1
|
Cui M, Zhou M, Zhou L, Zhou G, Liu Y. Tertiary lymphoid structures achieve 'cold' to 'hot' transition by remodeling the cold tumor microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189312. [PMID: 40189114 DOI: 10.1016/j.bbcan.2025.189312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated significant clinical efficacy in immune-infiltrated tumors such as melanoma and non-small cell lung cancer. However, "cold tumors"-including ovarian cancer, pancreatic cancer, and gliomas-exhibit insufficient immune infiltration, leading to poor therapeutic responses to ICBs and limited improvement in patient prognosis. Recent studies have shown that tumor-associated tertiary lymphoid structures (TLSs) can induce strong local immune responses within the tumor microenvironment (TME), serving as important biological markers for predicting ICB therapy efficacy. Notably, preclinical and clinical studies on cold tumors have confirmed that TLSs can potently enhance ICB efficacy through TME remodeling-a breakthrough that has attracted considerable attention. Here, we systematically examine the immunological profile of cold tumors and decipher the mechanistic basis for their impaired immune cell infiltration. We further delineate the distinctive features of tumor-associated TLSs in generating antitumor immunity and establish criteria for their identification. Significantly, we emphasize the unique capability of TLSs to reprogram the immunosuppressive tumor microenvironment characteristic of cold tumors. Based on these insights, we evaluate clinical evidence supporting TLS-mediated enhancement of ICB efficacy and discuss emerging strategies for exogenous TLSs induction.
Collapse
Affiliation(s)
- Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengfan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
2
|
Xia T, Zhang Z, Xie J, Yuan H, Ren Y, Xu Y, Ning J, Li B, Wu C. Gastric mucosal CD8 +T RM cells are recruited through CXCR5-CXCL13 axis in Helicobacter pylori infected subjects. Cytokine 2025; 190:156904. [PMID: 40088523 DOI: 10.1016/j.cyto.2025.156904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Gastric mucosal CD8+ tissue-resident memory T (CD8+TRM) cells are increased in Helicobacter pylori (H. pylori) infected subjects, but the characteristics and chemotactic mechanism of CD8+TRM cells remain unknown. We demonstrated that C-X-C chemokine receptor 5 (CXCR5) was upregulated on gastric mucosal CD8+TRM cells, and gastric CXCL13 was dominantly secreted by dendritic cells and macrophages in H. pylori infected subjects. Gastric mucosal CD8+TRM cells from CagA+ H. pylori infected subjects was increased and could secrete more IFN-γ and TNF-α to engage in local immune response. The number of gastric mucosal CD8+TRM cells and the expression of CXCL13 was elevated in H. pylori infected individuals with the development of gastric diseases. In conclusion, gastric mucosal CD8+TRM cells are increased from CagA+ H. pylori infected subjects and could be recruited through CXCL13-CXCR5 axis, which mainly release IFN-γ and TNF-α in H. pylori related immune response.
Collapse
Affiliation(s)
- Tingting Xia
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zelin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jia Xie
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yayi Ren
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yue Xu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
3
|
Kuwentrai C, Tang W, Lin X, Chi T, Liu D, Song E, Webber MJ, Huang JD, Ye Z. Injectable hydrogel-based drug formulation for enhancing tertiary lymphoid structure formation and cancer immunotherapy efficacy. J Control Release 2025:113897. [PMID: 40449801 DOI: 10.1016/j.jconrel.2025.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 04/23/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Tertiary lymphoid structures (TLSs) in the tumor microenvironment are associated with improved cancer prognosis and enhanced immune checkpoint blockade (ICB) responses. In this study, an injectable hydrogel-based drug formulation is developed to stimulate TLSs formation in a B16-OVA melanoma mouse model. A hydrogel, termed HA-CPP⸦CB (Cabrita et al., 2020 [8]), is formed by supramolecular interactions between 4-(4-chlorophenyl)pyridine modified hyaluronic acid (HA-CPP) and cucurbit [8]uril (CB (Cabrita et al., 2020 [8])). The results reveal that a single injection of HA-CPP⸦CB (Cabrita et al., 2020 [8]) hydrogel containing the CXCL13 chemokine and LIGHT cytokine effectively increases TLSs density, facilitates mature TLSs formation, suppresses tumor growth, and extends survival. Importantly, the hydrogel treatment also up-regulates the number of antigen-specific T-cells in the secondary lymphoid organs. Furthermore, combination of the hydrogel-based drug formulation and the anti-PD1 ICB therapy results in increased tumor suppression, improved survival rates, and strengthened TLSs formation, ultimately contributing to B16-OVA melanoma eradication. In conclusion, this study demonstrates the potential application of hydrogel-based drug carriers as synthetic immune niche scaffolds for promoting mature-like TLSs formation within the B16-OVA melanoma tumor microenvironment, offering a promising strategy for advancing tumor immunotherapy.
Collapse
Affiliation(s)
- Chaiyaporn Kuwentrai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China
| | - Weilong Tang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, SAR, China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China
| | - Teng Chi
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou, China
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong, SAR, China.
| | - Zhou Ye
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
4
|
Yoshimitsu M, Nakamura M, Kano S, Magara T, Kato H, Sakai A, Sugiyama M, Mizokami M, Morita A. CXCL13 and CCL21 Induce Tertiary Lymphoid Structures and Enhance the Efficacy of Immunotherapy for Melanoma. Cancer Sci 2025. [PMID: 40393449 DOI: 10.1111/cas.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
Tertiary lymphoid structures (TLS) are acquired ectopic lymph follicle-like structures observed inside and around tumors, in which clusters of CD20-positive B lymphocytes are surrounded by CD3-positive T lymphocytes. In many cancers, the existence of TLS is a useful biomarker for better prognosis and better response to immune checkpoint inhibitors (ICI) and plays important roles in activating anti-tumor immunity. In order to induce TLS and enhance the therapeutic effect of ICI, we attempted to induce TLS using multiple chemokines in malignant melanoma, for which there have been no reports of TLS induction previously. Immunohistochemical analysis of tumor samples from 41 melanoma patients treated with ICI revealed TLS in 63.4% of cases. Patients with ≥ 5 TLS exhibited significantly improved disease-specific survival compared to those with fewer or no TLS. Plasma chemokine profiling in 46 samples from 18 melanoma patients showed elevated CC motif chemokine ligand 21 (CCL21) in TLS-positive samples before and after ICI treatment and CXC motif chemokine ligand 13 (CXCL13) significantly increased pre- to post-ICI treatment in paired samples from TLS-positive patients. In a mouse melanoma model, co-administration of CXCL13 and CCL21 alongside anti-programmed death ligand-1 (PD-L1) antibody therapy significantly increased TLS formation and improved tumor growth suppression. Gene expression analysis of human melanoma samples demonstrated that high CXCL13 and CCL21 expression correlated with upregulation of immune response, particularly B cell activation. These findings highlight the potential of chemokine-based therapies. TLS induction using CXCL13 and CCL21 in combination may be useful for enhancing the effects of ICI therapy in melanoma.
Collapse
Affiliation(s)
- Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Aiko Sakai
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Dai W, Li Y, Wu S, Wang Q, Zheng X, Zhang J, Han X, Zhou Y. Identification of MAGE-A10 specific T cell receptor promising in immunotherapy of hepatocellular carcinoma. Int J Biol Macromol 2025; 315:144243. [PMID: 40379175 DOI: 10.1016/j.ijbiomac.2025.144243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Due to the limitations of current treatment strategies, hepatocellular carcinoma (HCC) continues to impose a severe burden on people's health. In the process of exploring novel therapies, T cell receptor-engineered T cell (TCR-T) therapy has been extensively developed in HCC immunotherapy. Melanoma-associated antigen family A member 10 (MAGE-A10) is a cancer-testis antigen (CTA), specifically expressed on HCC cells. However, the identification of TCR-T targeting MAGE-A10 in HCC remains rarely discussed. In this study, single-cell RNA sequencing (scRNA-seq) and TCR sequencing (scTCR-seq) were performed on samples from HCC patients. The cellular landscape of HCC was illustrated through a single-cell atlas. Reactive T cells were defined based on the matched T cells. Additionally, most reactive T cells were enriched in CD4_CD69_Th, CD4_FOXP3_Treg, CD4_CXCL13_TEX, and CD8_CXCL13_TEX. GLIPH2 was utilized to cluster TCRs from reactive T cells, enabling the identification of reactive TCRs. TCRMatch predicted MAGE-A10 as a specific antigen recognized by one of the reactive TCRs. Furthermore, the affinity assessments between human leukocyte antigen (HLA), epitope of MAGE-A10, and the identified TCR were performed with NetMHCpan and DLpTCR. Finally, cytotoxicity assays indicated the specific recognition and killing of MAGE-A10-TCR-T cells against HCC cells, paving the way for TCR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Wei Dai
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Shaoxian Wu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Qi Wang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiao Han
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China.
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China.
| |
Collapse
|
6
|
Xu S, Li D, Ning T, Lu Y, Sun Y, Bai H, Qiao L, Deng T, Liu Y. High expression of CXCL13 predicts a favorable response to immunotherapy by upregulating CXCR5+CD8+ T-cell infiltration in gastric cancer. Front Immunol 2025; 16:1551259. [PMID: 40406143 PMCID: PMC12095368 DOI: 10.3389/fimmu.2025.1551259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction Identifying predictive biomarkers for immune checkpoint inhibitor (ICI) treatment is critical for gastric cancer (GC) prognosis. C-X-C motif chemokine ligand 13(CXCL13) plays an important role in immune regulation by binding exclusively to its receptor CXCR5. However, its role, underlying mechanisms, and prognostic significance in ICI-treated GC patients remain controversial. Methods This study investigated the clinical significance of CXCL13 and its potential immunomodulatory function in GC patients. A total of 144 GC patients from two cohorts, who received a combination of chemotherapy and anti-PD-1 antibody, were analyzed. The expression of CXCL13 was assessed using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay. Associations between CXCL13, CXCR5, CD8, and CD4 were assessed by IHC and immunofluorescence. Survival analysis was performed using the Kaplan-Meier method and Cox proportional hazards model. The treatment response to CXCL13 and anti-PD-1 antibody was investigated using a subcutaneous xenograft tumor mouse model. Results The results suggested that patients with high CXCL13 expression had prolonged survival. High CXCL13 expression exhibited increased infiltration of CXCR5+CD8+ T cells and was associated with better outcomes. The combined assessment of CXCL13, CXCR5, and CD8+ T cells served as an independent predictor of prognosis. Additionally, CXCR5 and CD8+ T cells were enriched in tertiary lymphoid structures (TLSs), which conferred a prognostic benefit in the presence of high CXCL13 expression. CXCL13, in combination with anti-PD-1 therapy, retarded tumor growth in vivo, resulting in increased infiltration of CXCR5+CD8+ T cells. Discussion This study identified CXCL13 as a prognostic factor in GC patients receiving ICI therapy, emphasizing its critical role in the antitumor microenvironment via CXCR5+CD8+ T cells.
Collapse
Affiliation(s)
- Shuning Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Danyang Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tao Ning
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yao Lu
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yansha Sun
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hua Bai
- Department of Medical Oncology, Zhengzhou People’s Hospital, Zhengzhou, China
| | - Lei Qiao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ting Deng
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ying Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Chen Y, Wu Y, Zhao Z, Wen L, Wu M, Song D, Zeng Q, Liu Y, Yan G, Zhang G. Retrospective study on the correlation between CXCL13, immune infiltration, and tertiary lymphoid structures in cutaneous squamous cell carcinoma. PeerJ 2025; 13:e19398. [PMID: 40352278 PMCID: PMC12065455 DOI: 10.7717/peerj.19398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Background C-X-C motif chemokine ligand 13 (CXCL13) is a crucial chemokine for the recruitment of immune cells and the formation of tertiary lymphoid structure (TLS) in the tumor microenvironment. However, the relationship between CXCL13 and immune infiltration in cutaneous squamous cell carcinoma (cSCC) remains unclear. Objective We aimed to investigate the expression of CXCL13 and explore its association with immune activation and TLS in cSCC. Methods A total of 63 cSCC patients were involved in the present study. Hematoxylin and eosin staining was used for pathological examination of cSCC. Bioinformatics analyses and immunohistochemical staining were employed to access the expression of CXCL13 and TLS states. Public single cell RNA-sequencing atlas of skin disorders and multiplex immunofluorescence were used to explore CXCL13-producing cells. Results Utilizing the public database and our clinical cohort, we observed robust CXCL13 expression in cSCC tissues and a significant correlation with immune activation. Higher expression levels of CXCL13 were associated with lower histopathological grades and increased TLS formation. Furthermore, we confirmed that T cells and fibroblasts were the predominant cell types of CXCL13 secretion in cSCC. Conclusions CXCL13 is up-regulated in cSCC, which shows a significant positive correlation with immune infiltration and TLS formation. Our results underscore the role of CXCL13 in shaping the cSCC microenvironment, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuhao Wu
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zijun Zhao
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Long Wen
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingshun Wu
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dekun Song
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingyu Zeng
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yeqiang Liu
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
9
|
Cui X, Gu X, Li D, Wu P, Sun N, Zhang C, He J. Tertiary lymphoid structures as a biomarker in immunotherapy and beyond: Advancing towards clinical application. Cancer Lett 2025; 613:217491. [PMID: 39862919 DOI: 10.1016/j.canlet.2025.217491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation. Their role in enhancing immune responses, particularly in the context of cancer, makes them a focal point in immunotherapy. This review discusses recent advances in TLS assessment that involves complex gene expression signatures, histological analysis, artificial intelligence, and spatial omics. The presence and maturity of TLS are associated with better outcomes in various cancers, acting as a biomarker for immunotherapy effectiveness. This review explores the structure, formation, and role of TLS in disease prognosis, including their roles in immunotherapy and non-immunotherapy treatments, highlighting a need to develop novel techniques for precise characterization of TLS as well as their significance as predictive biomarkers beyond traditional biomarkers.
Collapse
Affiliation(s)
- Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Lin J, Jiang S, Chen B, Du Y, Qin C, Song Y, Peng Y, Ding M, Wu J, Lin Y, Xu T. Tertiary Lymphoid Structures are Linked to Enhanced Antitumor Immunity and Better Prognosis in Muscle-Invasive Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410998. [PMID: 39739621 PMCID: PMC11831474 DOI: 10.1002/advs.202410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
The prognosis for muscle-invasive bladder cancer (MIBC) remains poor, and reliable prognostic markers have yet to be identified. Tertiary lymphoid structures (TLS) have been associated with favorable outcomes in certain cancers. However, the relationship between TLS and MIBC remains unclear. A multi-omics approach is utilized, leveraging single-cell RNA sequencing, spatial transcriptomics, bulk RNA sequencing, and immunohistochemistry, to investigate the roles of B cells and TLS in MIBC. These findings indicate that elevated levels of B cells and TLS correlate with improved prognoses in patients with MIBC, aligning with the robust antitumor immune responses observed in the TLS region. From a mechanistic perspective, CXCL13 serves as a critical cytokine for TLS formation in MIBC, primarily secreted by clonally expanded CXCL13+ T cells. This cytokine interacts with the CXCR5 receptor on NR4A2+ B cells, promoting TLS development. Plasma cells arising within the TLS microenvironment predominantly produce the IGHG antibody, potentially enhancing the phagocytic capabilities of C1QC+ macrophages. From an application standpoint, a TLS-specific gene signature is developed that effectively predicts outcomes in MIBC and other cancers. This study highlights the prognostic potential of TLS in MIBC and reveals immune mechanisms, offering insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Jiaxing Lin
- Department of UrologyPeking University People's HospitalBeijing100044China
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
| | - Shan Jiang
- Department of UrologyPeking University People's HospitalBeijing100044China
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
| | - Baoqiang Chen
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
| | - Yiqing Du
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yuxuan Song
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yun Peng
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Mengting Ding
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Jilin Wu
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yihan Lin
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life SciencesPeking UniversityBeijing100871China
- Peking University Chengdu Academy for Advanced Interdisciplinary BiotechnologiesChengduSichuan610213China
| | - Tao Xu
- Department of UrologyPeking University People's HospitalBeijing100044China
| |
Collapse
|
11
|
Liu X, Lv W, Huang D, Cui H. The predictive role of tertiary lymphoid structures in the prognosis and response to immunotherapy of lung cancer patients: a systematic review and meta-analysis. BMC Cancer 2025; 25:87. [PMID: 39815237 PMCID: PMC11734324 DOI: 10.1186/s12885-025-13484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND There is still no consensus regarding the correlation between TLS and the prognosis of lung cancer patients. This meta-analysis aimed to investigate the association between TLS and prognosis in patients with lung cancer. In addition, the prognostic value of TLS for the efficacy of immunotherapy was also studied. METHODS We systematically searched the PubMed, Embase, Cochrane Library, and Web of Science databases from database inception to November 1, 2023. The hazard ratio (HR) and corresponding 95% confidence interval (CI) for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS) and disease-specific survival (DSS) were extracted and merged with STATA 14.0. The study protocol was registered with PROSPERO (CRD42024502483). RESULTS A total of 17 studies comprising 4291 patients were included in this meta-analysis. The pooled results revealed that high TLS/TLS + patients had better OS (HR = 0.66, 95% CI: 0.50-0.88), DFS (HR = 0.46, 95% CI: 0.33-0.64), DSS (HR = 0.48, 95% CI: 0.39-0.60) and RFS (HR = 0.43, 95% CI: 0.33-0.57). High TLS/TLS + patients tended to have longer PFS than low TLS/TLS + patients (HR = 0.68, 95% CI: 0.35-1.35). Interestingly, in the Asia subgroup, the association between TLS and survival was especially significant, whereas there was no significant difference in Europe. In addition, in patients who received neoadjuvant chemoimmunotherapy, high TLS/TLS + was associated with prolonged DFS (HR = 0.21, 95%CI: 0.05-0.93). CONCLUSION High TLS/TLS + was associated with improved survival and an improved response to neoadjuvant chemoimmunotherapy in lung cancer patients, suggesting that TLS may be a prognostic biomarker and may also be a promising predictive marker for the response to neoadjuvant chemoimmunotherapy. However, additional original studies are needed to further confirm these findings.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
12
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
13
|
Zou Q, Liao K, Li G, Huang X, Zheng Y, Yang G, Luo M, Xue EY, Lan C, Wang S, Shen Y, Luo D, Ng DKP, Liu Q. Photo-metallo-immunotherapy: Fabricating Chromium-Based Nanocomposites to Enhance CAR-T Cell Infiltration and Cytotoxicity against Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407425. [PMID: 38899741 PMCID: PMC11733712 DOI: 10.1002/adma.202407425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The infiltration and cytotoxicity of chimeric antigen receptor (CAR)-T cells are crucial for effective elimination of solid tumors. While metallo-immunotherapy is a promising strategy that can activate the antitumor immunity, its role in promoting CAR-T cell therapy remains elusive. The first single-element nanomaterial based on chromium nanoparticles (Cr NPs) for cancer photo-metallo-immunotherapy has been reported previously. Herein, an extended study using biodegradable polydopamine as a versatile carrier for these nanoparticles, enabling synergistic CAR-T cell therapy, is reported. The results show that these nanocomposites with or without further encapsulation of the anticancer drug alpelisib can promote the CAR-T cell migration and antitumor effect. Upon irradiation with near-infrared light, they caused mild hyperthermia that can "warm" the "cold" tumor microenvironment (TME). The administration of B7-H3 CAR-T cells to NOD severe combined immunodeficiency gamma mice bearing a human hepatoma or PIK3CA-mutated breast tumor can significantly inhibit the tumor growth after the induction of tumor hyperthermia by the nanocomposites and promote the secretion of serum cytokines, including IL-2, IFN-γ, and TNF-α. The trivalent Cr3+ ions, which are the major degradation product of these nanocomposites, can increase the CXCL13 and CCL3 chemokine expressions to generate tertiary lymphoid structures (TLSs) in the tumor tissues, facilitating the CAR-T cell infiltration.
Collapse
Affiliation(s)
- Qingshuang Zou
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong Kong999077China
| | - Ke Liao
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
- Institute of Pharmacy and PharmacologySchool of Pharmaceutical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Guangchao Li
- Department of HematologyThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhou510317China
| | - Xin Huang
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
| | - Yongwei Zheng
- Research and Development DepartmentGuangzhou Bio‐Gene Technology Co. Ltd.Guangzhou510530China
| | - Gun Yang
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
| | - Min Luo
- Research and Development DepartmentGuangzhou Bio‐Gene Technology Co. Ltd.Guangzhou510530China
| | - Evelyn Y. Xue
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong Kong999077China
| | - Chuanqing Lan
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong Kong999077China
| | - Shuai Wang
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong Kong999077China
| | - Yao Shen
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
| | - Dixian Luo
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
| | - Dennis K. P. Ng
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong Kong999077China
| | - Quan Liu
- Department of Laboratory MedicineHuazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital)Shenzhen UniversityShenzhen518052China
| |
Collapse
|
14
|
Kim HM, Bruno TC. An Introduction to Tertiary Lymphoid Structures in Cancer. Methods Mol Biol 2025; 2864:1-19. [PMID: 39527214 DOI: 10.1007/978-1-0716-4184-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immunotherapy has revolutionized therapeutics for cancer patients, which signifies the importance of effective antitumor immunity in combatting cancer. However, the benefit of immunotherapies is limited to specific patient populations and tumor types, suggesting the overt need for new immunotherapeutic targets. Tertiary lymphoid structures (TLS) are ectopic lymph node-like structures that develop at the sites of chronic inflammation such as cancer. TLS are correlated with favorable clinical outcomes across multiple solid tumors and are associated with increased tumor-infiltrating lymphocytes (TILs), particularly effector memory CD8+ T cells. Despite strong clinical data in humans, there are still major knowledge gaps on the function of TLS in cancer. Herein, we highlight the known biology and clinical impact of TLS, which offer further evidence to harness TLS for improved immunotherapeutics.
Collapse
Affiliation(s)
- Hye Mi Kim
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center (TMC), UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Tumor Microenvironment Center (TMC), UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program (CIIP), UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Ruiz-Torres DA, Wise JF, Zhao BY, Oliveira-Costa JP, Cavallaro S, Sadow PM, Fang J, Yilmaz O, Patel A, Loosbroock C, Sade-Feldman M, Faden DL, Stott SL. Dendritic cell effector mechanisms and tumor immune microenvironment infiltration define TLR8 modulation and PD-1 blockade. Front Immunol 2024; 15:1440530. [PMID: 39697344 PMCID: PMC11652363 DOI: 10.3389/fimmu.2024.1440530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024] Open
Abstract
The potent immunostimulatory effects of toll-like receptor 8 (TLR8) agonism in combination with PD-1 blockade have resulted in various preclinical investigations, yet the mechanism of action in humans remains unknown. To decipher the combinatory mode of action of TLR8 agonism and PD-1 blockade, we employed a unique, open-label, phase 1b pre-operative window of opportunity clinical trial (NCT03906526) in head and neck squamous cell carcinoma (HNSCC) patients. Matched pre- and post-treatment tumor biopsies from the same lesion were obtained. We used single-cell RNA sequencing and custom multiplex staining to leverage the unique advantage of same-lesion longitudinal sampling. Patients receiving dual TLR8 agonism and anti-PD-1 blockade exhibited marked upregulation of innate immune effector genes and cytokines, highlighted by increased CLEC9A+ dendritic cell and CLEC7A/SYK expression. This was revealed via comparison with a previous cohort from an anti-PD-1 blockade monotherapy single-cell RNA sequencing study. Furthermore, in dual therapy patients, post-treatment mature dendritic cells increased in adjacency to CD8+ T-cells. Increased tumoral cytotoxic T-lymphocyte densities and expanded CXCL13+CD8+ T-cell populations were observed in responders, with increased tertiary lymphoid structures (TLSs) across all three patients. This study provides key insights into the mode of action of TLR8 agonism and anti-PD-1 blockade immune targeting in HNSCC patients.
Collapse
Affiliation(s)
- Daniel A. Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Jillian F. Wise
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Brian Yinge Zhao
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
| | - Joao Paulo Oliveira-Costa
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Sara Cavallaro
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Peter M. Sadow
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Osman Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Amar Patel
- Bristol Myers Squibb, Seattle, WA, United States
| | | | - Moshe Sade-Feldman
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Shannon L. Stott
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Center for Engineering in Medicine and Bio MicroElectroMechanical Systems (BioMEMS) Resource Center, Surgical Services, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
16
|
Gu X, Li D, Wu P, Zhang C, Cui X, Shang D, Ma R, Liu J, Sun N, He J. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett 2024; 605:217278. [PMID: 39332588 DOI: 10.1016/j.canlet.2024.217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
As one of the important members of the family of chemokines and their receptors, the CXCL13/CXCR5 axis is involved in follicle formation in normal lymphoid tissues and the establishment of somatic cavity immunity under physiological conditions, as well as being associated with a wide range of infectious, autoimmune, and tumoral diseases. Here in this review, we focus on its role in tumors. Traditional studies have found the axis to be both pro- and anti-tumorigenic, involving a variety of immune cells, including the tumor cells themselves and those in the tumor microenvironment (TME), and the prognostic significance of this axis is clinical context-dependent. With the development of techniques at the single-cell level, we were able to explain in detail the status of the CXCL13/CXCR5 axis in the TME based on real clinical samples and found that it involves a range of crucial intrinsic anti-tumor immune processes in the TME and is therefore important in tumor immunotherapy. We summarize the cellular subsets, physiological functions, and prognostic significance associated with this axis in the most promising immune checkpoint inhibitor (ICI) therapies of the day and summarize possible therapeutic ideas based on this axis. As with any TME study, the most important takeaway is that the complexity of the CXCL13/CXCR5 axis in TME suggests the importance of personalized therapy in tumor therapy.
Collapse
Affiliation(s)
- Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dexin Shang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Bian Z, Chen B, Shi G, Yuan H, Zhou Y, Jiang B, Li L, Su H, Zhang Y. Single-cell landscape identified SERPINB9 as a key player contributing to stemness and metastasis in non-seminomas. Cell Death Dis 2024; 15:812. [PMID: 39528470 PMCID: PMC11555415 DOI: 10.1038/s41419-024-07220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Embryonal carcinoma (EC), characterized by a high degree of stemness similar to that of embryonic stem cells, is the most malignant subtype within non-seminomatous testicular germ cell tumors (TGCTs). However, the mechanisms underlying its malignancy remain unknown. In this study, we employed single-cell RNA sequencing to analyze four non-seminoma samples. Our differential expression analysis revealed high expression of SERPINB9 in metastatic EC cells. We conducted in vitro experiments to further investigate SERPINB9's role in the progression of EC. Functionally, the knockdown of SERPINB9 in NCCIT and NTERA-2 leads to a diminished migratory capability and decreased cis-platin resistance, as demonstrated by Transwell migration assay and drug sensitivity assay. Moreover, embryoid bodies showed reduced size and lower OCT4 expression, alongside heightened expression of differentiation markers AFP, ACTA2, and CD57 in shSERPINB9 cells. In vivo, the role of SERPINB9 in maintaining cancer stemness was validated by the limiting dilution assay. Mechanistically, Bulk RNA-seq further showed downregulation of ERK1/2 signaling and WNT signaling pathways with concomitant upregulation of differentiation pathways subsequent to SERPINB9 knockdown. Additionally, the analysis indicated increased levels of cytokines linked to tertiary lymphoid structures (TLS), such as IL6, IL11, IL15, CCL2, CCL5, and CXCL13 in shSERPINB9 cells, which were further validated by ELISA. Our research indicates that SERPINB9 plays a key role in driving tumor progression by enhancing tumor stemness and suppressing TLS. This study stands as the first to elucidate the molecular signature of non-seminomas at a single-cell level, presenting a wealth of promising targets with substantial potential for informing the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Haihua Yuan
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Yue Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Bin Jiang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China.
| | - Long Li
- Department of Urology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| | - Hengchuan Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China.
| |
Collapse
|
18
|
Jiang B, Wu Z, Zhang Y, Yang X. Associations between tertiary lymphoid structure density and immune checkpoint inhibitor efficacy in solid tumors: systematic review and meta-analysis. Front Immunol 2024; 15:1414884. [PMID: 39544934 PMCID: PMC11560435 DOI: 10.3389/fimmu.2024.1414884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS) play a crucial role in tumor immunity, yet their relationship with the efficacy of immune checkpoint inhibitors (ICI) in cancer therapy is not fully understood. This study aims to systematically evaluate how TLS density influences treatment outcomes in cancer patients receiving ICI therapy. Methods The PubMed, Embase, Cochrane Library, and Web of Science databases were searched for eligible studies published before January 22, 2024. Our analysis encompassed odds ratios (ORs) for response rates (RRs) and hazard ratios (HRs) for progression-free survival (PFS), each with their respective 95% confidence intervals (CIs). Results Our meta-analysis, including 19 clinical trials with 1,752 patients, identified a strong correlation between high TLS density and increased RR to ICIs (OR= 2.99, 95% CI: 2.14-4.18, P < 0.001). Furthermore, a higher TLS density was associated with prolonged PFS (HR=0.75, 95% CI: 0.63-0.88, P < 0.001). Specifically, in the context of non-small cell lung cancer (NSCLC), breast cancer (BC), renal cell carcinoma (RCC), esophageal cancer (EC), and urothelial carcinoma (UC), a significant relationship was observed between high TLS density and better ICI efficacy. Publication bias did not affect the integrity of our conclusions. Sensitivity analysis further reinforced the reliability of our aggregated outcomes. Conclusion Our meta-analysis underscores the predictive role of TLS density in determining the RR and PFS among cancer patients undergoing ICI therapy. These results highlight the prognostic significance of TLS, suggesting its potential as a biomarker for guiding treatment decisions, even in tumor types traditionally considered ICI-resistant. Clinicians are recommended to assess TLS density as a part of patient evaluation to optimize ICI therapy initiation. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023439875.
Collapse
Affiliation(s)
| | | | | | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Yu J, Gong Y, Huang X, Bao Y. Prognostic and therapeutic potential of gene profiles related to tertiary lymphoid structures in colorectal cancer. PeerJ 2024; 12:e18401. [PMID: 39494300 PMCID: PMC11531753 DOI: 10.7717/peerj.18401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
The role of tertiary lymphoid structures (TLS) in oncology is gaining interest, particularly in colorectal carcinoma, yet a thorough analysis remains elusive. This study pioneered a novel TLS quantification system for prognostic and therapeutic response prediction in colorectal carcinoma, alongside a comprehensive depiction of the TLS landscape. Utilizing single-cell sequencing, we established a TLS score within the Tumor Immune Microenvironment (TIME). Analysis of tertiary lymphoid structure-related genes (TLSRGs) in 1,184 patients with colon adenocarcinoma/rectum adenocarcinoma (COADREAD) from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases led to the identification of two distinct molecular subtypes. Differentially expressed genes (DEGs) further segregated these patients into gene subtypes. A TLS score was formulated using gene set variation analysis (GSVA) and its efficacy in predicting immunotherapy outcomes was validated in two independent cohorts. High-scoring patients exhibited a 'hot' immune phenotype, correlating with enhanced immunotherapy efficacy. Key genes in our model, including C5AR1, APOE, CYR1P1, and SPP1, were implicated in COADREAD cell proliferation, invasion, and PD-L1 expression. These insights offer a novel approach to colorectal carcinoma treatment, emphasizing TLS targeting as a potential anti-tumor strategy.
Collapse
Affiliation(s)
- Jinglu Yu
- PuDong Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Pudong New Area, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowei Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufang Bao
- PuDong Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Pudong New Area, China
| |
Collapse
|
20
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Yolmo P, Rahimi S, Chenard S, Conseil G, Jenkins D, Sachdeva K, Emon I, Hamilton J, Xu M, Rangachari M, Michaud E, Mansure JJ, Kassouf W, Berman DM, Siemens DR, Koti M. Atypical B Cells Promote Cancer Progression and Poor Response to Bacillus Calmette-Guérin in Non-Muscle Invasive Bladder Cancer. Cancer Immunol Res 2024; 12:1320-1339. [PMID: 38916567 PMCID: PMC11443217 DOI: 10.1158/2326-6066.cir-23-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell-infiltrated pretreatment immune microenvironment of NMIBC tumors can influence the response to intravesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell-dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pretreatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B-cell-exhaustion axis.
Collapse
Affiliation(s)
- Priyanka Yolmo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Sadaf Rahimi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Stephen Chenard
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Gwenaëlle Conseil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Danielle Jenkins
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Kartik Sachdeva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Isaac Emon
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Jake Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Minqi Xu
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Manu Rangachari
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eva Michaud
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Jose J Mansure
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Wassim Kassouf
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - David M Berman
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - David R Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| |
Collapse
|
22
|
Ruiz-Torres DA, Wise J, Zhao BY, Oliveira-Costa JP, Cavallaro S, Sadow P, Fang J, Yilmaz O, Patel A, Loosbroock C, Sade-Feldman M, Faden DL, Stott SL. Dendritic cell effector mechanisms and tumor immune microenvironment infiltration define TLR8 modulation and PD-1 blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610636. [PMID: 39282367 PMCID: PMC11398323 DOI: 10.1101/2024.09.03.610636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The potent immunostimulatory effects of toll-like receptor 8 (TLR8) agonism in combination with PD-1 blockade have resulted in various preclinical investigations, yet the mechanism of action in humans remains unknown. To decipher the combinatory mode of action of TLR8 agonism and PD-1 blockade, we employed a unique, open-label, phase 1b pre-operative window of opportunity clinical trial (NCT03906526) in head and neck squamous cell carcinoma (HNSCC) patients. Matched pre- and post-treatment tumor biopsies from the same lesion were obtained. We used single-cell RNA sequencing and custom multiplex staining to leverage the unique advantage of same-lesion longitudinal sampling. Patients receiving dual TLR8 agonism and anti-PD-1 blockade exhibited marked upregulation of innate immune effector genes and cytokines, highlighted by increased CLEC9A+ dendritic cell and CLEC7A/SYK expression. This was revealed via comparison with a previous cohort from an anti-PD-1 blockade monotherapy single-cell RNA sequencing study. Furthermore, in dual therapy patients, post-treatment mature dendritic cells increased in adjacency to CD8+ T-cells. Increased tumoral cytotoxic T-lymphocyte densities and expanded CXCL13+CD8+ T-cell populations were observed in responders, with increased tertiary lymphoid structures (TLSs) across all three patients. This study provides key insights into the mode of action of TLR8 agonism and anti-PD-1 blockade immune targeting in HNSCC patients.
Collapse
Affiliation(s)
- Daniel A. Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
| | - Jillian Wise
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Salve Regina University, Newport, RI 02840, USA
| | - Brian Yinge Zhao
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Joao Paulo Oliveira-Costa
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sara Cavallaro
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Sadow
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacy Fang
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
| | - Osman Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Amar Patel
- Bristol Myers Squibb, Seattle, WA 98109, USA
| | | | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shannon L. Stott
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
24
|
Niu L, Chen T, Yang A, Yan X, Jin F, Zheng A, Song X. Macrophages and tertiary lymphoid structures as indicators of prognosis and therapeutic response in cancer patients. Biochim Biophys Acta Rev Cancer 2024; 1879:189125. [PMID: 38851437 DOI: 10.1016/j.bbcan.2024.189125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Li Niu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aodan Yang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Xiwen Yan
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
26
|
Li C, Zhang L, Jin Q, Jiang H, Wu C. Role and application of chemokine CXCL13 in central nervous system lymphoma. Ann Hematol 2024; 103:2671-2680. [PMID: 38010409 DOI: 10.1007/s00277-023-05560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) both play significant roles in the tumor microenvironment (TME). CXCL13 in cerebrospinal fluid (CSF) has recently been found to have significant diagnostic and prognostic value in primary and secondary central nervous system (CNS) diffuse large B-cell lymphoma (DLBCL), and the CXCL13-CXCR5 axis has been shown to play an important chemotactic role in the TME of CNS-DLBCL. In this review, we first describe the clinical value of CXCL13 in CSF as a prognostic and diagnostic biomarker for CNS-DLBCL. In addition, this review also discusses the specific mechanisms associated with the CXCL13-CXCR5 axis in tumor immunity of primary diffuse large B cell lymphoma of the central nervous system (PCNS-DLBCL) by reviewing the specific mechanisms of this axis in the immune microenvironment of DLBCL and CNS inflammation, as well as the prospects for the use of CXCL13-CXCR5 axis in immunotherapy in PCNS-DLBCL.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
27
|
Langouo Fontsa M, Padonou F, Willard-Gallo K. Tumor-associated tertiary lymphoid structures in cancer: implications for immunotherapy. Expert Rev Clin Immunol 2024; 20:839-847. [PMID: 39007892 DOI: 10.1080/1744666x.2024.2380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Tertiary lymphoid structures (TLS) arise at chronic inflammatory sites where they function as miniature lymph nodes to generate immune responses, which can be beneficial or detrimental, in diseases as diverse as autoimmunity, chronic infections and cancer. A growing number of studies show that a TLS presence in tumors from cancer patients treated with immune checkpoint inhibitors is closely linked with improved clinical outcomes. TLS may foster the generation of specific anti-tumor immune responses and immunological memory that recognizes a patient's own tumor. Due to repeated rounds of chronic inflammation, some tumor-associated TLS may be immunologically inactive, with immune checkpoint inhibitors functioning to revitalize them through pathway activation. AREAS COVERED This review summarizes work on TLS and how they mediate immune responses in human tumors. We also explore TLS as potential prognostic and predictive biomarkers for immunotherapy. EXPERT OPINION The presence of TLS in human tumors has been linked with a better clinical prognosis, response to treatment(s) and overall survival. TLS provide a structured microenvironment for the activation, expansion and maturation of immune cells at the tumor site. These activities can enhance the efficacy of immunotherapeutic treatments such as checkpoint inhibitors and cancer vaccines by revitalizing local anti-tumor immunity.
Collapse
Affiliation(s)
- Mireille Langouo Fontsa
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Francine Padonou
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Le Saux O, Ardin M, Berthet J, Barrin S, Bourhis M, Cinier J, Lounici Y, Treilleux I, Just PA, Bataillon G, Savoye AM, Mouret-Reynier MA, Coquan E, Derbel O, Jeay L, Bouizaguen S, Labidi-Galy I, Tabone-Eglinger S, Ferrari A, Thomas E, Ménétrier-Caux C, Tartour E, Galy-Fauroux I, Stern MH, Terme M, Caux C, Dubois B, Ray-Coquard I. Immunomic longitudinal profiling of the NeoPembrOv trial identifies drivers of immunoresistance in high-grade ovarian carcinoma. Nat Commun 2024; 15:5932. [PMID: 39013886 PMCID: PMC11252308 DOI: 10.1038/s41467-024-47000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/18/2024] [Indexed: 07/18/2024] Open
Abstract
PD-1/PD-L1 blockade has so far shown limited survival benefit for high-grade ovarian carcinomas. By using paired samples from the NeoPembrOv randomized phase II trial (NCT03275506), for which primary outcomes are published, and by combining RNA-seq and multiplexed immunofluorescence staining, we explore the impact of NeoAdjuvant ChemoTherapy (NACT) ± Pembrolizumab (P) on the tumor environment, and identify parameters that correlated with response to immunotherapy as a pre-planned exploratory analysis. Indeed, i) combination therapy results in a significant increase in intraepithelial CD8+PD-1+ T cells, ii) combining endothelial and monocyte gene signatures with the CD8B/FOXP3 expression ratio is predictive of response to NACT + P with an area under the curve of 0.93 (95% CI 0.85-1.00) and iii) high CD8B/FOXP3 and high CD8B/ENTPD1 ratios are significantly associated with positive response to NACT + P, while KDR and VEGFR2 expression are associated with resistance. These results indicate that targeting regulatory T cells and endothelial cells, especially VEGFR2+ endothelial cells, could overcome immune resistance of ovarian cancers.
Collapse
Affiliation(s)
- Olivia Le Saux
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | - Maude Ardin
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | - Justine Berthet
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Sarah Barrin
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Morgane Bourhis
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Justine Cinier
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | - Yasmine Lounici
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | | | | | - Guillaume Bataillon
- Department of Anatomopathology, University hospital of Toulouse, Toulouse, France
| | - Aude-Marie Savoye
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Institut Jean Godinot, Reims, France
| | - Marie-Ange Mouret-Reynier
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Elodie Coquan
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - Olfa Derbel
- Department of Medical Oncology, Hôpital Privé Jean Mermoz, Lyon, France
| | - Louis Jeay
- Keen Eye Technologies-Paris, France, now Tribun Health, Paris, France
| | | | - Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux universitaires de Genève, Faculty of Medecine, Center of Translational Research in Onco-Hematology, Swiss Cancer Center Leman, Geneva, Switzerland
| | | | - Anthony Ferrari
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, F-69373, Lyon, France
| | - Emilie Thomas
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, F-69373, Lyon, France
| | - Christine Ménétrier-Caux
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Eric Tartour
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.) Team, Institut Curie, PSL Research University, 75005, Paris, France
| | - Magali Terme
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Christophe Caux
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Bertrand Dubois
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France.
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France.
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France.
| | - Isabelle Ray-Coquard
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France.
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France.
| |
Collapse
|
30
|
Yang F, Yang J, Wu M, Chen C, Chu X. Tertiary lymphoid structures: new immunotherapy biomarker. Front Immunol 2024; 15:1394505. [PMID: 39026662 PMCID: PMC11254617 DOI: 10.3389/fimmu.2024.1394505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Immunotherapy shows substantial advancement in cancer and is becoming widely used in clinical practice. A variety of biomarkers have been proposed to predict the efficacy of immunotherapy, but most of them have low predictive ability. Tertiary lymphoid structures (TLSs), the aggregation of multiple lymphocytes, have been found to exist in various tumor tissues. TLSs have been shown to correlate with patient prognosis and immunotherapy response. This review summarizes the characteristics of TLSs and the inducing factors of TLS formation, presents available evidence on the role of TLSs in predicting immunotherapy response in different cancers, and lastly emphasizes their predictive potential for neoadjuvant immunotherapy efficacy.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jiahe Yang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Zhang D, Jiang D, Jiang L, Ma J, Wang X, Xu X, Chen Z, Jiang M, Ye W, Wang J, Meng W, Qiu W, Hou Y, Huang J, Jiao Y, Liu Y, Liu Z. HLA-A + tertiary lymphoid structures with reactivated tumor infiltrating lymphocytes are associated with a positive immunotherapy response in esophageal squamous cell carcinoma. Br J Cancer 2024; 131:184-195. [PMID: 38762674 PMCID: PMC11231239 DOI: 10.1038/s41416-024-02712-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy provides remarkable clinical benefits for multiple cancer types. However, the overall response rate to ICB therapy remains low in esophageal squamous cell carcinoma (ESCC). This study aimed to identify biomarkers of ICB therapy for ESCC and interrogate its potential clinical relevance. METHODS We investigated gene expression in 42 treatment-naïve ESCC tumor tissues and identified differentially expressed genes, tumor-infiltrating lymphocytes and immune-related genes signatures associated with differential immunotherapy responses. We systematically assessed the tumor microenvironment using the NanoString GeoMx digital spatial profiler, single-cell RNA-seq and multiplex immunohistochemistry in ESCC. Finally, we evaluated the associations between HLA-A-positive tertiary lymphoid structures (TLSs) and patients' responses to ICB in 60 ESCC patients. RESULTS Tumor infiltrating B lymphocytes and several immune-related gene signatures, such as the antigen presenting machinery (APM) signature, are significantly elevated in ICB treatment responders. Multiplex immunohistochemistry identified the presence of HLA-A+ TLSs and showed that TLS-resident cells increasingly express HLA-A as TLSs mature. Most TLS-resident HLA-A+ cells are tumor-infiltrating T (TIL-T) or tumor-infiltrating B (TIL-B) lymphocytes. Digital spatial profiling of spatially distinct TIL-T lymphocytes and single-cell RNA-seq data from 60 ESCC tumor tissues revealed that CXCL13-expressing exhausted TIL-Ts inside TLSs are reactivated with elevated expression of the APM signature as TLSs mature. Finally, we demonstrated that HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, are associated with a clinical benefit from ICB treatment for ESCC. CONCLUSIONS HLA-A+ TLSs are present in ESCC tumor tissues. TLS-resident TIL-Ts with elevated expression of the APM signature may be reactivated. HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, may serve as biomarkers for ICB-treated ESCC patients.
Collapse
Affiliation(s)
- Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jiakang Ma
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xingyu Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziqiang Chen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mengping Jiang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenjing Ye
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Departments of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weida Meng
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenqing Qiu
- Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
32
|
Reschke R, Enk AH, Hassel JC. Chemokines and Cytokines in Immunotherapy of Melanoma and Other Tumors: From Biomarkers to Therapeutic Targets. Int J Mol Sci 2024; 25:6532. [PMID: 38928238 PMCID: PMC11203481 DOI: 10.3390/ijms25126532] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Chemokines and cytokines represent an emerging field of immunotherapy research. They are responsible for the crosstalk and chemoattraction of immune cells and tumor cells. For instance, CXCL9/10/11 chemoattract effector CD8+ T cells to the tumor microenvironment, making an argument for their promising role as biomarkers for a favorable outcome. The cytokine Interleukin-15 (IL-15) can promote the chemokine expression of CXCR3 ligands but also XCL1, contributing to an important DC-T cell interaction. Recruited cytotoxic T cells can be clonally expanded by IL-2. Delivering or inducing these chemokines and cytokines can result in tumor shrinkage and might synergize with immune checkpoint inhibition. In addition, blocking specific chemokine and cytokine receptors such as CCR2, CCR4 or Il-6R can reduce the recruitment of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) or regulatory T cells (Tregs). Efforts to target these chemokines and cytokines have the potential to personalize cancer immunotherapy further and address patients that are not yet responsive because of immune cell exclusion. Targeting cytokines such as IL-6 and IL-15 is currently being evaluated in clinical trials in combination with immune checkpoint-blocking antibodies for the treatment of metastatic melanoma. The improved overall survival of melanoma patients might outweigh potential risks such as autoimmunity. However, off-target toxicity needs to be elucidated.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Zhu J, Lu H, Wang K, Liu B, Yan J. Tertiary lymphoid structures in head and neck squamous cell carcinoma. Transl Oncol 2024; 44:101949. [PMID: 38583352 PMCID: PMC11391034 DOI: 10.1016/j.tranon.2024.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Smoking, drinking, and human papillomavirus (HPV) infection are the main risk factors. Early-stage patients can benefit from radical surgery, chemotherapy, and radiotherapy, but the prognosis of locally advanced, recurrent, or metastatic patients is poor. Programmed cell death receptor 1 (PD-1) inhibitor significantly prolongs the survival of these patients, but only about 20 % of the population can benefit significantly. Exploring effective predictive indicators of immunotherapy efficacy and new therapeutic targets is necessary. Tertiary lymphoid structure (TLS) is an ectopic lymphoid organ formed in non-lymphoid tissues, which usually occurs in chronic inflammation including autoimmune diseases, infectious diseases, and tumors. The structure and function of TLS are similar to those of secondary lymphoid organs. The existence of TLS is closely related to the favorable prognosis and immune response of patients. This article will review the formation, prognosis, and predictive value of TLS as well as inducing TLS neogenesis in HNSCC.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Hui Lu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Kongcheng Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, PR China; Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Jing Yan
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, PR China; Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| |
Collapse
|
34
|
Xie W, Lu J, Chen Y, Wang X, Lu H, Li Q, Jin N, He J, Ou L, Ni J, Shen Y, Shao L. TCL1A-expressing B cells are critical for tertiary lymphoid structure formation and the prognosis of oral squamous cell carcinoma. J Transl Med 2024; 22:477. [PMID: 38764038 PMCID: PMC11103841 DOI: 10.1186/s12967-024-05292-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant tumor with a poor prognosis. Traditional treatments have limited effectiveness. Regulation of the immune response represents a promising new approach for OSCC treatment. B cells are among the most abundant immune cells in OSCC. However, the role of B cells in OSCC treatment has not been fully elucidated. METHODS Single-cell RNA sequencing analysis of 13 tissues and 8 adjacent normal tissues from OSCC patients was performed to explore differences in B-cell gene expression between OSCC tissues and normal tissues. We further investigated the relationship between differentially expressed genes and the immune response to OSCC. We utilized tissue microarray data for 146 OSCC clinical samples and RNA sequencing data of 359 OSCC samples from The Cancer Genome Atlas (TCGA) to investigate the role of T-cell leukemia 1 A (TCL1A) in OSCC prognosis. Multiplex immunohistochemistry (mIHC) was employed to investigate the spatial distribution of TCL1A in OSCC tissues. We then investigated the effect of TCL1A on B-cell proliferation and trogocytosis. Finally, lentiviral transduction was performed to induce TCL1A overexpression in B lymphoblastoid cell lines (BLCLs) to verify the function of TCL1A. RESULTS Our findings revealed that TCL1A was predominantly expressed in B cells and was associated with a better prognosis in OSCC patients. Additionally, we found that TCL1A-expressing B cells are located at the periphery of lymphatic follicles and are associated with tertiary lymphoid structures (TLS) formation in OSCC. Mechanistically, upregulation of TCL1A promoted the trogocytosis of B cells on dendritic cells by mediating the upregulation of CR2, thereby improving antigen-presenting ability. Moreover, the upregulation of TCL1A expression promoted the proliferation of B cells. CONCLUSION This study revealed the role of B-cell TCL1A expression in TLS formation and its effect on OSCC prognosis. These findings highlight TCL1A as a novel target for OSCC immunotherapy.
Collapse
Affiliation(s)
- Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Jinjin Lu
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, PR China
| | - Yichen Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Xi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, PR China
| | - Huanzi Lu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, PR China
| | - Qunxing Li
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Lingling Ou
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, PR China
| | - Jia Ni
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Yuqin Shen
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, PR China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, PR China.
| |
Collapse
|
35
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
36
|
Yin T, Mou S, Zhang H, Dong Y, Yan B, Huang W, Liu Y, Mei H. CXCL10 could be a prognostic and immunological biomarker in bladder cancer. Discov Oncol 2024; 15:148. [PMID: 38720149 PMCID: PMC11078901 DOI: 10.1007/s12672-024-00982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION As proteins that promote immune cell differentiation, chemokines have attracted great interest regarding their role in anti-tumor immune responses within the cancer environment. However, the exact role of CXCL10, a chemokine, in bladder cancer (BLCA) is still not fully elucidated. METHOD In the present study, we employed bioinformatics approaches to examine the expression pattern, prognostic value, and immune infiltration of CXCL10 in BLCA. Furthermore, we focused on examining the impact of CXCL10 on immune therapy in BLCA. Additionally, we validated the expression of CXCL10 in various BLCA cell lines using PCR techniques. RESULTS We observed an upregulation of CXCL10 in BLCA tissues as well as in different cell lines. Additionally, upregulation of CXCL10 indicates a better prognosis for BLCA patients. ESTIMATE and CIBERSORT algorithms suggest that CXCL10 is closely associated with the immune microenvironment of BLCA. Through multiple immune therapy cohorts, we also identified that CXCL10 has shown promising predictive value for assessing the efficacy of immune therapy in in BLCA. CONCLUSION Our study indicates that CXCL10 has the potential to serve as a favorable prognostic factor and is strongly associated with immune infiltration in BLCA.
Collapse
Affiliation(s)
- Tao Yin
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen University Medical College, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shuanzhu Mou
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen University Medical College, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Haiyu Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Dong
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen University Medical College, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bing Yan
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen University Medical College, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weisheng Huang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuhan Liu
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongbing Mei
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.
- Shenzhen University Medical College, Shenzhen, China.
- Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
37
|
Chen Y, Wu Y, Yan G, Zhang G. Tertiary lymphoid structures in cancer: maturation and induction. Front Immunol 2024; 15:1369626. [PMID: 38690273 PMCID: PMC11058640 DOI: 10.3389/fimmu.2024.1369626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Yuhao Wu
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Petroni G, Pillozzi S, Antonuzzo L. Exploiting Tertiary Lymphoid Structures to Stimulate Antitumor Immunity and Improve Immunotherapy Efficacy. Cancer Res 2024; 84:1199-1209. [PMID: 38381540 PMCID: PMC11016894 DOI: 10.1158/0008-5472.can-23-3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
Tumor-associated tertiary lymphoid structures (TLS) have been associated with favorable clinical outcomes and response to immune checkpoint inhibitors in many cancer types, including non-small cell lung cancer. Although the detailed cellular and molecular mechanisms underlying these clinical associations have not been fully elucidated, growing preclinical and clinical studies are helping to elucidate the mechanisms at the basis of TLS formation, composition, and regulation of immune responses. However, a major challenge remains how to exploit TLS to enhance naïve and treatment-mediated antitumor immune responses. Here, we discuss the current understanding of tumor-associated TLS, preclinical models that can be used to study them, and potential therapeutic interventions to boost TLS formation, with a particular focus on lung cancer research.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Firenze, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
- Clinical Oncology Unit, Careggi University Hospital, Firenze, Italy
| |
Collapse
|
39
|
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, Xu H, Weng S, Han X, Liu Z. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer 2024; 23:75. [PMID: 38582847 PMCID: PMC10998345 DOI: 10.1186/s12943-024-01980-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengjun Xu
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
40
|
Zhang L, Zhang R, Jin D, Zhang T, Shahatiaili A, Zang J, Wang L, Pu Y, Zhuang G, Chen H, Fan J. Synergistic induction of tertiary lymphoid structures by chemoimmunotherapy in bladder cancer. Br J Cancer 2024; 130:1221-1231. [PMID: 38332180 PMCID: PMC10991273 DOI: 10.1038/s41416-024-02598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND A substantial number of patients with bladder cancer fail to benefit from immune checkpoint inhibitors (ICIs). We aim to investigate whether the addition of other therapeutic modalities into immunotherapy may augment the immune reactivity, thereby improving the overall response rate. METHODS We conducted a comprehensive assessment of the immunological changes following immunotherapy and chemotherapy, employing both single-cell RNA sequencing and bulk RNA sequencing analyses. RESULTS The bladder cancer patient treated with ICIs exhibited a higher abundance of B cells and T follicular helper cells compared to the treatment-naïve patient. Analysis of public datasets and the in-house RJBLC-I2N003 cohort revealed the induction of tertiary lymphoid structure (TLS) neogenesis and maturation by immunotherapy. The IMvigor 210 study suggested that TLS could serve as a predictor of immunotherapy response and patient prognosis. In addition, genome-wide transcriptome data unveiled a shift towards the immune-enriched subtype over the desert subtype in patients receiving neoadjuvant chemotherapy. Notably, the proportions of CD20 + B cells, T follicular helper cells, and TLSs were significantly increased. In patients treated with a combination of neoadjuvant chemotherapy and ICIs, TLS positivity and maturity were improved compared to the baseline. Furthermore, neoadjuvant chemoimmunotherapy resulted in a higher rate of pathological complete response compared to monotherapies. CONCLUSIONS This work pinpointed the individual effect of immunotherapy and chemotherapy in fostering TLS development, and underscored the superior effectiveness of combined modalities in enhancing TLS maturation and response rates.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiyun Zhang
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Jin
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Akezhouli Shahatiaili
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zang
- Department of Radiation Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanchun Pu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haige Chen
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
41
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
42
|
Wang X, Juncker‐Jensen A, Huang G, Nagy ML, Lu X, Cheng L, Lu X. Spatial relationship of tertiary lymphoid structures and tumor-associated neutrophils in bladder cancer and prognostic potential for anti-PD-L1 immunotherapy. Cancer Commun (Lond) 2024; 44:499-503. [PMID: 37864307 PMCID: PMC11024682 DOI: 10.1002/cac2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Xuechun Wang
- Department of Biological SciencesBoler‐Parseghian Center for Rare and Neglected DiseasesHarper Cancer Research InstituteUniversity of Notre DameNotre DameINUSA
| | | | - Gang Huang
- Department of Biological SciencesBoler‐Parseghian Center for Rare and Neglected DiseasesHarper Cancer Research InstituteUniversity of Notre DameNotre DameINUSA
| | | | - Xuemin Lu
- Department of Biological SciencesBoler‐Parseghian Center for Rare and Neglected DiseasesHarper Cancer Research InstituteUniversity of Notre DameNotre DameINUSA
| | - Liang Cheng
- Department of Pathology and Laboratory MedicineBrown University Warren Alpert Medical SchoolLifespan Academic Medical CenterLegorreta Cancer Center at Brown UniversityProvidenceRIUSA
| | - Xin Lu
- Department of Biological SciencesBoler‐Parseghian Center for Rare and Neglected DiseasesHarper Cancer Research InstituteUniversity of Notre DameNotre DameINUSA
- Tumor Microenvironment and Metastasis ProgramIndiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUSA
| |
Collapse
|
43
|
Li S, Wang Z, Huang HD, Lee TY. Machine Learning-Based Characterization and Identification of Tertiary Lymphoid Structures Using Spatial Transcriptomics Data. Int J Mol Sci 2024; 25:3887. [PMID: 38612697 PMCID: PMC11011734 DOI: 10.3390/ijms25073887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells in non-lymphoid tissues and are associated with a favorable prognosis in tumors. However, TLS markers remain inconsistent, and the utilization of machine learning techniques for this purpose is limited. To tackle this challenge, we began by identifying TLS markers through bioinformatics analysis and machine learning techniques. Subsequently, we leveraged spatial transcriptomic data from Gene Expression Omnibus (GEO) and built two support vector classifier models for TLS prediction: one without feature selection and the other using the marker genes. The comparable performances of these two models confirm the efficacy of the selected markers. The majority of the markers are immunoglobulin genes, demonstrating their importance in the identification of TLSs. Our research has identified the markers of TLSs using machine learning methods and constructed a model to predict TLS location, contributing to the detection of TLS and holding the promising potential to impact cancer treatment strategies.
Collapse
Affiliation(s)
- Songyun Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (S.L.); (Z.W.)
| | - Zhuo Wang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (S.L.); (Z.W.)
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (S.L.); (Z.W.)
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
44
|
Wang S, Wang H, Li C, Liu B, He S, Tu C. Tertiary lymphoid structures in cancer: immune mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e489. [PMID: 38469550 PMCID: PMC10925885 DOI: 10.1002/mco2.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
Cancer is a major cause of death globally, and traditional treatments often have limited efficacy and adverse effects. Immunotherapy has shown promise in various malignancies but is less effective in tumors with low immunogenicity or immunosuppressive microenvironment, especially sarcomas. Tertiary lymphoid structures (TLSs) have been associated with a favorable response to immunotherapy and improved survival in cancer patients. However, the immunological mechanisms and clinical significance of TLS in malignant tumors are not fully understood. In this review, we elucidate the composition, neogenesis, and immune characteristics of TLS in tumors, as well as the inflammatory response in cancer development. An in-depth discussion of the unique immune characteristics of TLSs in lung cancer, breast cancer, melanoma, and soft tissue sarcomas will be presented. Additionally, the therapeutic implications of TLS, including its role as a marker of therapeutic response and prognosis, and strategies to promote TLS formation and maturation will be explored. Overall, we aim to provide a comprehensive understanding of the role of TLS in the tumor immune microenvironment and suggest potential interventions for cancer treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Hua Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chenbei Li
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Binfeng Liu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shasha He
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Shenzhen Research Institute of Central South UniversityGuangdongChina
- Changsha Medical UniversityChangshaChina
| |
Collapse
|
45
|
Lee S, Kang BH, Lee HB, Jang BS, Han W, Kim IA. B-Cell-Mediated Immunity Predicts Survival of Patients With Estrogen Receptor-Positive Breast Cancer. JCO Precis Oncol 2024; 8:e2300263. [PMID: 38452311 DOI: 10.1200/po.23.00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE The estrogen receptor-positive (ER+) breast cancer (BC), which constitutes the majority of BC cases, exhibits highly heterogeneous clinical behavior. To aid precision treatments, we aimed to find molecular subtypes of ER+ BC representing the tumor microenvironment and prognosis. METHODS We analyzed RNA-seq data of 113 patients with BC and classified them according to the PAM50 intrinsic subtypes using gene expression profiles. Among them, we further focused on 44 patients with luminal-type (ER+) BC for subclassification. The Cancer Genome Atlas (TCGA) data of patients with BC were used as a validation data set to verify the new classification. We estimated the immune cell composition using CIBERSORT and further analyzed its association with clinical or molecular parameters. RESULTS Principal component analysis clearly divided the patients into two subgroups separately from the luminal A and B classification. The top differentially expressed genes between the subgroups were distinctly characterized by immunoglobulin and B-cell-related genes. We could also cluster a separate cohort of patients with luminal-type BC from TCGA into two subgroups on the basis of the expression of a B-cell-specific gene set, and patients who were predicted to have high B-cell immune activity had better prognoses than other patients. CONCLUSION Our transcriptomic approach emphasize a molecular phenotype of B-cell immunity in ER+ BC that may help to predict disease prognosis. Although further researches are required, B-cell immunity for patients with ER+ BC may be helpful for identifying patients who are good responders to chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Hee Kang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Radiation Oncology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Radiation Oncology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Sundi D, Collier KA, Yang Y, Diaz DA, Pohar KS, Singer EA, Gupta S, Carson WE, Clinton SK, Li Z, Messing EM. Roles of Androgen Receptor Signaling in Urothelial Carcinoma. Cancers (Basel) 2024; 16:746. [PMID: 38398136 PMCID: PMC10886823 DOI: 10.3390/cancers16040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Preclinical and clinical data suggest that androgen receptor signaling strongly contributes to bladder cancer development. The roles of the androgen receptor in bladder carcinogenesis have obvious implications for understanding the strong male sex bias in this disease and for potential therapeutic strategies as well. In this review, we summarize what is known about androgen receptor signaling in urothelial carcinoma as well as in tumor-infiltrating immune cells, reviewing preclinical and clinical data. We also highlight clinical trial efforts in this area.
Collapse
Affiliation(s)
- Debasish Sundi
- Department of Urology, Division of Urologic Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Katharine A. Collier
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kamal S. Pohar
- Department of Urology, Division of Urologic Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (E.A.S.)
| | - Eric A. Singer
- Department of Urology, Division of Urologic Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (E.A.S.)
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University School of Medicine, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - William E. Carson
- Department of Surgery, Division of Surgical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steven K. Clinton
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zihai Li
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Edward M. Messing
- Departments of Urology, Oncology, and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Vahidian F, Lamaze FC, Bouffard C, Coulombe F, Gagné A, Blais F, Tonneau M, Orain M, Routy B, Manem VSK, Joubert P. CXCL13 Positive Cells Localization Predict Response to Anti-PD-1/PD-L1 in Pulmonary Non-Small Cell Carcinoma. Cancers (Basel) 2024; 16:708. [PMID: 38398098 PMCID: PMC10887067 DOI: 10.3390/cancers16040708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized non-small cell lung cancers (NSCLCs) treatment, but only 20-30% of patients benefit from these treatments. Currently, PD-L1 expression in tumor cells is the only clinically approved predictor of ICI response in lung cancer, but concerns arise due to its low negative and positive predictive value. Recent studies suggest that CXCL13+ T cells in the tumor microenvironment (TME) may be a good predictor of response. We aimed to assess if CXCL13+ cell localization within the TME can predict ICI response in advanced NSCLC patients. Methods: This retrospective study included 65 advanced NSCLC patients treated with Nivolumab/Pembrolizumab at IUCPQ or CHUM and for whom a pretreatment surgical specimen was available. Good responders were defined as having a complete radiologic response at 1 year, and bad responders were defined as showing cancer progression at 1 year. IHC staining for CXCL13 was carried out on a representative slide from a resection specimen, and CXCL13+ cell density was evaluated in tumor (T), invasive margin (IM), non-tumor (NT), and tertiary lymphoid structure (TLS) compartments. Cox models were used to analyze progression-free survival (PFS) and overall survival (OS) probability, while the Mann-Whitney test was used to compare CXCL13+ cell density between responders and non-responders. Results: We showed that CXCL13+ cell density localization within the TME is associated with ICI efficacy. An increased density of CXCL13+ cells across all compartments was associated with a poorer prognostic (OS; HR = 1.22; 95%CI = 1.04-1.42; p = 0.01, PFS; HR = 1.16; p = 0.02), or a better prognostic when colocalized within TLSs (PFS; HR = 0.84, p = 0.03). Conclusion: Our results support the role of CXCL13+ cells in advanced NSCLC patients, with favorable prognosis when localized within TLSs and unfavorable prognosis when present elsewhere. The concomitant proximity of CXCL13+ and CD20+ cells within TLSs may favor antigen presentation to T cells, thus enhancing the effect of PD-1/PD-L1 axis inhibition. Further validation is warranted to confirm the potential relevance of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Fabien C. Lamaze
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
| | - Cédrik Bouffard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - François Coulombe
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Andréanne Gagné
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Florence Blais
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.T.)
| | - Michèle Orain
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.T.)
| | - Venkata S. K. Manem
- Centre de Recherche du CHU de Québec—Université Laval, Quebec City, QC G1V 4G5, Canada
- Department of Mathematics and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Philippe Joubert
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| |
Collapse
|
48
|
Fu S, Tan Z, Shi H, Chen J, Zhang Y, Guo C, Feng W, Xu H, Wang J, Wang H. Development of a stemness-related prognostic index to provide therapeutic strategies for bladder cancer. NPJ Precis Oncol 2024; 8:14. [PMID: 38245587 PMCID: PMC10799910 DOI: 10.1038/s41698-024-00510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease with varying clinical outcomes. Recent evidence suggests that cancer progression involves the acquisition of stem-like signatures, and assessing stemness indices help uncover patterns of intra-tumor molecular heterogeneity. We used the one-class logistic regression algorithm to compute the mRNAsi for each sample in BLCA cohort. We subsequently classified BC patients into two subtypes based on 189 mRNAsi-related genes, using the unsupervised consensus clustering. Then, we identified nine hub genes to construct a stemness-related prognostic index (SRPI) using Cox regression, LASSO regression and Random Forest methods. We further validated SRPI using two independent datasets. Afterwards, we examined the molecular and immune characterized of SRPI. Finally, we conducted multiply drug screening and experimental approaches to identify and confirm the most proper agents for patients with high SRPI. Based on the mRNAsi-related genes, BC patients were classified into two stemness subtypes with distinct prognosis, functional annotations, genomic variations and immune profiles. Using the SRPI, we identified a specific subgroup of BC patients with high SRPI, who had a poor response to immunotherapy, and were less sensitive to commonly used chemotherapeutic agents, FGFR inhibitors, and EGFR inhibitors. We further identified that dasatinib was the most promising therapeutic agent for this subgroup of patients. This study provides further insights into the stemness classification of BC, and demonstrates that SRPI is a promising tool for predicting prognosis and therapeutic opportunities for BC patients.
Collapse
Affiliation(s)
- Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Hongjin Shi
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Junhao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | | | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Wei Feng
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
49
|
Wang G, Fu J, Liu M, Zheng Q. CXC chemokines: Potential biomarker and immunotherapeutic target for uterine corpus endometrial carcinoma. PLoS One 2024; 19:e0277872. [PMID: 38232115 DOI: 10.1371/journal.pone.0277872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common type of gynecological malignancies. Multiple lines of evidence indicated that CXC chemokines exerted an anti-tumor immunological role in the tumor microenvironment which were critical regulators of cancer immunity. However, the relevance of CXC chemokines in the evaluation of prognosis and immune infiltration of UCEC remains to be explored. This study utilized various online databases, including TCGA, UALCAN, Kaplan-Meier Plotter, cBioPortal, TIMER2.0, TISIDB, and MethSurv to perform the analysis. Gene expression data from the TCGA-UCEC dataset indicated decreased expression of CXCL2/12 and increased expression of CXCL14/17. CXCL2/12 expression was negatively whereas CXCL14/17 expression was positively correlated with clinicopathological features of UCEC patients, including cancer stage, patients' age, weight and menopause status. Patients with higher CXCL12/14 expression corresponded with better clinical outcomes, which were not influenced by the genetic alterations. The differential expression of CXCL2/12/14/17 was not only significantly correlated with immune infiltration levels, but also the abundance of immune checkpoint inhibitors. Heatmaps of DNA methylation of CXCL2/12/14/17 were investigated, and 4 CpGs of CXCL2, 16 CpGs of CXCL12, 3 CpGs of CXCL14/17 were identified where altered methylation affected the prognosis of UCEC patients. These findings provided novel insights into the immunologic features of UCEC and might pave the way toward the prognostic evaluation and immunotherapy selection based on CXCL2/12/14/17 expression status.
Collapse
Affiliation(s)
- Guang Wang
- Department of Dalian Key Laboratory of Reproduction and Mother-child Genetic, Reproductive & Genetic Medicine Center, Dalian Women and Children's Medical Group, Dalian, Liaoning Province, China
| | - Juan Fu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Mulin Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
50
|
Ma F, Wang S, Xu L, Huang W, Shi G, Sun Z, Cai W, Wu Z, Huang Y, Meng J, Sun Y, Fang M, Cheng M, Ji Y, Hu T, Zhang Y, Gu B, Zhang J, Song S, Sun Y, Yan W. Single-cell profiling of the microenvironment in human bone metastatic renal cell carcinoma. Commun Biol 2024; 7:91. [PMID: 38216635 PMCID: PMC10786927 DOI: 10.1038/s42003-024-05772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Bone metastasis is of common occurrence in renal cell carcinoma with poor prognosis, but no optimal treatment approach has been established for bone metastatic renal cell carcinoma. To explore the potential therapeutic targets for bone metastatic renal cell carcinoma, we profile single cell transcriptomes of 6 primary renal cell carcinoma and 9 bone metastatic renal cell carcinoma. We also include scRNA-seq data of early-stage renal cell carcinoma, late-stage renal cell carcinoma, normal kidneys and healthy bone marrow samples in the study to better understand the bone metastasis niche. The molecular properties and dynamic changes of major cell lineages in bone metastatic environment of renal cell carcinoma are characterized. Bone metastatic renal cell carcinoma is associated with multifaceted immune deficiency together with cancer-associated fibroblasts, specifically appearance of macrophages exhibiting malignant and pro-angiogenic features. We also reveal the dominance of immune inhibitory T cells in the bone metastatic renal cell carcinoma which can be partially restored by the treatment. Trajectory analysis showes that myeloid-derived suppressor cells are progenitors of macrophages in the bone metastatic renal cell carcinoma while monocytes are their progenitors in primary tumors and healthy bone marrows. Additionally, the infiltration of immune inhibitory CD47+ T cells is observed in bone metastatic tumors, which may be a result of reduced phagocytosis by SIRPA-expressing macrophages in the bone microenvironment. Together, our results provide a systematic view of various cell types in bone metastatic renal cell carcinoma and suggest avenues for therapeutic solutions.
Collapse
Affiliation(s)
- Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shuoer Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Wending Huang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Guohai Shi
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Weiluo Cai
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Juan Meng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yining Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Meng Fang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Mo Cheng
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yingzheng Ji
- Department of Orthopedic, Naval Medical Center of PLA, Second Military Medical University, 338 Huaihai West Road, Shanghai, China
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yunkui Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China.
| |
Collapse
|