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Riccardo Giannini
- Department of Surgery, Clinical, Molecular and Critical Care Pathology, University of Pisa, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Debora Bonazza
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Robert Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Mattia Cinelli
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Araxi O. Urrutia
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Instituto de Ecologia, UNAM, Ciudad de Mexico, Mexico
| |
Collapse
|
8
|
Xu QS, Shen ZZ, Yuan LQ. Identification and validation of a novel cuproptosis-related lncRNA signature for prognosis and immunotherapy of head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:968590. [PMID: 36467424 PMCID: PMC9712781 DOI: 10.3389/fcell.2022.968590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 10/08/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and heterogeneous malignancy with a dismal overall survival rate. Nevertheless, the effective biomarkers remain ambiguous and merit further investigation. Cuproptosis is a novel defined pathway of programmed cell death that contributes to the progression of cancers. Meanwhile, long non-coding RNAs (lncRNAs) play a crucial role in the biological process of tumors. Nevertheless, the prognostic value of cuproptosis-related lncRNAs in HNSCC is still obscure. This study aimed to develop a new cuproptosis-related lncRNAs (CRLs) signature to estimate survival and tumor immunity in patients with HNSCC. Herein, 620 cuproptosis-related lncRNAs were identified from The Cancer Genome Atlas database through the co-expression method. To construct a risk model and validate the accuracy of the results, the samples were divided into two cohorts randomly and equally. Subsequently, a prognostic model based on five CRLs was constructed by the Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) algorithm. In addition, the prognostic potential of the five-CRL signature was verified via Cox regression, survival analysis, the receiver operating characteristic (ROC) curve, nomogram, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score (RS) and immune landscape, somatic gene mutation, and drug sensitivity. Finally, we gathered six clinical samples and different HNSCC cell lines to validate our bioinformatics results. Overall, the proposed novel five-CRL signature can predict prognosis and assess the efficacy of immunotherapy and targeted therapies to prolong the survival of patients with HNSCC.
Collapse
Affiliation(s)
- Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng-Zhong Shen
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Huang Y, Liu J, Zhu X. Mutations in lysine methyltransferase 2C and PEG3 are associated with tumor mutation burden, prognosis, and antitumor immunity in pancreatic adenocarcinoma patients. Digit Health 2022; 8:20552076221133699. [PMID: 36312851 PMCID: PMC9597037 DOI: 10.1177/20552076221133699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As a common cancer-related death worldwide, pancreatic adenocarcinoma (PAAD) has significantly increased mortality in recent years. In recent years, tumor mutation burden (TMB) has been regarded as the most popular biomarker for PAAD immunotherapy. However, it remains unclear which gene mutations affect TMB and immune response in pancreatic adenocarcinoma. METHODS The somatic mutation images of PAAD samples were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Based on the expression data of the TCGA and IGCC cohorts, various bioinformatics algorithms are used for evaluating the prognostic value and functional annotation of some frequently somatically mutated genes. Furthermore, the correlation between gene mutation and tumor immunity was also evaluated. RESULTS The results showed that lysine methyltransferase 2C (KMT2C) and paternally expressed 3 (PEG3) are frequently mutated genes in PAAD. Patients with KMT2C and PEG3 mutations have higher TMB severity and a lousy prognosis. In addition, the mutations of KMT2C and PEG3 genes positively regulate the metabolic and protein-related pathways in PAAD. Meanwhile, significant differences in the composition of the immune cells were observed for KMT2C and PEG3 mutations PAAD patients, for providing additional guidelines for antitumor treatments in various KMT2C and PEG3 mutation states in PAAD. CONCLUSION This study reveals that KMT2C and PEG3 mutation may serve as biomarkers for predicting prognosis and guiding anti-PAAD immunotherapy for PAAD patients.
Collapse
Affiliation(s)
- Yili Huang
- The Third Clinical Medical College, Henan University of Traditional Chinese
Medicine, Zhengzhou, Henan Province, People's Republic of China,Department of Radiotherapy, Henan Cancer Hospital, Zhengzhou, Henan Province, People's Republic of China,Xiaole Zhu, Pancreas Center, Jiangsu Province Hospital, 300
Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
Jinsong Liu, Department of
Radiotherapy, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450003, Henan
Province, People's Republic of China.
| | - Jinsong Liu
- The Third Clinical Medical College, Henan University of Traditional Chinese
Medicine, Zhengzhou, Henan Province, People's Republic of China,Department of Radiotherapy, Henan Cancer Hospital, Zhengzhou, Henan Province, People's Republic of China
| | - Xiaole Zhu
- Pancreas Center, Jiangsu Province Hospital,
Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
10
|
Fan X, Xie F, Zhang L, Tong C, Zhang Z. Identification of immune-related ferroptosis prognostic marker and in-depth bioinformatics exploration of multi-omics mechanisms in thyroid cancer. Front Mol Biosci 2022; 9:961450. [PMID: 36060256 PMCID: PMC9428456 DOI: 10.3389/fmolb.2022.961450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Factors such as variations in thyroid carcinoma (THCA) gene characteristics could influence the clinical outcome. Ferroptosis and immunity have been verified to play an essential role in various cancers, and could affect the cancer patients' prognosis. However, their relationship to the progression and prognosis of many types of THCA remains unclear. Methods: First, we extracted prognosis-related immune-related genes and ferroptosis-related genes from 2 databases for co-expression analysis to obtain prognosis-related differentially expressed immune-related ferroptosis genes (PR-DE-IRFeGs), and screened BID and CDKN2A for building a prognostic model. Subsequently, multiple validation methods were used to test the model's performance and compare its performance with other 4 external models. Then, we explored the mechanism of immunity and ferroptosis in the occurrence, development and prognosis of THCA from the perspectives of anti-tumor immunity, CDKN2A-related competitive endogenous RNA regulatory, copy number variations and high frequency gene mutation. Finally, we evaluated this model's clinical practice value. Results: BID and CDKN2A were identified as prognostic risk and protective factors, respectively. External data and qRT-PCR experiment also validated their differential expression. The model's excellent performance has been repeatedly verified and outperformed other models. Risk scores were significantly associated with most immune cells/functions. Risk score/2 PR-DE-IRFeGs expression was strongly associated with BRAF/NRAS/HRAS mutation. Single copy number deletion of CDKN2A is associated with upregulation of CDKN2A expression and worse prognosis. The predicted regulatory network consisting of CYTOR, hsa-miRNA-873-5p and CDKN2A was shown to significantly affect prognosis. The model and corresponding nomogram have been shown to have excellent clinical practice value. Conclusion: The model can effectively predict the THCA patients' prognosis and guide clinical treatment. Ferroptosis and immunity may be involved in the THCA's progression through antitumor immunity and BRAF/NRAS/HRAS mutation. CYTOR-hsa-miRNA-873-5p-CDKN2A regulatory networks and single copy number deletion of CDKN2A may also affect THCA' progression and prognosis.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Xie
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Chang Tong
- Pediatric Medical School, Nanchang University, Nanchang, China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Yu Y, Tian J, Hou Y, Zhang X, Li L, Cong P, Ji L, Wang X. A signature of immune-related gene pairs (IRGPs) for risk stratification and prognosis of oral cancer patients. World J Surg Oncol 2022; 20:227. [PMID: 35804390 PMCID: PMC9264557 DOI: 10.1186/s12957-022-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background With low response to present immunotherapy, it is imperative to identify new immune-related biomarkers for more effective immunotherapies for oral cancer. Methods RNA profiles for 390 oral cancer patients and 32 normal samples were downloaded from The Cancer Genome Atlas (TCGA) database and differentially expressed genes (DEGs) were analyzed. Immune genesets from ImmPort repository were overlapped with DEGs. After implementing univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, key immune-related gene pairs (IRGPs) among the overlapped DEGs for predicting the survival risk were obtained. Then, the cutoff of risk score was calculated by the receiver operating characteristic (ROC) curve to stratify oral cancer patients into high and low-risk groups. Multivariate Cox analysis was used to analyze independent prognostic indicators for oral cancer. Besides, infiltration of immune cells, functional annotation, and mutation analysis of IRGPs were conducted. Biological functions correlated with IRGPs were enriched by Gene Set Enrichment Analysis (GSEA) method. Results We identified 698 differentially expressed genes (DEGs) in response to oral cancer. 17 IRGPs among the DEGs were identified and integrated into a risk score model. Patients in the high-risk group have a significantly worse prognosis than those in the low-risk group in both training (P<0.001) and test (P=0.019) cohorts. Meanwhile, the IRGP model was identified as an independent prognostic factor for oral cancer. Different infiltration patterns of immune cells were found between the high- and low-risk groups that more types of T and B cells were enriched in the low-risk group. More immune-related signaling pathways were highly enriched in the low-risk group and Tenascin C (TNC) was the most frequently mutated gene. We have developed a novel 17-IRGPs signature for risk stratification and prognostic prediction of oral cancer. Conclusion Our study provides a foundation for improved immunotherapy and prognosis and is beneficial to the individualized management of oral cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02630-1.
Collapse
Affiliation(s)
- Yanling Yu
- Department of Stomatology, Weihai Central Hospital, Weihai, China
| | - Jing Tian
- Department of Stomatology, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, China
| | - Yanni Hou
- Department of Special Dental Care Clinic, Wendeng Stomatology Hospital, Weihai, Shandong, China
| | - Xinxin Zhang
- Department of Stomatology, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, China
| | - Linhua Li
- Repair Department of Stomatology, Shouguang Stomatology Hospital, Weifang, China
| | - Peifu Cong
- Department of Stomatology, Weihai Central Hospital, Weihai, China
| | - Lei Ji
- Operating room, Weihai Central Hospital, Weihai, China
| | - Xuri Wang
- Department of Stomatology, Weihai Central Hospital, Weihai, China.
| |
Collapse
|
12
|
Patil S, Linge A, Grosser M, Lohaus F, Gudziol V, Kemper M, Nowak A, Haim D, Tinhofer I, Budach V, Guberina M, Stuschke M, Balermpas P, Rödel C, Schäfer H, Grosu AL, Abdollahi A, Debus J, Ganswindt U, Belka C, Pigorsch S, Combs SE, Boeke S, Zips D, Baretton GB, Baumann M, Krause M, Löck S. Development and validation of a 6-gene signature for the prognosis of loco-regional control in patients with HPV-negative locally advanced HNSCC treated by postoperative radio(chemo)therapy. Radiother Oncol 2022; 171:91-100. [DOI: 10.1016/j.radonc.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
|
13
|
Belgioia L, Becherini C, Bacigalupo A, Bonomo P. Chemo- immunotherapy and radiation in locally advanced head and neck cancer: Where do we stand? Oral Oncol 2022; 127:105773. [PMID: 35217401 DOI: 10.1016/j.oraloncology.2022.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Immunotherapy represents an effective therapeutic option in the management of recurrent/metastatic head and neck squamous cell carcinoma, along with chemotherapy in metastatic disease or radiotherapy/re-irradiation for (locoregionally confined) recurrent disease. On the other hand, concomitant chemo-radiation remains the primary treatment modality in many patients with locally advanced disease. In spite of promising preclinical, it is difficult to clearly establish the role of immunotherapy in the upfront management of locally advanced head and neck squamous cell carcinoma and its integration with the standard of care. In this paper, we discuss/review the main results thus far available and outline some unanswered questions that might help design future clinical trials.
Collapse
Affiliation(s)
- L Belgioia
- Health Science Department (DISSAL), University of Genoa, Italy; Radiation Oncology Department, IRCCS Ospedale Policlinico San Martino, Genova, Italia.
| | - C Becherini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Radiation Oncology Unit, Florence, Italy
| | - A Bacigalupo
- Radiation Oncology Department, IRCCS Ospedale Policlinico San Martino, Genova, Italia
| | - P Bonomo
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Radiation Oncology Unit, Florence, Italy
| |
Collapse
|
14
|
Liu J, Lu J, Li W. Transcriptome analysis reveals the prognostic and immune infiltration characteristics of glycolysis and hypoxia in head and neck squamous cell carcinoma. BMC Cancer 2022; 22:352. [PMID: 35361159 PMCID: PMC8969218 DOI: 10.1186/s12885-022-09449-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aims to construct a new prognostic gene signature in survival prediction and risk stratification for patients with Head and neck squamous cell carcinoma (HNSCC). METHOD The transcriptome profiling data and hallmark gene sets in the Molecular Signatures Database was used to explore the cancer hallmarks most relevant to the prognosis of HNSCC patients. Differential gene expression analysis, weighted gene co-expression network analysis, univariate COX regression analysis, random forest algorithm and multiple combinatorial screening were used to construct the prognostic gene signature. The predictive ability of gene signature was verified in the TCGA HNSCC cohort as the training set and the GEO HNSCC cohorts (GSE41613 and GSE42743) as the validation sets, respectively. Moreover, the correlations between risk scores and immune infiltration patterns, as well as risk scores and genomic changes were explored. RESULTS A total of 3391 differentially expressed genes in HNSCC were screened. Glycolysis and hypoxia were screened as the main risk factors for OS in HNSCC. Using univariate Cox analysis, 97 prognostic candidates were identified (P < 0.05). Top 10 important genes were then screened out by random forest. Using multiple combinatorial screening, a combination with less genes and more significant P value was used to construct the prognostic gene signature (RNF144A, STC1, P4HA1, FMNL3, ANO1, BASP1, MME, PLEKHG2 and DKK1). Kaplan-Meier analysis showed that patients with higher risk scores had worse overall survival (p < 0.001). The ROC curve showed that the risk score had a good predictive efficiency (AUC > 0.66). Subsequently, the predictive ability of the risk score was verified in the validation sets. Moreover, the two-factor survival analysis combining the cancer hallmarks and risk scores suggested that HNSCC patients with the high hypoxia or glycolysis & high risk-score showed the worst prognosis. Besides, a nomogram based on the nine-gene signature was established for clinical practice. Furthermore, the risk score was significantly related to tumor immune infiltration profiles and genome changes. CONCLUSION This nine-gene signature associated with glycolysis and hypoxia can not only be used for prognosis prediction and risk stratification, but also may be a potential therapeutic target for patients with HNSCC.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, 133 Huimin South Road, Shaoguan, 512025, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
| | - Jianjun Lu
- Department of Medical Affairs, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, 133 Huimin South Road, Shaoguan, 512025, China
| |
Collapse
|
15
|
Löck S, Linge A, Lohaus F, Ebert N, Gudziol V, Nowak A, Tinhofer I, Kalinauskaite G, Guberina M, Stuschke M, Balermpas P, von der Grün J, Grosu AL, Debus J, Ganswindt U, Belka C, Peeken JC, Combs SE, De-Colle C, Zips D, Baretton GB, Krause M, Baumann M. Biomarker signatures for primary radiochemotherapy of locally advanced HNSCC - hypothesis generation on a multicentre cohort of the DKTK-ROG. Radiother Oncol 2022; 169:8-14. [PMID: 35182686 DOI: 10.1016/j.radonc.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop prognostic biomarker signatures for patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated by primary radiochemotherapy (RCTx) based on previously published molecular analyses of the retrospective biomarker study of the German Cancer Consortium - Radiation Oncology Group (DKTK-ROG). MATERIAL AND METHODS In previous studies on the retrospective DKTK-ROG HNSCC cohort treated with primary RCTx, the following clinical parameters and biomarkers were evaluated and found to be significantly associated with loco-regional tumour control (LRC) or overall survival (OS): tumour volume, p16 status, expression of cancer stem cell markers CD44 and SLC3A2, expressions of hypoxia-associated gene signatures, tumour mutational burden (TMB), single nucleotide polymorphisms (SNPs) in the ERCC2 gene (rs1799793, rs13181) and ERCC5 gene (rs17655) as well as the expression of CXCR4, SDF-1 and CD8. These biomarkers were combined in multivariable modelling using Cox-regression with backward variable selection. RESULTS A baseline signature containing the widely accepted parameters tumour volume, p16 status, cancer stem cell marker expression (CD44) and hypoxia-associated gene expression has been defined, representing the main hypothesis of the study. Furthermore, the baseline signature was extended by additional prognostic biomarkers and a data-driven signature without any pre-hypothesis was generated for both endpoints. In these signatures, the SNPs rs1799793 and rs17655 as well as CXCR4, SDF-1 and SLC3A2 expression were additionally included. The signatures showed significant patient stratifications for LRC and OS. CONCLUSION Three biomarker signatures were defined for patients with locally advanced HNSCC treated with primary RCTx for the endpoints LRC and OS. These signatures will be validated in the prospective HNprädBio study of the DKTK-ROG that recently completed recruitment, before potential application in an interventional trial.
Collapse
Affiliation(s)
- Steffen Löck
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Nadja Ebert
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Gudziol
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Municipal Hospital Dresden, Germany
| | - Alexander Nowak
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Oral and Maxillofacial Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Ingeborg Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiooncology and Radiotherapy, Berlin, Germany
| | - Goda Kalinauskaite
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiooncology and Radiotherapy, Berlin, Germany
| | - Maja Guberina
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen, Germany; Department of Radiation Therapy, University Hospital, Medical Faculty, University of Duisburg-Essen, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen, Germany; Department of Radiation Therapy, University Hospital, Medical Faculty, University of Duisburg-Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Frankfurt, Germany; Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Jens von der Grün
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Frankfurt, Germany; Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Freiburg, Germany; Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany; National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Translational Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Ute Ganswindt
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany; Department of Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany; Clinical Cooperation Group, Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum, Munich, Germany; Department of Radiation Oncology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany; Department of Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany; Clinical Cooperation Group, Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum, Munich, Germany
| | - Jan C Peeken
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany; Department of Radiation Oncology, Technische Universität München, Munich, Germany; Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany; Department of Radiation Oncology, Technische Universität München, Munich, Germany; Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Chiara De-Colle
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Tübingen, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Tübingen, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Germany
| | - Gustavo B Baretton
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Pathology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Tumour- and Normal Tissue Bank, University Cancer Centre (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Evaluation of prognostic factors after primary chemoradiotherapy of anal cancer: A multicenter study of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG). Radiother Oncol 2022; 167:233-238. [PMID: 34999135 DOI: 10.1016/j.radonc.2021.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Prognosis after chemoradiotherapy (CRT) for anal squamous cell carcinoma (ASCC) shows marked differences among patients according to TNM subgroups, however individualized risk assessment tools to better stratify patients for treatment (de-) escalation or intensified follow-up are lacking in ASCC. MATERIALS AND METHODS Patients' data from eight sites of the German Cancer Consortium - Radiation Oncology Group (DKTK-ROG), comprising a total of 605 patients with ASCC, treated with standard definitive CRT with 5-FU/Mitomycin C or Capecitabine/Mitomycin C between 2004-2018, were used to evaluate prognostic factors based on Cox regression models for disease-free survival (DFS). Evaluated variables included age, gender, Karnofsky performance score (KPS), HIV-status, T-category, lymph node status and laboratory parameters. Multivariate cox models were separately constructed for the whole cohort and the subset of patients with early-stage (cT1-2 N0M0) tumors. RESULTS After a median follow-up of 46 months, 3-year DFS for patients with early-stage ASCC was 84.9%, and 67.1% for patients with locally-advanced disease (HR 2.4, p < 0.001). T-category (HR vs. T1: T2 2.02; T3 2.11; T4 3.03), N-category (HR versus N0: 1.8 for N1-3), age (HR 1.02 per year), and KPS (HR 0.8 per step) were significant predictors for DFS in multivariate analysis in the entire cohort. The model performed with a C-index of 0.68. In cT1-2N0 patients, T-category (HR 2.14), HIV status (HR 2.57), age (1.026 per year), KPS (HR 0.7 per step) and elevated platelets (HR 1.3 per 100/nl) were associated with worse DFS (C-index of 0.7). CONCLUSION Classical clinicopathologic parameters like T-category, N-category, age and KPS remain to be significant prognostic factors for DFS in patients treated with contemporary CRT for ASCC. HIV and platelets were significantly associated with worse DFS in patients with early stage ASCC.
Collapse
|
17
|
Lin LH, Chou CH, Cheng HW, Chang KW, Liu CJ. Precise Identification of Recurrent Somatic Mutations in Oral Cancer Through Whole-Exome Sequencing Using Multiple Mutation Calling Pipelines. Front Oncol 2021; 11:741626. [PMID: 34912705 PMCID: PMC8666431 DOI: 10.3389/fonc.2021.741626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023] Open
Abstract
Understanding the genomic alterations in oral carcinogenesis remains crucial for the appropriate diagnosis and treatment of oral squamous cell carcinoma (OSCC). To unveil the mutational spectrum, in this study, we conducted whole-exome sequencing (WES), using six mutation calling pipelines and multiple filtering criteria applied to 50 paired OSCC samples. The tumor mutation burden extracted from the data set of somatic variations was significantly associated with age, tumor staging, and survival. Several genes (MUC16, MUC19, KMT2D, TTN, HERC2) with a high frequency of false positive mutations were identified. Moreover, known (TP53, FAT1, EPHA2, NOTCH1, CASP8, and PIK3CA) and novel (HYDIN, ALPK3, ASXL1, USP9X, SKOR2, CPLANE1, STARD9, and NSD2) genes have been found to be significantly and frequently mutated in OSCC. Further analysis of gene alteration status with clinical parameters revealed that canonical pathways, including clathrin-mediated endocytotic signaling, NFκB signaling, PEDF signaling, and calcium signaling were associated with OSCC prognosis. Defining a catalog of targetable genomic alterations showed that 58% of the tumors carried at least one aberrant event that may potentially be targeted by approved therapeutic agents. We found molecular OSCC subgroups which were correlated with etiology and prognosis while defining the landscape of major altered events in the coding regions of OSCC genomes. These findings provide information that will be helpful in the design of clinical trials on targeted therapies and in the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Burcher KM, Lantz JW, Gavrila E, Abreu A, Burcher JT, Faucheux AT, Xie A, Jackson C, Song AH, Hughes RT, Lycan T, Bunch PM, Furdui CM, Topaloglu U, D’Agostino RB, Zhang W, Porosnicu M. Relationship between Tumor Mutational Burden, PD-L1, Patient Characteristics, and Response to Immune Checkpoint Inhibitors in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225733. [PMID: 34830888 PMCID: PMC8616373 DOI: 10.3390/cancers13225733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Immunotherapy has prompted a dramatic change in the management of head and neck squamous cell carcinoma (HNSCC), but the percentage of patients benefiting from treatment is limited to 20% or less. The application of precision oncology to HNSCC introduces the potential for the emergence of biomarkers that may predict a response to immunotherapy and assist with the selection of patients that may benefit from treatment with an immune checkpoint inhibitors. In this retrospective study, the results of tumor mutational burden and programmed death ligand-1 measurements from HNSCC tumors were evaluated independently for their associations with demographics, risk factors, disease characteristics, survival, and response to ICI. Results of this study are expected to assist in laying the groundwork for creating a framework in which PD-L1 and TMB coexist with other variables to predict response to ICI on an individual level. Abstract Failure to predict response to immunotherapy (IO) limited its benefit in the treatment of head and neck squamous cell cancer (HNSCC) to 20% of patients or less. Biomarkers including tumor mutational burden (TMB) and programmed death ligand-1 (PD-L1) were evaluated as predictors of response to IO, but the results are inconsistent and with a lack of standardization of their methods. In this retrospective study, TMB and PD-L1 were measured by commercially available methodologies and were correlated to demographics, outcome, and response to PD-1 inhibitors. No correlation was found between TMB and PD-L1 levels. High TMB was associated with smoking and laryngeal primaries. PD-L1 was significantly higher in African Americans, patients with earlier stage tumors, nonsmokers, and nonethanol drinkers. Patients with high TMB fared better in univariate and multivariate survival analysis. No correlation was found between PD-L1 expression and prognosis. There was a statistically significant association between PFS and response to IO and TMB. There was no association between response to ICI and PD-L1 in this study, possibly affected by variations in the reporting method. Further studies are needed to characterize the biomarkers for IO in HNSCC, and this study supports further research into the advancement of TMB in prospective studies.
Collapse
Affiliation(s)
- Kimberly M. Burcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Jeffrey W. Lantz
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Elena Gavrila
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | | | | | - Andrew T. Faucheux
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Amy Xie
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Clayton Jackson
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Alexander H. Song
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Ryan T. Hughes
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Thomas Lycan
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Paul M. Bunch
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Cristina M. Furdui
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Umit Topaloglu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Ralph B. D’Agostino
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Wei Zhang
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Mercedes Porosnicu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (J.W.L.); (E.G.); (A.T.F.); (A.X.); (C.J.); (A.H.S.); (R.T.H.); (T.L.J.); (P.M.B.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
- Correspondence:
| |
Collapse
|
19
|
Meng L, Xu J, Ye Y, Wang Y, Luo S, Gong X. The Combination of Radiotherapy With Immunotherapy and Potential Predictive Biomarkers for Treatment of Non-Small Cell Lung Cancer Patients. Front Immunol 2021; 12:723609. [PMID: 34621270 PMCID: PMC8490639 DOI: 10.3389/fimmu.2021.723609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an effective local treatment modality of NSCLC. Its capabilities of eliminating tumor cells by inducing double strand DNA (dsDNA) damage and modulating anti-tumor immune response in irradiated and nonirradiated sites have been elucidated. The novel ICIs therapy has brought hope to patients resistant to traditional treatment methods, including radiotherapy. The integration of radiotherapy with immunotherapy has shown improved efficacy to control tumor progression and prolong survival in NSCLC. In this context, biomarkers that help choose the most effective treatment modality for individuals and avoid unnecessary toxicities caused by ineffective treatment are urgently needed. This article summarized the effects of radiation in the tumor immune microenvironment and the mechanisms involved. Outcomes of multiple clinical trials investigating immuno-radiotherapy were also discussed here. Furthermore, we outlined the emerging biomarkers for the efficacy of PD-1/PD-L1 blockades and radiation therapy and discussed their predictive value in NSCLC.
Collapse
Affiliation(s)
- Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfang Xu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Ye
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Wang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Zhang P, Li S, Zhang T, Cui F, Shi JH, Zhao F, Sheng X. Characterization of Molecular Subtypes in Head and Neck Squamous Cell Carcinoma With Distinct Prognosis and Treatment Responsiveness. Front Cell Dev Biol 2021; 9:711348. [PMID: 34595167 PMCID: PMC8476885 DOI: 10.3389/fcell.2021.711348] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies with complex phenotypic, etiological, biological, and clinical heterogeneities. Previous studies have proposed different clinically relevant subtypes of HNSCC, but little is known about its corresponding prognosis or suitable treatment strategy. Here, we identified 101 core genes from three prognostic pathways, including mTORC1 signaling, unfold protein response, and UV response UP, in 124 pairs of tumor and matched normal tissues of HNSCC. Moreover, we identified three robust subtypes associated with distinct molecular characteristics and clinical outcomes using consensus clustering based on the gene expression profiles of 944 HNSCC patients from four independent datasets. We then integrated the genomic information of The Cancer Genome Atlas (TCGA) HNSCC cohort to comprehensively evaluate the molecular features of different subtypes and screen for potentially effective therapeutic agents. Cluster 1 had more arrested oncogenic signaling, the highest immune cell infiltration, the highest immunotherapy and chemotherapeutic responsiveness, and the best prognosis. By contrast, Cluster 3 showed more activated oncogenic signaling, the lowest immune cell infiltration, the lowest immunotherapy and chemotherapy responsiveness, and the worst prognosis. Our findings corroborate the molecular diversity of HNSCC tumors and provide a novel classification strategy that may guide for prognosis and treatment allocation.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Tingting Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengzhen Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Faming Zhao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Srivastava RM, Purohit TA, Chan TA. Diverse Neoantigens and the Development of Cancer Therapies. Semin Radiat Oncol 2021; 30:113-128. [PMID: 32381291 DOI: 10.1016/j.semradonc.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is the manifestation of uncontrolled cellular growth and immune escape mechanisms. Unrestrained tumor growth can be associated with incidental errors in the genome during replication and genotoxic agents can alter the structure and sequence of our DNA. Among all genetic aberrations in cancer, only limited number of mutations can produce immunogenic antigens which have the potential to bind human leukocyte antigen class I or human leukocyte antigen class II, and help activate the adaptive immune system. These neoantigens can be recognized by CD8+ and CD4+ neoantigen-specific T lymphocytes. Recently, several immune checkpoint targeting drugs have been approved for clinical use. Primarily, these drugs expand and facilitate the cytotoxic activity of neoantigen-specific T cells to eradicate tumors. Differential drug response across cancers could be attributed, at least in part, to differences in the 'tumor antigen landscape' and 'antigen presentation pathway' in patients. Although tumor mutational burden correlates with response to immune checkpoint inhibitors in many cancer types and has evolved as a broad biomarker, a comprehensive understanding of the neoantigen landscape and the function of cognate T cell responses is lacking and is needed for improved patient selection criteria and neoantigen vaccine design. Here, we review cancer neoantigens, their implications for antitumor responses, the dynamics of neoantigen-specific T cells, and the advancement of neoantigen-based therapy in proposed clinical trials.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
22
|
Liebs S, Eder T, Klauschen F, Schütte M, Yaspo ML, Keilholz U, Tinhofer I, Kidess-Sigal E, Braunholz D. Applicability of liquid biopsies to represent the mutational profile of tumor tissue from different cancer entities. Oncogene 2021; 40:5204-5212. [PMID: 34230613 PMCID: PMC8376638 DOI: 10.1038/s41388-021-01928-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Genetic investigation of tumor heterogeneity and clonal evolution in solid cancers could be assisted by the analysis of liquid biopsies. However, tumors of various entities might release different quantities of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) into the bloodstream, potentially limiting the diagnostic potential of liquid biopsy in distinct tumor histologies. Patients with advanced colorectal cancer (CRC), head and neck squamous cell carcinoma (HNSCC), and melanoma (MEL) were enrolled in the study, representing tumors with different metastatic patterns. Mutation profiles of cfDNA, CTCs, and tumor tissue were assessed by panel sequencing, targeting 327 cancer-related genes. In total, 30 tissue, 18 cfDNA, and 7 CTC samples from 18 patients were sequenced. Best concordance between the mutation profile of tissue and cfDNA was achieved in CRC and MEL, possibly due to the remarkable heterogeneity of HNSCC (63%, 55% and 11%, respectively). Concordance especially depended on the amount of cfDNA used for library preparation. While 21 of 27 (78%) tissue mutations were retrieved in high-input cfDNA samples (30-100 ng, N = 8), only 4 of 65 (6%) could be detected in low-input samples (<30 ng, N = 10). CTCs were detected in 13 of 18 patients (72%). However, downstream analysis was limited by poor DNA quality, allowing targeted sequencing of only seven CTC samples isolated from four patients. Only one CTC sample reflected the mutation profile of the respective tumor. Private mutations, which were detected in CTCs but not in tissue, suggested the presence of rare subclones. Our pilot study demonstrated superiority of cfDNA- compared to CTC-based mutation profiling. It was further shown that CTCs may serve as additional means to detect rare subclones possibly involved in treatment resistance. Both findings require validation in a larger patient cohort.
Collapse
Affiliation(s)
- Sandra Liebs
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Theresa Eder
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Marie-Laure Yaspo
- Department of Vertebrate Genomics/Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Evelyn Kidess-Sigal
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Medicine, Division of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Diana Braunholz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Blažek T, Zděblová Čermáková Z, Knybel L, Hurník P, Štembírek J, Resová K, Paračková T, Formánek M, Cvek J, Soumarová R. Dose escalation in advanced floor of the mouth cancer: a pilot study using a combination of IMRT and stereotactic boost. Radiat Oncol 2021; 16:122. [PMID: 34187494 PMCID: PMC8243893 DOI: 10.1186/s13014-021-01842-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE We evaluated the efficiency and toxicity of stereotactic hypofractionated boost in combination with conventionally fractionated radiotherapy in the treatment of advanced floor of the mouth cancer. METHODS Thirty-seven patients with advanced stage of the floor of the mouth cancer, histologically confirmed squamous cell carcinoma (p16 negative) ineligible for surgical treatment, were indicated for radiochemotherapy or hyperfractionated accelerated radiotherapy (HART). The radiotherapy protocol combined external beam radiotherapy (EBRT) and a stereotactic hypofractionated boost to the primary tumor. The dose delivered from EBRT was 70-72.5 Gy in 35/50 fractions. The hypofractionated boost followed with 10 Gy in two fractions. For the variables-tumor volume, stage and grade a multivariate analysis was performed to find the relationship between overall survival, local progression and metastasis. Toxicity was evaluated according to CTCAE scale version 4. RESULTS After a median follow-up of 16 months, 23 patients (62%) achieved complete remission. The median time to local progression and metastasis was 7 months. Local control (LC) at 2 and 5-years was 70% and 62%, respectively. Progression-free survival (PFS) and overall survival (OS) were 57% and 49% at 2 years and 41% and 27% at 5 years, respectively. Statistical analysis revealed that larger tumors had worse overall survival and a greater chance of metastasis. Log-Rank GTV > 44 ccm (HR = 1.96; [95% CI (0.87; 4.38)]; p = 0.11). No boost-related severe acute toxicity was observed. Late osteonecrosis was observed in 3 patients (8%). CONCLUSION The combination of EBRT and stereotactic hypofractionated boost is safe and seems to be an effective option for dose escalation in patients with advanced floor of the mouth tumors who are ineligible for surgical treatment and require a non-invasive approach.
Collapse
Affiliation(s)
- Tomáš Blažek
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,3Rd Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Zuzana Zděblová Čermáková
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic. .,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - Lukáš Knybel
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Pavel Hurník
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Štembírek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Resová
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Paračková
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Formánek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Otorhinolaryngology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Renata Soumarová
- 3Rd Faculty of Medicine, Charles University Prague, Prague, Czech Republic.,Department of Oncology, University Hospital Královské Vinohrady Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Moreira A, Poulet A, Masliah-Planchon J, Lecerf C, Vacher S, Larbi Chérif L, Dupain C, Marret G, Girard E, Syx L, Hoffmann C, Jeannot E, Klijanienko J, Guillou I, Mariani O, Dubray-Vautrin A, Badois N, Lesnik M, Choussy O, Calugaru V, Borcoman E, Baulande S, Legoix P, Albaud B, Servant N, Bieche I, Le Tourneau C, Kamal M. Prognostic value of tumor mutational burden in patients with oral cavity squamous cell carcinoma treated with upfront surgery. ESMO Open 2021; 6:100178. [PMID: 34118772 PMCID: PMC8207209 DOI: 10.1016/j.esmoop.2021.100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Background Oral cavity is the most prevalent site of head and neck squamous cell carcinomas (HNSCCs). Most often diagnosed at a locally advanced stage, treatment is multimodal with surgery as the cornerstone. The aim of this study was to explore the molecular landscape of a homogenous cohort of oral cavity squamous cell carcinomas (OCSCCs), and to assess the prognostic value of tumor mutational burden (TMB), along with classical molecular and clinical parameters. Patients and methods One hundred and fifty-one consecutive patients with OCSCC treated with upfront surgery at the Institut Curie were analyzed. Sequencing of tumor DNA from frozen specimens was carried out using an in-house targeted next-generation sequencing panel (571 genes). The impact of molecular alterations and TMB on disease-free survival (DFS) and overall survival (OS) was evaluated in univariate and multivariate analyses. Results Pathological tumor stage, extranodal spread, vascular emboli, and perineural invasion were associated with both DFS and OS. TP53 was the most mutated gene (71%). Other frequent molecular alterations included the TERT promoter (50%), CDKN2A (25%), FAT1 (17%), PIK3CA (14%), and NOTCH1 (15%) genes. Transforming growth factor-β pathway alterations (4%) were associated with poor OS (P = 0.01) and DFS (P = 0.02) in univariate and multivariate analyses. High TMB was associated with prolonged OS (P = 0.01 and P = 0.02, in the highest 10% and 20% TMB values, respectively), but not with DFS. Correlation of TMB with OS remained significant in multivariate analysis (P = 0.01 and P = 0.005 in the highest 10% and 20% TMB values, respectively). Pathological tumor stage combined with high TMB was associated with good prognosis. Conclusion Our results suggest that a high TMB is associated with a favorable prognosis in patients with OCSCC treated with upfront surgery. High TMB is associated with a favorable prognosis in patients with OCSCC treated with upfront surgery Pathological tumor stage combined with high TMB is associated with good prognosis TP53 was the most mutated gene (71%). Other frequent molecular alterations included the TERT promoter (50%) TGFβ pathway alterations were associated with poor outcomes, although it was only observed in 4% of the patients
Collapse
Affiliation(s)
- A Moreira
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - A Poulet
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - J Masliah-Planchon
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - C Lecerf
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - S Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - L Larbi Chérif
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - C Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - G Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - E Girard
- INSERM U900 Research Unit, Institut Curie, Paris and Saint-Cloud, France
| | - L Syx
- INSERM U900 Research Unit, Institut Curie, Paris and Saint-Cloud, France
| | - C Hoffmann
- INSERM U932 Research Unit, Institut Curie, PSL Research University, Paris, France; Department of Oncologic Surgery, Institut Curie, PSL Research University, Paris, France
| | - E Jeannot
- Department of Genetics, Institut Curie, PSL Research University, Paris, France; Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - J Klijanienko
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - I Guillou
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - O Mariani
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - A Dubray-Vautrin
- Department of Oncologic Surgery, Institut Curie, PSL Research University, Paris, France
| | - N Badois
- Department of Oncologic Surgery, Institut Curie, PSL Research University, Paris, France
| | - M Lesnik
- Department of Oncologic Surgery, Institut Curie, PSL Research University, Paris, France
| | - O Choussy
- Department of Oncologic Surgery, Institut Curie, PSL Research University, Paris, France
| | - V Calugaru
- Department of Oncologic Radiotherapy, Institut Curie, PSL Research University, Paris, France
| | - E Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - S Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - P Legoix
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - B Albaud
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - N Servant
- INSERM U900 Research Unit, Institut Curie, Paris and Saint-Cloud, France
| | - I Bieche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France; INSERM U1016, Paris Descartes University, Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - C Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France; INSERM U900 Research Unit, Institut Curie, Paris and Saint-Cloud, France; Paris-Saclay University, Paris, France
| | - M Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France.
| |
Collapse
|
25
|
Magnes T, Wagner S, Kiem D, Weiss L, Rinnerthaler G, Greil R, Melchardt T. Prognostic and Predictive Factors in Advanced Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:4981. [PMID: 34067112 PMCID: PMC8125786 DOI: 10.3390/ijms22094981] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease arising from the mucosa of the upper aerodigestive tract. Despite multimodality treatments approximately half of all patients with locally advanced disease relapse and the prognosis of patients with recurrent or metastatic HNSCC is dismal. The introduction of checkpoint inhibitors improved the treatment options for these patients and pembrolizumab alone or in combination with a platinum and fluorouracil is now the standard of care for first-line therapy. However, approximately only one third of unselected patients respond to this combination and the response rate to checkpoint inhibitors alone is even lower. This shows that there is an urgent need to improve prognostication and prediction of treatment benefits in patients with HNSCC. In this review, we summarize the most relevant risk factors in the field and discuss their roles and limitations. The human papilloma virus (HPV) status for patients with oropharyngeal cancer and the combined positive score are the only biomarkers consistently used in clinical routine. Other factors, such as the tumor mutational burden and the immune microenvironment have been highly studied and are promising but need validation in prospective trials.
Collapse
Affiliation(s)
- Teresa Magnes
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Sandro Wagner
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Lukas Weiss
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Gabriel Rinnerthaler
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Thomas Melchardt
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| |
Collapse
|
26
|
Salas-Benito D, Conde E, Tamayo-Uria I, Mancheño U, Elizalde E, Garcia-Ros D, Aramendia JM, Muruzabal JC, Alcaide J, Guillen-Grima F, Minguez JA, Amores-Tirado J, Gonzalez-Martin A, Sarobe P, Lasarte JJ, Ponz-Sarvise M, De Andrea CE, Hervas-Stubbs S. The mutational load and a T-cell inflamed tumour phenotype identify ovarian cancer patients rendering tumour-reactive T cells from PD-1 + tumour-infiltrating lymphocytes. Br J Cancer 2021; 124:1138-1149. [PMID: 33402737 PMCID: PMC7961070 DOI: 10.1038/s41416-020-01218-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Adoptive immunotherapy with tumour-infiltrating lymphocytes (TIL) may benefit from the use of selective markers, such as PD-1, for tumour-specific T-cell enrichment, and the identification of predictive factors that help identify those patients capable of rendering tumour-reactive TILs. We have investigated this in ovarian cancer (OC) patients as candidates for TIL therapy implementation. METHODS PD-1- and PD-1+ CD8 TILs were isolated from ovarian tumours and expanded cells were tested against autologous tumour cells. Baseline tumour samples were examined using flow cytometry, multiplexed immunofluorescence and Nanostring technology, for gene expression analyses, as well as a next-generation sequencing gene panel, for tumour mutational burden (TMB) calculation. RESULTS Tumour-reactive TILs were detected in half of patients and were exclusively present in cells derived from the PD-1+ fraction. Importantly, a high TIL density in the fresh tumour, the presence of CD137+ cells within the PD-1+CD8+ TIL subset and their location in the tumour epithelium, together with a baseline T-cell-inflamed genetic signature and/or a high TMB, are features that identify patients rendering tumour-reactive TIL products. CONCLUSION We have demonstrated that PD-1 identifies ovarian tumour-specific CD8 TILs and has uncovered predictive factors that identify OC patients who are likely to render tumour-specific cells from PD-1+ TILs.
Collapse
Affiliation(s)
- Diego Salas-Benito
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Conde
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ibon Tamayo-Uria
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Uxua Mancheño
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Edurne Elizalde
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - David Garcia-Ros
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Department Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain
| | - Jose M Aramendia
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan C Muruzabal
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Gynecologic Oncology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Julia Alcaide
- Department of Oncology, Hospital Costa del Sol, Marbella, Spain
| | - Francisco Guillen-Grima
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Preventive Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose A Minguez
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Obstetrics and Gynecology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Antonio Gonzalez-Martin
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- GEICO Study Group, Madrid, Spain
| | - Pablo Sarobe
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Lasarte
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Program of Solid Tumors, CIMA, University of Navarra, Pamplona, Spain.
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Department Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Sandra Hervas-Stubbs
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Jiang AM, Ren MD, Liu N, Gao H, Wang JJ, Zheng XQ, Fu X, Liang X, Ruan ZP, Tian T, Yao Y. Tumor Mutation Burden, Immune Cell Infiltration, and Construction of Immune-Related Genes Prognostic Model in Head and Neck Cancer. Int J Med Sci 2021; 18:226-238. [PMID: 33390791 PMCID: PMC7738958 DOI: 10.7150/ijms.51064] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and the prognosis of HNSCC remains bleak. Numerous studies revealed that the tumor mutation burden (TMB) could predict the survival outcomes of a variety of tumors. Objectives: This study aimed to investigate the TMB and immune cell infiltration in these patients and construct an immune-related genes (IRGs) prognostic model. Methods: The expression data of 546 HNSCC patients were obtained from The Cancer Genome Atlas (TCGA) database. All patients were divided into high- and low- TMB groups, and the relationship between TMB and clinical relevance was further analyzed. The differentially expressed genes (DEGs) were identified using the R software package, limma. Functional enrichment analyses were conducted to identify the significantly enriched pathways between two groups. CIBERSORT algorithm was adopted to calculate the abundance of 22 leukocyte subtypes. The IRGs prognostic model was constructed via the multivariate Cox regression analysis. Results: Missense mutation and single nucleotide variants (SNV) were the most predominant mutation types in HNSCC. TP53, TTN, and FAT1 were the most frequently mutated genes. Patients with high TMB were observed with worse survival outcomes. The functional analysis of TMB associated DEGs showed that the identified DEGs mainly involved in spliceosome, RNA degradation, proteasome, and RNA polymerase pathways. We observed that macrophages, T cells CD8, and T cells CD4 memory were the most commonly infiltrated subtypes of immune cells in HNSCC. Finally, an IRGs prognostic model was constructed, and the AUC of the ROC curve was 0.635. Conclusions: Our results suggest that high TMB is associated with poor prognosis in HNSCC patients. The constructed model has potential prognostic value for the prognosis of these individuals, and it needs to be further validated in large-scale and prospective studies.
Collapse
Affiliation(s)
- Ai-Min Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Meng-Di Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing-Jing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiao-Qiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhi-Ping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Valero C, Lee M, Hoen D, Wang J, Nadeem Z, Patel N, Postow MA, Shoushtari AN, Plitas G, Balachandran VP, Smith JJ, Crago AM, Long Roche KC, Kelly DW, Samstein RM, Rana S, Ganly I, Wong RJ, Hakimi AA, Berger MF, Zehir A, Solit DB, Ladanyi M, Riaz N, Chan TA, Seshan VE, Morris LGT. The association between tumor mutational burden and prognosis is dependent on treatment context. Nat Genet 2021; 53:11-15. [PMID: 33398197 PMCID: PMC7796993 DOI: 10.1038/s41588-020-00752-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022]
Abstract
In multiple cancer types, high tumor mutational burden (TMB) is associated with longer survival after treatment with immune checkpoint inhibitors (ICIs). The association of TMB with survival outside of the immunotherapy context is poorly understood. We analyzed 10,233 patients (80% non-ICI-treated, 20% ICI-treated) with 17 cancer types before/without ICI treatment or after ICI treatment. In non-ICI-treated patients, higher TMB (higher percentile within cancer type) was not associated with better prognosis; in fact, in many cancer types, higher TMB was associated with poorer survival, in contrast to ICI-treated patients in whom higher TMB was associated with longer survival.
Collapse
Affiliation(s)
- Cristina Valero
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Lee
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas Hoen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jingming Wang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaineb Nadeem
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neal Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | | | - George Plitas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aimee M Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kara C Long Roche
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel W Kelly
- Information Systems, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Klinghammer K, Politz O, Eder T, Otto R, Raguse JD, Albers A, Kaufmann A, Tinhofer I, Hoffmann J, Keller U, Keilholz U. Combination of copanlisib with cetuximab improves tumor response in cetuximab-resistant patient-derived xenografts of head and neck cancer. Oncotarget 2020; 11:3688-3697. [PMID: 33110476 PMCID: PMC7566806 DOI: 10.18632/oncotarget.27763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances, the treatment of head and neck squamous cell carcinoma (HNSCC) remains an area of high unmet medical need. HNSCC is frequently associated with either amplification or mutational changes in the PI3K pathway, making PI3K an attractive target particularly in cetuximab-resistant tumors. Here, we explored the antitumor activity of the selective, pan-class I PI3K inhibitor copanlisib with predominant activity towards PI3Kα and δ in monotherapy and in combination with cetuximab using a mouse clinical trial set-up with 33 patient-derived xenograft (PDX) models with known HPV and PI3K mutational status and available data on cetuximab sensitivity. Treatment with copanlisib alone resulted in moderate antitumor activity with 12/33 PDX models showing either tumor stabilization or regression. Combination treatment with copanlisib and cetuximab was superior to either of the monotherapies alone in the majority of the models (21/33), and the effect was particularly pronounced in cetuximab-resistant tumors (14/16). While no correlation was observed between PI3K mutation status and response to either cetuximab or copanlisib, increased PI3K signaling activity evaluated through gene expression profiling showed a positive correlation with response to copanlisib. Together, these data support further investigation of PI3K inhibition in HNSCC and suggests gene expression patterns associated with PI3K signaling as a potential biomarker for predicting treatment responses.
Collapse
Affiliation(s)
| | - Oliver Politz
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | - Theresa Eder
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Sites, Berlin, Germany
| | - Raik Otto
- WBI, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan-Dirk Raguse
- Department of Maxillio-Facial Surgery, Fachklinik Hornheide, Münster, Germany
| | | | | | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology GmbH, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology and Medical Oncology, Charité, Berlin, Germany
| | | |
Collapse
|
30
|
Cheng S, J. Cheadle E, M. Illidge T. Understanding the Effects of Radiotherapy on the Tumour Immune Microenvironment to Identify Potential Prognostic and Predictive Biomarkers of Radiotherapy Response. Cancers (Basel) 2020; 12:E2835. [PMID: 33008040 PMCID: PMC7600906 DOI: 10.3390/cancers12102835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is a highly effective anti-cancer treatment. Immunotherapy using immune checkpoint blockade (ICI) has emerged as a new and robust pillar in cancer therapy; however, the response rate to single agent ICI is low whilst toxicity remains. Radiotherapy has been shown to have local and systemic immunomodulatory effects. Therefore, combining RT and immunotherapy is a rational approach to enhance anti-tumour immune responses. However, the immunomodulatory effects of RT can be both immunostimulatory or immunosuppressive and may be different across different tumour types and patients. Therefore, there is an urgent medical need to establish biomarkers to guide clinical decision making in predicting responses or in patient selection for RT-based combination treatments. In this review, we summarize the immunological effects of RT on the tumour microenvironment and emerging biomarkers to help better understand the implications of these immunological changes, and we provide new insights into the potential for combination therapies with RT and immunotherapy.
Collapse
Affiliation(s)
- Shuhui Cheng
- Manchester Academic Health Science Centre, Manchester NIHR Biomedical Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.C.); (E.J.C.)
| | - Eleanor J. Cheadle
- Manchester Academic Health Science Centre, Manchester NIHR Biomedical Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.C.); (E.J.C.)
| | - Timothy M. Illidge
- Manchester Academic Health Science Centre, Manchester NIHR Biomedical Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.C.); (E.J.C.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
31
|
Fialová A, Koucký V, Hajdušková M, Hladíková K, Špíšek R. Immunological Network in Head and Neck Squamous Cell Carcinoma-A Prognostic Tool Beyond HPV Status. Front Oncol 2020; 10:1701. [PMID: 33042814 PMCID: PMC7522596 DOI: 10.3389/fonc.2020.01701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous disease that affects more than 800,000 patients worldwide each year. The variability of HNSCC is associated with differences in the carcinogenesis processes that are caused by two major etiological agents, namely, alcohol/tobacco, and human papillomavirus (HPV). Compared to non-virally induced carcinomas, the oropharyngeal tumors associated with HPV infection show markedly better clinical outcomes and are characterized by an immunologically “hot” landscape with high levels of tumor-infiltrating lymphocytes. However, the standard of care remains the same for both HPV-positive and HPV-negative HNSCC. Surprisingly, treatment de-escalation trials have not shown any clinical benefit in patients with HPV-positive tumors to date, most likely due to insufficient patient stratification. The in-depth analysis of the immune response, which places an emphasis on tumor-infiltrating immune cells, is a widely accepted prognostic tool that might significantly improve both the stratification of HNSCC patients in de-escalation trials and the development of novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Vladimír Koucký
- Sotio, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | | | | | | |
Collapse
|
32
|
Hilke FJ, Muyas F, Admard J, Kootz B, Nann D, Welz S, Rieß O, Zips D, Ossowski S, Schroeder C, Clasen K. Dynamics of cell-free tumour DNA correlate with treatment response of head and neck cancer patients receiving radiochemotherapy. Radiother Oncol 2020; 151:182-189. [PMID: 32687856 DOI: 10.1016/j.radonc.2020.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Definitive radiochemotherapy (RCTX) with curative intent is one of the standard treatment options in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Despite this intensive therapy protocol, disease recurrence remains an issue. Therefore, we tested the predictive capacity of liquid biopsies as a novel biomarker during RCTX in patients with HNSCC. MATERIAL AND METHODS We sequenced the tumour samples of 20 patients with locally advanced HNSCC to identify driver mutations. Subsequently, we performed a longitudinal analysis of circulating tumour DNA (ctDNA) dynamics during RCTX. Deep sequencing and UMI-based error suppression for the identification of driver mutations and HPV levels in the plasma enabled treatment-response monitoring prior, during and after RCTX. RESULTS In 85% of all patients ctDNA was detectable, showing a significant correlation with the gross tumour volume (p-value 0.032). Additionally, the tumour allele fraction in the plasma was negatively correlated with the course of treatment (p-value <0.05). If ctDNA was detectable at the first follow-up, disease recurrence was seen later on. Circulating HPV DNA (cvDNA) could be detected in three patients at high levels, showing a similar dynamic behaviour to the ctDNA throughout treatment, and disappeared after treatment. CONCLUSIONS Monitoring RCTX treatment-response using liquid biopsy in patients with locally advanced HNSCC is feasible. CtDNA can be seen as a surrogate marker of disease burden, tightly correlating with the gross tumour volume prior to the treatment start. The observed kinetic of ctDNA and cvDNA showed a negative correlation with time and treatment dosage in most patients.
Collapse
Affiliation(s)
- Franz J Hilke
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; Charité - Universitätsmedizin Berlin, Department of Dermatology, Venereology and Allergology, Germany
| | - Francesc Muyas
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Beate Kootz
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Dominik Nann
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Germany
| | - Stefan Welz
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany.
| | - Kerstin Clasen
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
33
|
Facompre ND, Rajagopalan P, Sahu V, Pearson AT, Montone KT, James CD, Gleber-Netto FO, Weinstein GS, Jalaly J, Lin A, Rustgi AK, Nakagawa H, Califano JA, Pickering CR, White EA, Windle BE, Morgan IM, Cohen RB, Gimotty PA, Basu D. Identifying predictors of HPV-related head and neck squamous cell carcinoma progression and survival through patient-derived models. Int J Cancer 2020; 147:3236-3249. [PMID: 32478869 DOI: 10.1002/ijc.33125] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Therapeutic innovation for human papilloma virus-related (HPV+) head and neck squamous cell carcinomas (HNSCCs) is impaired by inadequate preclinical models and the absence of accurate biomarkers. Our study establishes the first well-characterized panel of patient-derived xenografts (PDXs) and organoids from HPV+ HNSCCs while determining fidelity of the models to the distinguishing genetic features of this cancer type. Despite low engraftment rates, whole exome sequencing showed that PDXs retain multiple distinguishing features of HPV+ HNSCC lost in existing cell lines, including PIK3CA mutations, TRAF3 deletion and the absence of EGFR amplifications. Engrafted HPV+ tumors frequently contained NOTCH1 mutations, thus providing new models for a negatively prognostic alteration in this disease. Genotype-phenotype associations in the models were then tested for prediction of tumor progression and survival in published clinical cohorts. Observation of high tumor mutational burdens (TMBs) in the faster-growing models facilitated identification of a novel association between TMB and local progression in both HPV+ and HPV- patients that was prognostic in HPV- cases. In addition, reduced E7 and p16INK4A levels found in a PDX from an outlier case with lethal outcome led to detection of similar profiles among recurrent HPV+ HNSCCs. Transcriptional data from the Cancer Genome Atlas was used to demonstrate that the lower E2F target gene expression predicted by reduced E7 levels has potential as a biomarker of disease recurrence risk. Our findings bridge a critical gap in preclinical models for HPV+ HNSCCs and simultaneously reveal novel potential applications of quantifying mutational burden and viral oncogene functions for biomarker development.
Collapse
Affiliation(s)
- Nicole D Facompre
- Department of Otorhinolaryngology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pavithra Rajagopalan
- Department of Otorhinolaryngology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Varun Sahu
- Department of Otorhinolaryngology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Kathleen T Montone
- Department of Pathology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire D James
- School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Gregory S Weinstein
- Department of Otorhinolaryngology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jalal Jalaly
- Department of Pathology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander Lin
- Department of Radiation Oncology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anil K Rustgi
- Department of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Nakagawa
- Department of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A Califano
- Department of Surgery, University of California San Diego, San Diego, California, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bradford E Windle
- School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M Morgan
- School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Roger B Cohen
- Department of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Devraj Basu
- Department of Otorhinolaryngology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Radiomic biomarkers for head and neck squamous cell carcinoma. Strahlenther Onkol 2020; 196:868-878. [PMID: 32495038 DOI: 10.1007/s00066-020-01638-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
Tumor heterogeneity is a well-known prognostic factor in head and neck squamous cell carcinoma (HNSCC). A major limitation of tissue- and blood-derived tumor markers is the lack of spatial resolution to image tumor heterogeneity. Tissue markers derived from tumor biopsies usually represent only a small tumor subregion at a single timepoint and are therefore often not representative of the tumors' biology or the biological alterations during and after treatment. Similarly, liquid biopsies give an overall picture of the tumors' secreted factors but completely lack any spatial resolution. Radiomics has the potential to give complete three-dimensional information about the tumor. We conducted a comprehensive literature search to assess the correlation of radiomics to tumor biology and treatment outcome in HNSCC and to assess current limitations of the radiomic biomarkers. In total, 25 studies that explored the ability of radiomics to predict tumor biology and phenotype in HNSCC and 28 studies that explored radiomics to predict post-treatment events were identified. Out of these 53 studies, only three failed to show a significant correlation. The major technical challenges are currently artifacts due to metal implants, non-standardized contrast injection, and delineation uncertainties. All studies to date were retrospective and none of the above-mentioned radiomics signatures have been validated in an independent cohort using an independent software implementation, which shows that transferability due to the numerous technical challenges is currently a major limitation. However, radiomics is a very young field and these studies hopefully pave the way for clinical implementation of radiomics for HNSCC in the future.
Collapse
|
35
|
PET/MRI and genetic intrapatient heterogeneity in head and neck cancers. Strahlenther Onkol 2020; 196:542-551. [PMID: 32211941 DOI: 10.1007/s00066-020-01606-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE The relation between functional imaging and intrapatient genetic heterogeneity remains poorly understood. The aim of our study was to investigate spatial sampling and functional imaging by FDG-PET/MRI to describe intrapatient tumour heterogeneity. METHODS Six patients with oropharyngeal cancer were included in this pilot study. Two tumour samples per patient were taken and sequenced by next-generation sequencing covering 327 genes relevant in head and neck cancer. Corresponding regions were delineated on pretherapeutic FDG-PET/MRI images to extract apparent diffusion coefficients and standardized uptake values. RESULTS Samples were collected within the primary tumour (n = 3), within the primary tumour and the involved lymph node (n = 2) as well as within two independent primary tumours (n = 1). Genetic heterogeneity of the primary tumours was limited and most driver gene mutations were found ubiquitously. Slightly increasing heterogeneity was found between primary tumours and lymph node metastases. One private predicted driver mutation within a primary tumour and one in a lymph node were found. However, the two independent primary tumours did not show any shared mutations in spite of a clinically suspected field cancerosis. No conclusive correlation between genetic heterogeneity and heterogeneity of PET/MRI-derived parameters was observed. CONCLUSION Our limited data suggest that single sampling might be sufficient in some patients with oropharyngeal cancer. However, few driver mutations might be missed and, if feasible, spatial sampling should be considered. In two independent primary tumours, both lesions should be sequenced. Our data with a limited number of patients do not support the concept that multiparametric PET/MRI features are useful to guide biopsies for genetic tumour characterization.
Collapse
|
36
|
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125:110009. [PMID: 32106381 DOI: 10.1016/j.biopha.2020.110009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted to include papers from 2010 to June 2019. RESULTS Recent developments in strategies of targeted cancer therapy were reported. Specifically, on the two types of targeted therapy; first, immune-based therapy such as the use of immune checkpoint inhibitors (ICIs), immune cytokines, tumor-targeted superantigens (TTS) and ligand targeted therapeutics (LTTs). The second strategy deals with enzyme/small molecules-based therapies, such as the use of a proteolysis targeting chimera (PROTAC), antibody-drug conjugates (ADC) and antibody-directed enzyme prodrug therapy (ADEPT). The precise targeting of the drug to the gene or protein under attack was also investigated, in other words, how precision medicine can be used to tailor treatments. CONCLUSION The conventional therapeutic paradigm for cancer and other diseases has focused on a single type of intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy as well as combination therapies.
Collapse
Affiliation(s)
- Sara S Bashraheel
- Protein Engineering Unit, Life and Science Research Department, Anti-Doping Lab-Qatar (ADLQ), Doha, Qatar; Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Alexander Domling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sayed K Goda
- Cairo University, Faculty of Science, Chemistry Department, Giza, Egypt.
| |
Collapse
|
37
|
van der Heijden M, Essers PBM, de Jong MC, de Roest RH, Sanduleanu S, Verhagen CVM, Hamming-Vrieze O, Hoebers F, Lambin P, Bartelink H, Leemans CR, Verheij M, Brakenhoff RH, van den Brekel MWM, Vens C. Biological Determinants of Chemo-Radiotherapy Response in HPV-Negative Head and Neck Cancer: A Multicentric External Validation. Front Oncol 2020; 9:1470. [PMID: 31998639 PMCID: PMC6966332 DOI: 10.3389/fonc.2019.01470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Tumor markers that are related to hypoxia, proliferation, DNA damage repair and stem cell-ness, have a prognostic value in advanced stage HNSCC patients when assessed individually. Here we aimed to evaluate and validate this in a multifactorial context and assess interrelation and the combined role of these biological factors in determining chemo-radiotherapy response in HPV-negative advanced HNSCC. Methods: RNA sequencing data of pre-treatment biopsy material from 197 HPV-negative advanced stage HNSCC patients treated with definitive chemoradiotherapy was analyzed. Biological parameter scores were assigned to patient samples using previously generated and described gene expression signatures. Locoregional control rates were used to assess the role of these biological parameters in radiation response and compared to distant metastasis data. Biological factors were ranked according to their clinical impact using bootstrapping methods and multivariate Cox regression analyses that included clinical variables. Multivariate Cox regression analyses comprising all biological variables were used to define their relative role among all factors when combined. Results: Only few biomarker scores correlate with each other, underscoring their independence. The different biological factors do not correlate or cluster, except for the two stem cell markers CD44 and SLC3A2 (r = 0.4, p < 0.001) and acute hypoxia prediction scores which correlated with T-cell infiltration score, CD8+ T cell abundance and proliferation scores (r = 0.52, 0.56, and 0.6, respectively with p < 0.001). Locoregional control association analyses revealed that chronic (Hazard Ratio (HR) = 3.9) and acute hypoxia (HR = 1.9), followed by stem cell-ness (CD44/SLC3A2; HR = 2.2/2.3), were the strongest and most robust determinants of radiation response. Furthermore, multivariable analysis, considering other biological and clinical factors, reveal a significant role for EGFR expression (HR = 2.9, p < 0.05) and T-cell infiltration (CD8+T-cells: HR = 2.2, p < 0.05; CD8+T-cells/Treg: HR = 2.6, p < 0.01) signatures in locoregional control of chemoradiotherapy-treated HNSCC. Conclusion: Tumor acute and chronic hypoxia, stem cell-ness, and CD8+ T-cell parameters are relevant and largely independent biological factors that together contribute to locoregional control. The combined analyses illustrate the additive value of multifactorial analyses and support a role for EGFR expression analysis and immune cell markers in addition to previously validated biomarkers. This external validation underscores the relevance of biological factors in determining chemoradiotherapy outcome in HNSCC.
Collapse
Affiliation(s)
- Martijn van der Heijden
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Paul B M Essers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Monique C de Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Reinout H de Roest
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sebastian Sanduleanu
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Olga Hamming-Vrieze
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marcel Verheij
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Academic Medical Center, Amsterdam, Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
38
|
Karpathiou G, Dumollard JM, Peoc'h M. Laryngeal Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:79-101. [PMID: 34185287 DOI: 10.1007/978-3-030-59038-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor microenvironment has been extensively studied in various forms of cancer, like head and neck squamous cell carcinoma. Progress in the field revealed the prognostic significance of the various components of the tumor's ecosystem and led to changes in treatment strategies, like including immunotherapy as an important tool. In this chapter, the microenvironment of tumors with a special interest in laryngeal cancer will be described. The issues assessed include innate immune response factors, like neutrophils, neutrophil extracellular traps (NET), platelets, macrophages M1 or M2, dendritic cells, natural killer cells, as well as adaptive immunity aspects, like cytotoxic, exhausted and regulatory T cells, and immune checkpoints (PD-1/PD-L1, CTLA4). Also, stroma-associated factors, like fibroblasts, fibrosis, extracellular matrix, vessels and perineural invasion, hypoxia and cancer metabolism aspects, as well as the pre-metastatic niche, exosomes and cGAS-STING, are reviewed.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Pathology Department, North Hospital, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Jean Marc Dumollard
- Pathology Department, North Hospital, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Michel Peoc'h
- Pathology Department, North Hospital, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| |
Collapse
|
39
|
Napolitano M, Schipilliti FM, Trudu L, Bertolini F. Immunotherapy in head and neck cancer: The great challenge of patient selection. Crit Rev Oncol Hematol 2019; 144:102829. [PMID: 31739116 DOI: 10.1016/j.critrevonc.2019.102829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) revolutionized the therapeutic landscape in head and neck cancer. However, the majority of patients present primary resistance to ICIs and do not benefit from use of these agents, highlighting the need of developing predictive biomarkers to better determine who will benefit from treatment with ICIs. Patient's related clinical characteristics, disease related features, pathological and molecular factors, as well as emerging immune predictive biomarkers can be considered for the selection of those patients who would be the best candidate for immunotherapy. We examined these factors, emerging from the results of currently available studies in head and neck squamous cell carcinoma (HNSCC), in order to provide a useful tool which could assist the oncologist in their clinical practice.
Collapse
Affiliation(s)
- Martina Napolitano
- Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy.
| | | | - Lucia Trudu
- Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy
| | - Federica Bertolini
- Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy
| |
Collapse
|
40
|
Yang B, Shen J, Xu L, Chen Y, Che X, Qu X, Liu Y, Teng Y, Li Z. Genome-Wide Identification of a Novel Eight-lncRNA Signature to Improve Prognostic Prediction in Head and Neck Squamous Cell Carcinoma. Front Oncol 2019; 9:898. [PMID: 31620361 PMCID: PMC6759597 DOI: 10.3389/fonc.2019.00898] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: LncRNAs are essential survival prognostic indicators with important biological functions in tumorigenesis and tumor progression. This study aimed to establish a long non-coding RNA (lncRNA) signature that can effectively predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and explore the potential functions of these lncRNAs. Materials and Methods: We re-annotated RNA sequencing and obtained exhaustive RNA-seq data of 269 patients with comprehensive clinical information from the GEO database. Then an 8-lncRNA signature capable of predicting the survival prognosis of HNSCC patients and a nomogram containing this signature were established. Weighted Co-expression Network Construction (WGCNA), Gene Set Enrichment Analysis (GSEA), and Gene Ontology (GO) enrichment were then applied to predict the possible biological functions of the signature and each individual lncRNA. Results: Eight lncRNAs associated with survival in HNSCC patients, including AC010624.1, AC130456.4, LINC00608, LINC01300, MIR99AHG, AC008655.1, AC055758.2, and AC118553.1, were obtained by univariate regression, cox LASSO regression, and multivariate regression. Functionally, patients with high signature scores had abnormal immune functions via GSEA. AC010624.1 and AC130456.4 may participate in epidermal cell differentiation and skin development, and MIR99AHG in the formation of cellular structures. Other lncRNAs in the signature may also participate in important biological processes. Conclusions: Therefore, we established an 8-lncRNA signature that can effectively guide clinical prediction of the prognosis of patients with HNSCC, and individuals with high signature scores may have abnormal immune function.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Jiming Shen
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Yuee Teng
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|