1
|
Zhang KH, Jiao L, Wang Y, Sun SC. Arf6 GTPase deficiency leads to porcine oocyte quality decline during aging. FASEB J 2024; 38:e23739. [PMID: 38884157 DOI: 10.1096/fj.202400893r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
Arf6 is a member of ADP-ribosylation factor (Arf) family, which is widely implicated in the regulation of multiple physiological processes including endocytic recycling, cytoskeletal organization, and membrane trafficking during mitosis. In this study, we investigated the potential relationship between Arf6 and aging-related oocyte quality, and its roles on organelle rearrangement and cytoskeleton dynamics in porcine oocytes. Arf6 expressed in porcine oocytes throughout meiotic maturation, and it decreased in aged oocytes. Disruption of Arf6 led to the failure of cumulus expansion and polar body extrusion. Further analysis indicated that Arf6 modulated ac-tubulin for meiotic spindle organization and microtubule stability. Besides, Arf6 regulated cofilin phosphorylation and fascin for actin assembly, which further affected spindle migration, indicating the roles of Arf6 on cytoskeleton dynamics. Moreover, the lack of Arf6 activity caused the dysfunction of Golgi and ER for protein synthesis and signal transduction. Mitochondrial dysfunction was also observed in Arf6-deficient porcine oocytes, which was supported by the increased ROS level and abnormal membrane potential. In conclusion, our results reported that insufficient Arf6 was related to aging-induced oocyte quality decline through spindle organization, actin assembly, and organelle rearrangement in porcine oocytes.
Collapse
Affiliation(s)
- Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Yang L, Zhang S, Zheng L, Kong F, Pu P, Li X, Jia L. Association of ADP‑ribosylation factor family genes with prognosis and immune infiltration of breast cancer. Oncol Lett 2024; 27:280. [PMID: 38699662 PMCID: PMC11063756 DOI: 10.3892/ol.2024.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer found in women. ADP-ribosylation factors (ARFs) are a group of small proteins that bind to GTP and are involved in controlling different cellular functions. The function and evolution of multiple ARFs in BC have remained to be fully elucidated, despite existing studies on this protein family in Homo sapiens and other species. In the present study, a systematic analysis of ARF expression levels in BC tissues compared to normal breast tissues was performed using data from The Cancer Genome Atlas database. The analysis revealed significantly higher expression of ARFs in BC tissues. In addition, the prognostic significance of ARF1 and ARF3-6 expression levels was assessed in patients with BC. Of note, elevated ARF1 expression was associated with reduced rates of distant metastasis-free survival (DMFS), overall survival (OS) and recurrence-free survival (RFS) in affected individuals. Similarly, patients with high expression levels of ARF3 had lower post-progression survival (PPS) rates. In addition, patients with higher ARF4 expression had worse PPS and patients with high ARF5 expression exhibited lower DMFS. Patients with high ARF6 expression had worse DMFS, OS, RFS and predictive power score values. Furthermore, the expression of ARF was found to be strongly linked to the infiltration of various immune cell types, namely dendritic cells, macrophages, neutrophils, CD8+ T cells and B cells. These significant associations offer a solid foundation for the potential utilization of new therapeutic targets and predictive markers for the treatment of BC.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Lei Zheng
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Pengpeng Pu
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Lining Jia
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| |
Collapse
|
3
|
Li S, Li S, Chen D, Zhao S, Liu C, Zhang R, Chen Y, Guo X, Song X. Case report of a novel mutation in the TNC gene in Chinese patients with nonsyndromic hearing loss. Medicine (Baltimore) 2024; 103:e37702. [PMID: 38640279 PMCID: PMC11029965 DOI: 10.1097/md.0000000000037702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/04/2024] [Indexed: 04/21/2024] Open
Abstract
RATIONALE Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS This includes a young deaf couple and their 2-year-old baby. DIAGNOSES Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES Regular follow-up of family members is ongoing. LESSONS The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.
Collapse
Affiliation(s)
- Shouxia Li
- Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Shurui Li
- Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Dingli Chen
- Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Subin Zhao
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Cairu Liu
- Department of Obstetrics, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Ruimin Zhang
- Department of Neonatology, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Yongxue Chen
- Department of Anesthesiology, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Xiangrui Guo
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xuedong Song
- Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| |
Collapse
|
4
|
Lin H, Deaton CA, Johnson GVW. Commentary: BAG3 as a Mediator of Endosome Function and Tau Clearance. Neuroscience 2023; 518:4-9. [PMID: 35550160 PMCID: PMC9646927 DOI: 10.1016/j.neuroscience.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
Tauopathies are a group of heterogeneous neurodegenerative conditions characterized by the deposition of abnormal tau protein in the brain. The underlying mechanisms that contribute to the accumulation of tau in these neurodegenerative diseases are multifactorial; nonetheless, there is a growing awareness that dysfunction of endosome-lysosome pathways is a pivotal factor. BCL2 associated athanogene 3 (BAG3) is a multidomain protein that plays a key role in maintaining neuronal proteostasis. Further, recent data indicate that BAG3 plays an important role in mediating vacuolar-dependent degradation of tau. Overexpression of BAG3 in a tauopathy mouse model decreased pathological tau levels and alleviated synapse loss. High throughput screens of BAG3 interactors have identified key players in the vacuolar system; these include clathrin and regulators of small GTPases. These findings suggest that BAG3 is an important regulator of endocytic pathways. In this commentary, we discuss the potential mechanisms by which BAG3 regulates the vacuolar system and tau proteostasis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA
| | - Carol A Deaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
6
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
7
|
Zhang N, Hou M, Ma S, Liu Y, Wei W, Chen Z. Novel variants in TBC1D24 associated with epilepsy and deafness: Report of two cases. Int J Dev Neurosci 2020; 81:98-105. [PMID: 33063868 DOI: 10.1002/jdn.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To identify the causative variants in two unrelated Chinese patients presenting with epilepsy and deafness. METHODS The two patients underwent a thorough examination, including brain MRI, EEG and metabolic studies. Next-generation sequencing (NGS) was performed on genomic DNA samples from the siblings and parents. Sanger sequencing was used to confirm the variants. RESULTS Gene sequencing revealed that they carried two novel compound heterozygous missense variants of the TBC1D24: c.116 C > T (p.Ala39Val) and c.827 T > C (p.Ile276Thr) in patient 1; c.404 C > T (p.Pro135Leu) and c.679 T > C (p.Arg227Trp) in patient 2. Audiologic examination showed bilateral sensorineural hearing loss in both patients. CONCLUSION We have found novel variants in the TBC1D24 in two Chinese unrelated patients. They result in a rare phenotype, characterized by drug-resistant epilepsy and deafness.
Collapse
Affiliation(s)
- Na Zhang
- Pediatric Department, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Mei Hou
- Pediatric Department, the Qingdao Women & Children Hospital, Qingdao, P.R. China
| | - Shaochun Ma
- Pediatric Department, the Qingdao Women & Children Hospital, Qingdao, P.R. China
| | - Yedan Liu
- Pediatric Department, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Wei Wei
- Kangso Medical Inspection Co., Ltd, Beijing, P.R. China
| | - Zongbo Chen
- Pediatric Department, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
8
|
Petersen A, Brown JC, Gerges NZ. BRAG1/IQSEC2 as a regulator of small GTPase-dependent trafficking. Small GTPases 2020; 11:1-7. [PMID: 29363391 PMCID: PMC6959296 DOI: 10.1080/21541248.2017.1361898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022] Open
Abstract
Precise trafficking events, such as those that underlie synaptic transmission and plasticity, require complex regulation. G-protein signaling plays an essential role in the regulation of membrane and protein trafficking. However, it is not well understood how small GTPases and their regulatory proteins coordinate such specific events. Our recent publication focused on a highly abundant synaptic GEF, BRAG1, whose physiologic relevance was unknown. We find that BRAG1s GEF activity is required for activity-dependent trafficking of AMPARs. Moreover, BRAG1 bidirectionally regulates synaptic transmission in a manner independent of this activity. In addition to the GEF domain, BRAG1 contains several functional domains whose roles are not yet understood but may mediate protein-protein interactions and regulatory effects necessary for its role in regulation of AMPAR trafficking. In this commentary, we explore the potential for BRAG1 to provide specificity of small GTPase signaling, coordinating activity-dependent activation of small GTPase activity with signaling and scaffolding molecules involved in trafficking through its GEF activity and other functional domains.
Collapse
Affiliation(s)
- Amber Petersen
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joshua C. Brown
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Nashaat Z. Gerges
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biopharmaceutical Sciences, School of Pharmacy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Rogers EJ, Jada R, Schragenheim-Rozales K, Sah M, Cortes M, Florence M, Levy NS, Moss R, Walikonis RS, Palty R, Shalgi R, Lichtman D, Kavushansky A, Gerges NZ, Kahn I, Umanah GKE, Levy AP. An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors. Front Mol Neurosci 2019; 12:43. [PMID: 30842726 PMCID: PMC6391579 DOI: 10.3389/fnmol.2019.00043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.
Collapse
Affiliation(s)
- Eli J Rogers
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reem Jada
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | | | - Megha Sah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Marisol Cortes
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Matthew Florence
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nina S Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Rachel Moss
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Raz Palty
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reut Shalgi
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Daniela Lichtman
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nashaat Z Gerges
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Itamar Kahn
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - George K E Umanah
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Früh S, Tyagarajan SK, Campbell B, Bosshard G, Fritschy JM. The catalytic function of the gephyrin-binding protein IQSEC3 regulates neurotransmitter-specific matching of pre- and post-synaptic structures in primary hippocampal cultures. J Neurochem 2018; 147:477-494. [DOI: 10.1111/jnc.14572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Früh
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| | - Benjamin Campbell
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| |
Collapse
|
11
|
Neurotrophin Responsiveness of Sympathetic Neurons Is Regulated by Rapid Mobilization of the p75 Receptor to the Cell Surface through TrkA Activation of Arf6. J Neurosci 2018; 38:5606-5619. [PMID: 29789375 DOI: 10.1523/jneurosci.0788-16.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/24/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is upregulated, resulting in formation of TrkA-p75 complexes, which are high-affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 guanine nucleotide exchange factors. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth, whereas the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system.SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface availability may provide insight into how and why neurodegenerative processes manifest and reveal new therapeutic targets. Results from this study indicate a novel mechanism by which p75NTR can be rapidly shuttled to the cell surface from existing intracellular pools and explores a unique pathway by which NGF regulates the sympathetic innervation of target tissues, which has profound consequences for the function of these organs.
Collapse
|
12
|
Li W, Tam KMV, Chan WWR, Koon AC, Ngo JCK, Chan HYE, Lau KF. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1. J Biol Chem 2018; 293:7674-7688. [PMID: 29615491 DOI: 10.1074/jbc.ra117.000505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.
Collapse
Affiliation(s)
- Wen Li
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Ka Ming Vincent Tam
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Wai Wa Ray Chan
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Alex Chun Koon
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Jacky Chi Ki Ngo
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Ho Yin Edwin Chan
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Kwok-Fai Lau
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| |
Collapse
|
13
|
Nakayama K, Ohashi R, Shinoda Y, Yamazaki M, Abe M, Fujikawa A, Shigenobu S, Futatsugi A, Noda M, Mikoshiba K, Furuichi T, Sakimura K, Shiina N. RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation. eLife 2017; 6. [PMID: 29157358 PMCID: PMC5697933 DOI: 10.7554/elife.29677] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022] Open
Abstract
Local regulation of synaptic efficacy is thought to be important for proper networking of neurons and memory formation. Dysregulation of global translation influences long-term memory in mice, but the relevance of the regulation specific for local translation by RNA granules remains elusive. Here, we demonstrate roles of RNG105/caprin1 in long-term memory formation. RNG105 deletion in mice impaired synaptic strength and structural plasticity in hippocampal neurons. Furthermore, RNG105-deficient mice displayed unprecedentedly severe defects in long-term memory formation in spatial and contextual learning tasks. Genome-wide profiling of mRNA distribution in the hippocampus revealed an underlying mechanism: RNG105 deficiency impaired the asymmetric somato-dendritic localization of mRNAs. Particularly, RNG105 deficiency reduced the dendritic localization of mRNAs encoding regulators of AMPAR surface expression, which was consistent with attenuated homeostatic AMPAR scaling in dendrites and reduced synaptic strength. Thus, RNG105 has an essential role, as a key regulator of dendritic mRNA localization, in long-term memory formation. Messages pass from one nerve cell to the next across gaps called synapses. The first neuron releases chemical signals from the end of its long, thin nerve fiber. The second receives the message at receptors on branching structures known as dendrites. Each connection has a corresponding bump called a dendritic spine. As animals learn, these can grow larger, strengthening the connection. This is the basis of how memories form. To strengthen a synapse, the cell must transport the materials to the dendritic spine. The cell makes copies of the genetic instructions to strengthen the synapse in the form of messenger RNA (often shortened to mRNA). But, this happens in the body of the cell, a long way from the dendrites themselves. The mRNA travels from the cell body to the dendrites in collections of molecules referred to as ‘RNA granules’. One of the key components of the RNA granule system is a protein called RNG105/caprin1. Now, Nakayama, Ohashi et al. have engineered mice to delete the gene for RNG105/caprin1, revealing its effect on memory. Mice lacking RNG105/caprin1 struggled to make long-term memories. Unlike their normal counterparts, these mutant mice did not become accustomed to new environments or objects. They also found it more challenging to learn the position of a hidden platform in a water-based maze. Lastly, over time, the mutant mice forgot to be fearful of a dark chamber where they had received a small electric shock. Memories form in a part of the brain called the hippocampus and the dendritic spines in this region were smaller in mice lacking RNG105/caprin1. Furthermore, when the nerve cells from this part of the brain were grown in Petri dishes, they did not respond normally to stimulation. The dendritic spines of normal cells increased in size, but those on the cells lacking RNG105/caprin1 got smaller compared to normal cells. A closer look revealed that the distribution of mRNA in brain cells from mice lacking RNG105/caprin1 differed from that of normal mice. Some pieces of genetic information failed to make it from the cell body to the dendrites. This included mRNA involved in making regulators of a component of dendritic spines called the AMPA receptor. The AMPA receptor detects the chemical messenger, glutamate, and is crucial for memory formation. These findings further our understanding of long-term memory and open the way for future research into human disease. Mutations in RNA granule components, including RNG105/caprin1, have links to conditions such as amyotrophic lateral sclerosis (ALS) and autism spectrum disorder (ASD). Further investigation could reveal new targets for drug treatment.
Collapse
Affiliation(s)
- Kei Nakayama
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Yo Shinoda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Akira Futatsugi
- Department of Basic Medical Science, Kobe City College of Nursing, Hyogo, Japan
| | - Masaharu Noda
- Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Wako, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| |
Collapse
|
14
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Ni Q, Yu X, Xu J. ARF6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Lett 2017; 388:303-311. [DOI: 10.1016/j.canlet.2016.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
15
|
Jang DJ, Jun YW, Shim J, Sim SE, Lee JA, Lim CS, Kaang BK. Activation of Aplysia ARF6 induces neurite outgrowth and is sequestered by the overexpression of the PH domain of Aplysia Sec7 proteins. Neurobiol Learn Mem 2017; 138:31-38. [DOI: 10.1016/j.nlm.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
16
|
Milanini J, Fayad R, Partisani M, Lecine P, Borg JP, Franco M, Luton F. EFA6 regulates lumen formation through alpha-actinin 1. J Cell Sci 2017; 131:jcs.209361. [DOI: 10.1242/jcs.209361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
A key step of epithelial morphogenesis is the creation of the lumen. Luminogenesis by hollowing proceeds through the fusion of apical vesicles at cell-cell contact. The small nascent lumens grow through extension, coalescence and enlargement coordinated with cell division to give rise to a single central lumen. Here, using MDCK cells grown in 3D-culture, we show that EFA6A participates in luminogenesis. EFA6A recruits α-actinin 1 (ACTN1) through direct binding. In polarized cells, ACTN1 was found to be enriched at the tight junction where it acts as a primary effector of EFA6A for normal luminogenesis. Both proteins are essential for the lumen extension and enlargement, where they mediate their effect by regulating the cortical acto-myosin contractility. Finally, ACTN1 was also found to act as an effector for the isoform EFA6B in the human mammary tumoral MCF7 cell line. EFA6B restored the glandular morphology of this tumoral cell line in an ACTN1-dependent manner. Thus, we identified new regulators of cyst luminogenesis essential for the proper maturation of a newly-formed lumen into a single central lumen.
Collapse
Affiliation(s)
- Julie Milanini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Racha Fayad
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariagrazia Partisani
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Patrick Lecine
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
- present address: BIOASTER, Lyon, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
| | - Michel Franco
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Frédéric Luton
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
17
|
Marquer C, Tian H, Yi J, Bastien J, Dall'Armi C, Yang-Klingler Y, Zhou B, Chan RB, Di Paolo G. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun 2016; 7:11919. [PMID: 27336679 PMCID: PMC4931008 DOI: 10.1038/ncomms11919] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/12/2016] [Indexed: 12/29/2022] Open
Abstract
Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann-Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer.
Collapse
Affiliation(s)
- Catherine Marquer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Huasong Tian
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Jayson Bastien
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Claudia Dall'Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - YoungJoo Yang-Klingler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| |
Collapse
|
18
|
Wang L, Li H, Zhou Y, Qin Y, Wang Y, Liu B, Qian H. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius. Can J Microbiol 2016; 62:383-93. [PMID: 26928195 DOI: 10.1139/cjm-2015-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation.
Collapse
Affiliation(s)
- Liling Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Haibo Li
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yifeng Zhou
- b Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuchuan Qin
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yanbin Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Bentong Liu
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Hua Qian
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| |
Collapse
|
19
|
Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 2016; 7:47-53. [PMID: 26909552 PMCID: PMC4905277 DOI: 10.1080/21541248.2016.1154640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although several lines of evidence have shown that the small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in cancer progression of several types of cancers, little is known about the functions of Arf6 in tumor microenvironment. We demonstrated that Arf6 in vascular endothelial cells (VECs) plays a crucial role in tumor angiogenesis and growth using endothelial cell-specific Arf6 conditional knockout mice into which B16 melanoma and Lewis lung carcinoma cells were implanted. It was also found that Arf6 in VECs positively regulates hepatocyte growth factor (HGF)-induced β1 integrin recycling, which is a critical event for tumor angiogenesis by promoting cell migration. Importantly, pharmacological inhibition of HGF-induced Arf6 activation significantly suppresses tumor angiogenesis and growth in mice, suggesting that Arf6 signaling would be a potential target for anti-angiogenic therapy. In this manuscript, we summarize the multiple roles of Arf6 in cancer progression, particularly in cancer cell invasion/metastasis and our recent findings on tumor angiogenesis, and discuss a possible approach to develop innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Tsunaki Hongu
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yohei Yamauchi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yuji Funakoshi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Naohiro Katagiri
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Norihiko Ohbayashi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yasunori Kanaho
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
20
|
Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. eLife 2016; 5. [PMID: 26731518 PMCID: PMC4764570 DOI: 10.7554/elife.10116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/04/2016] [Indexed: 01/29/2023] Open
Abstract
Recycling of synaptic vesicles (SVs) is a fundamental step in the process of neurotransmission. Endocytosed SV can travel directly into the recycling pool or recycle through endosomes but little is known about the molecular actors regulating the switch between these SV recycling routes. ADP ribosylation factor 6 (Arf6) is a small GTPase known to participate in constitutive trafficking between plasma membrane and early endosomes. Here, we have morphologically and functionally investigated Arf6-silenced hippocampal synapses and found an activity dependent accumulation of synaptic endosome-like organelles and increased release-competent docked SVs. These features were phenocopied by pharmacological blockage of Arf6 activation. The data reveal an unexpected role for this small GTPase in reducing the size of the readily releasable pool of SVs and in channeling retrieved SVs toward direct recycling rather than endosomal sorting. We propose that Arf6 acts at the presynapse to define the fate of an endocytosed SV. DOI:http://dx.doi.org/10.7554/eLife.10116.001 Communication between neurons takes place at cell-to-cell contacts called synapses. Each synapse is formed between one neuron that sends the message, and another neuron that receives it. The neuron before the synapse – called the presynaptic neuron – contains packets called synaptic vesicles, which are full of chemical messengers ready to be released upon activity. Accurate communication between neurons relies on the exact composition, and organized trafficking, of the synaptic vesicles when the neuron is active. Synapses also contain bigger structures, called endosomal structures, which may represent an intermediate station in which synaptic vesicle composition is controlled. However, the trafficking of synaptic vesicles through the endosomal structures is poorly understood. Now, Tagliatti, Fadda et al. have revealed that a protein called Arf6 plays an important role in presynaptic neurons. The experiments involved rat neurons grown in the laboratory, and showed that Arf6 controls both the number of synaptic vesicles ready to be released and the trafficking of synaptic vesicles via endosomal structures in active neurons. The next step following on from these findings is to understand how Arf6 exerts its effects and how this protein is regulated in the presynaptic neuron. DOI:http://dx.doi.org/10.7554/eLife.10116.002
Collapse
Affiliation(s)
- Erica Tagliatti
- Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Antonio Falace
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Anna Fassio
- Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
21
|
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays important roles in membrane dynamics-based neuronal cell events such as neurite outgrowth and spine formation. However, physiological functions of Arf6 in the nervous system at whole animal level have not yet been explored. We have recently generated conditional knockout mice lacking Arf6 in neurons or oligodendrocytes of central nervous system (CNS) or both cell lineages, and analyzed them. We found that ablation of Arf6 gene from neurons, but not from oligodendrocytes, caused the defect in axon myelination at the fimbria of hippocampus (Fim) and corpus callosum (CC). We also found that migration of oligodendrocyte precursor cells (OPCs) from the subventricular zone to the Fim and CC in mice lacking Arf6 in neurons was impaired. Finally, it was found that secretion of fibroblast growth factor-2 (FGF-2), a guidance factor for OPC migration, from hippocampi lacking Arf6 was impaired. Collectively, these findings demonstrate that Arf6 in neurons of the CNS plays an important role in OPC migration by regulating secretion of FGF-2 from neurons, thereby contributing to the axon myelination. Here, we discuss our current understanding of physiological functions of Arf6 in the nervous system.
Collapse
Affiliation(s)
- Masahiro Akiyama
- a Faculty of Medicine and Graduate School of Comprehensive Human Sciences; Department of Physiological Chemistry ; University of Tsukuba ; Tennodai, Tsukuba , Japan
| | | |
Collapse
|
22
|
Tang W, Tam JHK, Seah C, Chiu J, Tyrer A, Cregan SP, Meakin SO, Pasternak SH. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes. Mol Brain 2015; 8:41. [PMID: 26170135 PMCID: PMC4501290 DOI: 10.1186/s13041-015-0129-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/11/2015] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β − and γ − secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer’s disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.
Collapse
Affiliation(s)
- Weihao Tang
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Joshua H K Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada.
| | - Justin Chiu
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Andrea Tyrer
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Sean P Cregan
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Susan O Meakin
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Biochemistry, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Clinical Neurological Sciences, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
23
|
Zhang J, Wang J, Zhou YF, Ren XY, Lin MM, Zhang QQ, Wang YH, Li X. Rich1 negatively regulates the epithelial cell cycle, proliferation and adhesion by CDC42/RAC1-PAK1-Erk1/2 pathway. Cell Signal 2015; 27:1703-12. [PMID: 26004135 DOI: 10.1016/j.cellsig.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Rich1, a previously identified Rho GTPase-activating protein (RhoGAP), was found to have close relationship with Rho GTPase family members in multiple cellular processes in nervous cells and platelets. But the exact role of Rich1 in epithelial cells remains obscure. The present investigation demonstrated that up-regulation of Rich1 could cause S-phase arrest, proliferation inhibition and adhesion decline with F-actin amount decrease in epithelial cells. Further exploration in hepatocyte HL7702 revealed that overexpression of Rich1 could greatly elevate the intrinsic GTPase activities on both of CDC42 and RAC1 by stimulating GTP hydrolysis, which consequently attenuated the activities of the Rho proteins and the phosphorylation level of those in PAK1-ERK1/2 signaling cascade. While the GAP domain deleted Rich1 variant or silence of endogenous Rich1 expression could not result in any of the biological effects. It is indicated that Rich1, completely different from in other types of cells, might act as a crucial upstream negative regulator via its GAP domain in control of epithelial cell cycle, proliferation and focal adhesion through CDC42/RAC1-PAK1-ERK1/2 signaling pathway and F-actin dynamics.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China.
| | - Juan Wang
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China
| | - Yun-Fei Zhou
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China
| | - Xue-Yi Ren
- Chongqing Institute for Food and Drug Control, Chongqing 4001121, China
| | - Ming-Ming Lin
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China
| | - Qian-Qing Zhang
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China
| | - Yun-Hong Wang
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China
| | - Xin Li
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
25
|
Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil–DNA glycosylase impair learning in a mouse model of vascular cognitive impairment. Behav Brain Res 2015; 283:215-26. [DOI: 10.1016/j.bbr.2015.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/30/2022]
|
26
|
Kim Y, Lee SE, Park J, Kim M, Lee B, Hwang D, Chang S. ADP-ribosylation factor 6 (ARF6) bidirectionally regulates dendritic spine formation depending on neuronal maturation and activity. J Biol Chem 2015; 290:7323-35. [PMID: 25605715 DOI: 10.1074/jbc.m114.634527] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies have reported conflicting results regarding the role of ARF6 in dendritic spine development, but no clear answer for the controversy has been suggested. We found that ADP-ribosylation factor 6 (ARF6) either positively or negatively regulates dendritic spine formation depending on neuronal maturation and activity. ARF6 activation increased the spine formation in developing neurons, whereas it decreased spine density in mature neurons. Genome-wide microarray analysis revealed that ARF6 activation in each stage leads to opposite patterns of expression of a subset of genes that are involved in neuronal morphology. ARF6-mediated Rac1 activation via the phospholipase D pathway is the coincident factor in both stages, but the antagonistic RhoA pathway becomes involved in the mature stage. Furthermore, blocking neuronal activity in developing neurons using tetrodotoxin or enhancing the activity in mature neurons using picrotoxin or chemical long term potentiation reversed the effect of ARF6 on each stage. Thus, activity-dependent dynamic changes in ARF6-mediated spine structures may play a role in structural plasticity of mature neurons.
Collapse
Affiliation(s)
- Yoonju Kim
- From the Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Medical Research Center, Biomembrane Plasticity Research Center, and
| | - Sang-Eun Lee
- From the Department of Physiology and Biomedical Sciences, Biomembrane Plasticity Research Center, and
| | - Joohyun Park
- From the Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Medical Research Center, Biomembrane Plasticity Research Center, and
| | - Minhyung Kim
- School of Interdisciplinary Bioscience and Bioengineering and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea, and
| | - Boyoon Lee
- Interdisciplinary Program in Neuroscience, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea, and Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | - Sunghoe Chang
- From the Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Medical Research Center, Biomembrane Plasticity Research Center, and Interdisciplinary Program in Neuroscience, Seoul National University College of Medicine, Seoul 110-799, South Korea,
| |
Collapse
|
27
|
A syndrome of congenital microcephaly, intellectual disability and dysmorphism with a homozygous mutation in FRMD4A. Eur J Hum Genet 2014; 23:1729-34. [PMID: 25388005 DOI: 10.1038/ejhg.2014.241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/13/2014] [Accepted: 09/30/2014] [Indexed: 11/08/2022] Open
Abstract
A consanguineous Bedouin Israeli kindred presented with a novel autosomal recessive intellectual disability syndrome of congenital microcephaly, low anterior hairline, bitemporal narrowing, low-set protruding ears, strabismus and tented thick eyebrows with sparse hair in their medial segment. Brain imaging demonstrated various degrees of agenesis of corpus callosum and hypoplasia of the vermis and cerebellum. Genome-wide linkage analysis followed by fine mapping defined a 7.67 Mb disease-associated locus (LOD score 4.99 at θ=0 for marker D10S1653). Sequencing of the 48 genes within the locus identified a single non-synonymous homozygous duplication frameshift mutation of 13 nucleotides (c.2134_2146dup13) within the coding region of FRMD4A, that was common to all affected individuals and not found in 180 non-related Bedouin controls. Three of 50 remotely related healthy controls of the same tribe were heterozygous for the mutation. FRMD4A, member of the FERM superfamily, is involved in cell structure, transport and signaling. It regulates cell polarity by playing an important role in the activation of ARF6, mediating the interaction between Par3 and the ARF6 guanine nucleotide exchange factor. ARF6 is known to modulate cell polarity in neurons, and regulates dendritic branching in hippocampal neurons and neurite outgrowth. The FRMD4 domain that is essential for determining cell polarity through interaction with Par3 is truncated by the c.2134_2146dup13 mutation. FRMD4A polymorphisms were recently suggested to be a risk factor for Alzheimer's disease. We now show a homozygous frameshift mutation of the same gene in a severe neurologic syndrome with unique dysmorphism.
Collapse
|
28
|
Shoubridge C, Walikonis RS, Gécz J, Harvey RJ. Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability. Small GTPases 2014; 1:98-103. [PMID: 21686261 DOI: 10.4161/sgtp.1.2.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/19/2022] Open
Abstract
Mutations in IQSEC2, a guanine nucleotide exchange factor for the ADP-ribosylation factor (Arf) family of small GTPases have recently been shown to cause non-syndromic X-linked intellectual disability (ID), characterised by substantial limitations in intellectual functioning and adaptive behaviour. This discovery was revealed by a combination of large-scale resequencing of the X chromosome, and key functional assays that revealed a reduction, but not elimination, of IQSEC2 GEF activity for mutations affecting conserved amino acids in the IQ-like and Sec7 domains. Compromised GTP binding activity of IQSEC2 leading to reduced activation of selected Arf substrates (Arf1, Arf6) is expected to impact on cytoskeletal organization, dendritic spine morphology and synaptic organisation. This study highlights the need for further investigation of the IQSEC gene family and Arf GTPases in neuronal morphology and synaptic function, and suggests that the genes encoding the ArfGEFs IQSEC1 and IQSEC3 should be considered as candidates for screening in autosomal ID.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Genetics and Molecular Pathology; SA Pathology; The University of Adelaide; Adelaide, Australia
| | | | | | | |
Collapse
|
29
|
Torii T, Miyamoto Y, Tago K, Sango K, Nakamura K, Sanbe A, Tanoue A, Yamauchi J. Arf6 guanine nucleotide exchange factor cytohesin-2 binds to CCDC120 and is transported along neurites to mediate neurite growth. J Biol Chem 2014; 289:33887-903. [PMID: 25326380 DOI: 10.1074/jbc.m114.575787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.
Collapse
Affiliation(s)
- Tomohiro Torii
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535,
| | - Yuki Miyamoto
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Kenji Tago
- the Graduate School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Kazunori Sango
- the Amyotrophic Lateral Sclerosis/Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506
| | - Kazuaki Nakamura
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Atsushi Sanbe
- the School of Pharmacy, Iwate Medical University, Morioka, Iwate 020-0023, and
| | - Akito Tanoue
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Junji Yamauchi
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, the Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
30
|
Trans-regulation of oligodendrocyte myelination by neurons through small GTPase Arf6-regulated secretion of fibroblast growth factor-2. Nat Commun 2014; 5:4744. [PMID: 25144208 DOI: 10.1038/ncomms5744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Abstract
The small G protein ADP-ribosylation factor 6 (Arf6) plays important roles in a wide variety of membrane dynamics-based cellular events such as neurite outgrowth and spine formation in vitro. However, little is known about physiological function of Arf6 in vivo. Here we generate conditional knockout mice lacking Arf6 in neurons, oligodendrocytes, or both cell lineages, and unexpectedly find that Arf6 expression in neurons, but not in oligodendrocytes, is crucial for oligodendrocyte myelination in the hippocampal fimbria and the corpus callosum during development, and that this is through the regulation of secretion of fibroblast growth factor-2, a guidance factor for migration of oligodendrocyte precursor cells (OPCs). These results suggest that Arf6 in neurons plays an important role in OPC migration through regulation of FGF-2 secretion during neuronal development.
Collapse
|
31
|
Homma M, Nagashima S, Fukuda T, Yanagi S, Miyakawa H, Suzuki E, Morimoto T. Downregulation of Centaurin gamma1A increases synaptic transmission at Drosophila larval neuromuscular junctions. Eur J Neurosci 2014; 40:3158-70. [PMID: 25074496 DOI: 10.1111/ejn.12681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
Abstract
Adequate regulation of synaptic transmission is critical for appropriate neural circuit functioning. Although a number of molecules involved in synaptic neurotransmission have been identified, the molecular mechanisms regulating neurotransmission are not fully understood. Here, we focused on Centaurin gamma1A (CenG1A) and examined its role in synaptic transmission regulation using Drosophila larval neuromuscular junctions. CenG1A is a member of the Centaurin family, which contains Pleckstrin homology, ADP ribosylation factor GTPase-activating protein, and ankyrin repeat domains. Due to the existence of these functional domains, CenG1A is proposed to be involved in the process of synaptic release; however, no evidence for this has been found to date. In this study, we investigated the potential role for CenG1A in the process of synaptic release by performing intracellular recordings in larval muscle cells. We found that neurotransmitter release from presynaptic cells was enhanced in cenG1A mutants. This effect was also observed in larvae with reduced CenG1A function in either presynaptic or postsynaptic cells. In addition, we revealed that suppressing CenG1A function in postsynaptic muscle cells led to an increase in the probability of neurotransmitter release, whereas its suppression in presynaptic neurons led to an increase in neurotransmitter release probability and an increase in the number of synaptic vesicles. These results suggested that CenG1A functions at both presynaptic and postsynaptic sites as a negative regulator of neurotransmitter release. Our study provided evidence for a key role of CenG1A in proper synaptic transmission at neuromuscular junctions.
Collapse
Affiliation(s)
- Mizuho Homma
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachiouji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C. Rab-mediated trafficking role in neurite formation. J Neurochem 2014; 129:240-8. [PMID: 24517494 DOI: 10.1111/jnc.12676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 01/04/2023]
Abstract
Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
33
|
Butt GF, Habib A, Mahgoub K, Sofela A, Tilley M, Guo L, Cordeiro MF. Optic nerve regeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Cheung HNM, Dunbar C, Mórotz GM, Cheng WH, Chan HYE, Miller CCJ, Lau KF. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J 2013; 28:337-49. [PMID: 24056087 DOI: 10.1096/fj.13-232694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.
Collapse
Affiliation(s)
- Hei Nga Maggie Cheung
- 1School of Life Sciences, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Armbrecht HJ, Siddiqui AM, Green M, Farr SA, Kumar VB, Banks WA, Patrick P, Shah GN, Morley JE. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways. Neurobiol Aging 2013; 35:159-68. [PMID: 23969180 DOI: 10.1016/j.neurobiolaging.2013.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.
Collapse
Affiliation(s)
- Harvey J Armbrecht
- Geriatric Research, Education and Clinical Center (GRECC), St Louis Veterans Affairs Medical Center, St Louis, MO, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO, USA; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Milh M, Falace A, Villeneuve N, Vanni N, Cacciagli P, Assereto S, Nabbout R, Benfenati F, Zara F, Chabrol B, Villard L, Fassio A. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat 2013; 34:869-72. [PMID: 23526554 DOI: 10.1002/humu.22318] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/07/2013] [Indexed: 11/08/2022]
Abstract
Early-onset epileptic encephalopathies (EOEEs) are a group of rare devastating epileptic syndromes of infancy characterized by severe drug-resistant seizures and electroencephalographic abnormalities. The current study aims to determine the genetic etiology of a familial form of EOEE fulfilling the diagnosis criteria for malignant migrating partial seizures of infancy (MMPSI). We identified two inherited novel mutations in TBC1D24 in two affected siblings. Mutations severely impaired TBC1D24 expression and function, which is critical for maturation of neuronal circuits. The screening of TBC1D24 in an additional set of eight MMPSI patients was negative. TBC1D24 loss of function has been associated to idiopathic infantile myoclonic epilepsy, as well as to drug-resistant early-onset epilepsy with intellectual disability. Here, we describe a familial form of MMPSI due to mutation in TBC1D24, revealing a devastating epileptic phenotype associated with TBC1D24 dysfunction.
Collapse
|
37
|
Li L, Ståhlman M, Rutberg M, Håversen L, Fogelstrand P, Andersson L, Levin M, Borén J. ARF6 regulates neuron differentiation through glucosylceramide synthase. PLoS One 2013; 8:e60118. [PMID: 23555901 PMCID: PMC3610931 DOI: 10.1371/journal.pone.0060118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/21/2013] [Indexed: 01/09/2023] Open
Abstract
The small GTPase ADP ribosylation factor 6 (ARF6) mediates endocytosis and has in addition been shown to regulate neuron differentiation. Here we investigated whether ARF6 promotes differentiation of Neuro-2a neuronal cells by modifying the cellular lipid composition. We showed that knockdown of ARF6 by siRNA in Neuro-2a cells increased neuronal outgrowth as expected. ARF6 knockdown also resulted in increased glucosylceramide levels and decreased sphingomyelin levels, but did not affect the levels of ceramide or phospholipids. We speculated that the ARF6 knockdown-induced increase in glucosylceramide was caused by an effect on glucosylceramide synthase and, in agreement, showed that ARF6 knockdown increased the mRNA levels and activity of glucosylceramide synthase. Finally, we showed that incubation of Neuro-2a cells with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) normalized the increased neuronal outgrowth induced by ARF6 knockdown. Our results thus show that ARF6 regulates neuronal differentiation through an effect on glucosylceramide synthase and glucosylceramide levels.
Collapse
Affiliation(s)
- Lu Li
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mikael Rutberg
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Liliana Håversen
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Linda Andersson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Levin
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
38
|
Rothenfluh A, Cowan CW. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin'? Curr Opin Neurobiol 2013; 23:507-12. [PMID: 23428655 DOI: 10.1016/j.conb.2013.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of drug exposure, or homeostatic reactions to the chronic exposure to drugs of abuse? Here we will review recent advances in understanding the role of the cytoskeleton in the development of drug addiction, with a focus on actin filaments, as they have been studied in greater detail.
Collapse
Affiliation(s)
- Adrian Rothenfluh
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| | | |
Collapse
|
39
|
Abstract
Genetic causes of intellectual disability (ID) include mutations in proteins with various functions. However, many of these proteins are enriched in synapses and recent investigations point out their crucial role in the subtle regulation of synaptic activity and dendritic spine morphogenesis. Moreover, in addition to genetic data, functional and animal model studies are providing compelling evidence that supports the emerging unifying synapse-based theory for cognitive deficit. In this review, we highlight ID-related gene products involved in synaptic morphogenesis and function, with a particular focus on the emergent signaling pathways involved in synaptic plasticity whose disruption results in cognitive deficit.
Collapse
|
40
|
Blaise M, Alsarraf HMAB, Wong JEMM, Midtgaard SR, Laroche F, Schack L, Spaink H, Stougaard J, Thirup S. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish. Proteins 2012; 80:1694-8. [PMID: 22434723 DOI: 10.1002/prot.24050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 11/10/2022]
Abstract
The oxidation resistance proteins (OXR) help to protect eukaryotes from reactive oxygen species. The sole C-terminal domain of the OXR, named TLDc is sufficient to perform this function. However, the mechanism by which oxidation resistance occurs is poorly understood. We present here the crystal structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices. The fold shares low structural similarity to known structures.
Collapse
Affiliation(s)
- Mickaël Blaise
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kobayashi H, Fukuda M. Rab35 regulates Arf6 activity through centaurin-β2 (ACAP2) during neurite outgrowth. J Cell Sci 2012; 125:2235-43. [PMID: 22344257 DOI: 10.1242/jcs.098657] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Two small GTPases, Rab and Arf, are well-known molecular switches that function in diverse membrane-trafficking routes in a coordinated manner; however, very little is known about the direct crosstalk between Rab and Arf. Although Rab35 and Arf6 were independently reported to regulate the same cellular events, including endocytic recycling, phagocytosis, cytokinesis and neurite outgrowth, the molecular basis that links them remains largely unknown. Here we show that centaurin-β2 (also known as ACAP2) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. We found that Rab35 accumulates at Arf6-positive endosomes in response to nerve growth factor (NGF) stimulation and that centaurin-β2 is recruited to the same compartment in a Rab35-dependent manner. We further showed by knockdown and rescue experiments that after the Rab35-dependent recruitment of centaurin-β2, the Arf6-GAP activity of centaurin-β2 at the Arf6-positive endosomes was indispensable for NGF-induced neurite outgrowth. These findings suggest a novel mode of crosstalk between Rab and Arf: a Rab effector and Arf-GAP coupling mechanism, in which Arf-GAP is recruited to a specific membrane compartment by its Rab effector function.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | |
Collapse
|
42
|
Johnson RI, Sedgwick A, D'Souza-Schorey C, Cagan RL. Role for a Cindr-Arf6 axis in patterning emerging epithelia. Mol Biol Cell 2011; 22:4513-26. [PMID: 21976699 PMCID: PMC3226471 DOI: 10.1091/mbc.e11-04-0305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fly pupal eye is used to explore dArf6 activity regulated by the Arf GTPase–activating proteins (ArfGAPs) dAsap and dArfGAP3 and Arf GTP exchange factors Schizo and dPsd, which promote cellular extensions that presage cell rearrangements. The adaptor protein Cindr bound to dArfGAP3 and dAsap to sequester ArfGAP function to Neph1/nephrin adhesion complexes, liberating active dArf6 elsewhere. Patterning of the Drosophila pupal eye is characterized by precise cell movements. In this paper, we demonstrate that these movements require an Arf regulatory cycle that connects surface receptors to actin-based movement. dArf6 activity—regulated by the Arf GTPase–activating proteins (ArfGAPs) dAsap and dArfGAP3 and the Arf GTP exchange factors Schizo and dPsd—promoted large cellular extensions; time-lapse microscopy indicated that these extensions presage cell rearrangements into correct epithelial niches. During this process, the Drosophila eye also requires interactions between surface Neph1/nephrin adhesion receptors Roughest and Hibris, which bind the adaptor protein Cindr (CD2AP). We provide evidence that Cindr forms a physical complex with dArfGAP3 and dAsap. Our data suggest this interaction sequesters ArfGAP function to liberate active dArf6 elsewhere in the cell. We propose that a Neph1/nephrin–Cindr/ArfGAP complex accumulates to limit local Arf6 activity and stabilize adherens junctions. Our model therefore links surface adhesion via an Arf6 regulatory cascade to dynamic modeling of the cytoskeleton, accounting for precise cell movements that organize the functional retinal field. Further, we demonstrate a similar relationship between the mammalian Cindr orthologue CD2AP and Arf6 activity in cell motility assays. We propose that this Cindr/CD2AP-mediated regulation of Arf6 is a widely used mechanism in emerging epithelia.
Collapse
Affiliation(s)
- Ruth I Johnson
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
43
|
ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 2011; 108:E559-68. [PMID: 21825135 DOI: 10.1073/pnas.1100745108] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) peptides, the primary constituents of senile plaques and a hallmark in Alzheimer's disease pathology, are generated through the sequential cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. The early endosome is thought to represent a major compartment for APP processing; however, the mechanisms of how BACE1 encounters APP are largely unknown. In contrast to APP internalization, which is clathrin-dependent, we demonstrate that BACE1 is sorted to early endosomes via a route controlled by the small GTPase ADP ribosylation factor 6 (ARF6). Altering ARF6 levels or its activity affects endosomal sorting of BACE1, and consequently results in altered APP processing and Aβ production. Furthermore, sorting of newly internalized BACE1 from ARF6-positive towards RAB GTPase 5 (RAB5)-positive early endosomes depends on its carboxyterminal short acidic cluster-dileucine motif. This ARF6-mediated sorting of BACE1 is confined to the somatodendritic compartment of polarized neurons in agreement with Aβ peptides being primarily secreted from here. These results demonstrate a spatial separation between APP and BACE1 during surface-to-endosome transport, suggesting subcellular trafficking as a regulatory mechanism for this proteolytic processing step. It thereby provides a novel avenue to interfere with Aβ production through a selective modulation of the distinct endosomal transport routes used by BACE1 or APP.
Collapse
|
44
|
Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri Tonelli D, de Falco FA, Striano P, Dagna Bricarelli F, Minetti C, Benfenati F, Fassio A, Zara F. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet 2010; 87:365-70. [PMID: 20727515 PMCID: PMC2933335 DOI: 10.1016/j.ajhg.2010.07.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 12/28/2022] Open
Abstract
Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders.
Collapse
Affiliation(s)
- Antonio Falace
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Fabia Filipello
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
| | - Veronica La Padula
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | - Nicola Vanni
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Francesca Madia
- Laboratory of Genetics, E.O. Ospedali Galliera, Genoa, 16128, Italy
| | - Davide De Pietri Tonelli
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | | | - Pasquale Striano
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | | | - Carlo Minetti
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
| | - Federico Zara
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| |
Collapse
|
45
|
Marín MP, Esteban-Pretel G, Ponsoda X, Romero AM, Ballestín R, López C, Megías L, Timoneda J, Molowny A, Canales JJ, Renau-Piqueras J. Endocytosis in Cultured Neurons Is Altered by Chronic Alcohol Exposure. Toxicol Sci 2010; 115:202-13. [DOI: 10.1093/toxsci/kfq040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci U S A 2009; 107:748-53. [PMID: 20080746 DOI: 10.1073/pnas.0908423107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Par-3/Par-6/aPKC/Cdc42 complex regulates the conversion of primordial adherens junctions (AJs) into belt-like AJs and the formation of linear actin cables during epithelial polarization. However, the mechanisms by which this complex functions are not well elucidated. In the present study, we found that activation of Arf6 is spatiotemporally regulated as a downstream signaling pathway of the Par protein complex. When primordial AJs are formed, Par-3 recruits a scaffolding protein, termed the FERM domain containing 4A (FRMD4A). FRMD4A connects Par-3 and the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-1. We propose that the Par-3/FRMD4A/cytohesin-1 complex ensures accurate activation of Arf6, a central player in actin cytoskeleton dynamics and membrane trafficking, during junctional remodeling and epithelial polarization.
Collapse
|
47
|
Sironi C, Teesalu T, Muggia A, Fontana G, Marino F, Savaresi S, Talarico D. EFA6A encodes two isoforms with distinct biological activities in neuronal cells. J Cell Sci 2009; 122:2108-18. [PMID: 19494129 DOI: 10.1242/jcs.042325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
The processes of neurite extension and remodeling require a close coordination between the cytoskeleton and the cell membranes. The small GTPase ARF6 (ADP-ribosylation factor 6) has a central role in regulating membrane traffic and actin dynamics, and its activity has been demonstrated to be involved in neurite elaboration. EFA6A has been shown to act as a guanine nucleotide exchange factor (GEF) for ARF6. Here, we report that two distinct isoforms of the EFA6A gene are expressed in murine neural tissue: a long isoform of 1025 amino acids (EFA6A), and a short isoform of 393 amino acids (EFA6As). EFA6A encompasses proline-rich regions, a Sec7 domain (mediating GEF activity on ARF6), a PH domain, and a C-terminal region with coiled-coil motifs. EFA6As lacks the Sec7 domain, and it comprises the PH domain and the C-terminal region. The transcript encoding EFA6As is the result of alternative promoter usage. EFA6A and EFA6As have distinct biological activities: upon overexpression in HeLa cells, EFA6A induces membrane ruffles, whereas EFA6As gives rise to cell elongation; in primary cortical neurons EFA6A promotes neurite extension, whereas EFA6As induces dendrite branching. Our findings suggest that EFA6A could participate in neuronal morphogenesis through the regulated expression of two functionally distinct isoforms.
Collapse
Affiliation(s)
- Cristina Sironi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Sakagami H. The EFA6 family: guanine nucleotide exchange factors for ADP ribosylation factor 6 at neuronal synapses. TOHOKU J EXP MED 2008; 214:191-8. [PMID: 18323689 DOI: 10.1620/tjem.214.191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ADP ribosylation factor 6 (ARF6) is a member of the ARF family of small GTPases, which mediates a variety of neuronal functions accompanying the structural changes of developing and mature neurons through its regulation of actin cytoskeleton reorganization and membrane traffic. The activation of ARF6 is strictly regulated by guanine nucleotide exchange factors (GEFs). The EFA6 family is the first member that was identified to be a specific GEF for ARF6 and comprises four structurally related polypeptides (EFA6A, EFA6B, EFA6C and EFA6D). Since the cellular and subcelllular localization of GEFs is a critical determinant for the spatiotemporal activation of ARF6 in neurons, I have focused on the EFA6 family from the anatomical point of view to understand the neuronal functions of ARF6. Three members of the EFA6 family (EFA6A, EFA6C and EFA6D) are abundantly expressed in the mouse brain with distinct spatiotemporal patterns. Interestingly, they are enriched particularly in the postsynaptic density fraction, shedding light on the importance of the EFA-ARF6 pathway in neuronal synapses. Here, I will review the recent advances in the expression and functions of the EFA6 family in the nervous system.
Collapse
|
49
|
Hattori Y, Ohta S, Hamada K, Yamada-Okabe H, Kanemura Y, Matsuzaki Y, Okano H, Kawakami Y, Toda M. Identification of a neuron-specific human gene, KIAA1110, that is a guanine nucleotide exchange factor for ARF1. Biochem Biophys Res Commun 2007; 364:737-42. [PMID: 17981261 DOI: 10.1016/j.bbrc.2007.10.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
To identify neuron-specific genes, we performed gene expression profiling, cDNA microarray and in silico ESTs (expressed sequence tags) analyses. We identified a human neuron-specific gene, KIAA1110 (homologue of rat synArfGEF (Po)), that is a member of the guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF). RT-PCR analysis showed that the KIAA1110 gene was expressed specifically in the brain among adult human tissues, whereas no apparent expression was observed in immature neural tissues/cells, such as fetal brain, glioma tissues/cells, and neural stem/precursor cells (NSPCs). The KIAA1110 protein was shown to be expressed in mature neurons but not in undifferentiated NSPCs. Immunohistochemical analysis also showed that KIAA1110 was expressed in neurons of the human adult cerebral cortex. Furthermore, the pull-down assay revealed that KIAA1110 has a GEF activity toward ARF1 that regulates transport along the secretion pathway. These results suggest that KIAA1110 is expressed specifically in mature neurons and may play an important role in the secretion pathway as a GEF for ARF1.
Collapse
Affiliation(s)
- Yujiro Hattori
- Neuroimmunology Research Group, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|