1
|
Aspenström P. Miro GTPases at the Crossroads of Cytoskeletal Dynamics and Mitochondrial Trafficking. Cells 2024; 13:647. [PMID: 38607086 PMCID: PMC11012113 DOI: 10.3390/cells13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE 751 85 Uppsala, Sweden
| |
Collapse
|
2
|
Novák LVF, Treitli SC, Pyrih J, Hałakuc P, Pipaliya SV, Vacek V, Brzoň O, Soukal P, Eme L, Dacks JB, Karnkowska A, Eliáš M, Hampl V. Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria. PLoS Genet 2023; 19:e1011050. [PMID: 38060519 PMCID: PMC10703272 DOI: 10.1371/journal.pgen.1011050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
Collapse
Affiliation(s)
- Lukáš V. F. Novák
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
- Université de Bretagne Occidentale, CNRS, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Sebastian C. Treitli
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
- RG Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Pyrih
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Poland
| | - Shweta V. Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vojtěch Vacek
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Ondřej Brzoň
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Petr Soukal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Laura Eme
- Ecology, Systematics, and Evolution Unit, Université Paris-Saclay, CNRS, Orsay, France
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Poland
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
3
|
Záhonová K, Füssy Z, Stairs CW, Leger MM, Tachezy J, Čepička I, Roger AJ, Hampl V. Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans. Microb Genom 2023; 9. [PMID: 37994879 DOI: 10.1099/mgen.0.001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Present address: Microbiology Research Group, Department of Biology, Lund University, Lund, Sweden
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
4
|
Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057-5068.e5. [PMID: 36347252 PMCID: PMC9746703 DOI: 10.1016/j.cub.2022.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Collapse
|
5
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
6
|
Rosenbusch KE, Oun A, Sanislav O, Lay ST, Keizer-Gunnink I, Annesley SJ, Fisher PR, Dolga AM, Kortholt A. A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Front Cell Dev Biol 2021; 9:734554. [PMID: 34568343 PMCID: PMC8455996 DOI: 10.3389/fcell.2021.734554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease world-wide. Mutations in the multidomain protein Leucine Rich Repeat Kinase 2 (LRRK2) are the most frequent cause of hereditary PD. Furthermore, recent data suggest that independent of mutations, increased kinase activity of LRRK2 plays an essential role in PD pathogenesis. Isolated mitochondria of tissue samples from PD patients carrying LRRK2 mutations display a significant impairment of mitochondrial function. However, due to the complexity of the mitochondrial signaling network, the role of LRRK2 in mitochondrial metabolism is still not well understood. Previously we have shown that D. discoideum Roco4 is a suitable model to study the activation mechanism of LRRK2 in vivo. To get more insight in the LRRK2 pathways regulating mitochondrial activity we used this Roco4 model system in combination with murine RAW macrophages. Here we show that both Dictyostelium roco4 knockout and cells expressing PD-mutants show behavioral and developmental phenotypes that are characteristic for mitochondrial impairment. Mitochondrial activity measured by Seahorse technology revealed that the basal respiration of D. discoideum roco4- cells is significantly increased compared to the WT strain, while the basal and maximal respiration values of cells overexpressing Roco4 are reduced compared to the WT strain. Consistently, LRRK2 KO RAW 264.7 cells exhibit higher maximal mitochondrial respiration activity compared to the LRRK2 parental RAW264.7 cells. Measurement on isolated mitochondria from LRRK2 KO and parental RAW 264.7 cells revealed no difference in activity compared to the parental cells. Furthermore, neither D. discoideum roco4- nor LRRK2 KO RAW 264.7 showed a difference in either the number or the morphology of mitochondria compared to their respective parental strains. This suggests that the observed effects on the mitochondrial respiratory in cells are indirect and that LRRK2/Roco proteins most likely require other cytosolic cofactors to elicit mitochondrial effects.
Collapse
Affiliation(s)
| | - Asmaa Oun
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sui T Lay
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Ineke Keizer-Gunnink
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Amalia M Dolga
- Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Žárský V, Klimeš V, Pačes J, Vlček Č, Hradilová M, Beneš V, Nývltová E, Hrdý I, Pyrih J, Mach J, Barlow L, Stairs CW, Eme L, Hall N, Eliáš M, Dacks JB, Roger A, Tachezy J. The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba. Mol Biol Evol 2021; 38:2240-2259. [PMID: 33528570 PMCID: PMC8136499 DOI: 10.1093/molbev/msab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host–parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).
Collapse
Affiliation(s)
- Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lael Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Laura Eme
- Diversity, Ecology and Evolution of Microbes (DEEM), Unité Ecologie Systématique Evolution Université Paris-Saclay, Orsay, France
| | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Institute of Parasitology, Biology Centre, CAS, v.v.i., Ceske Budejovice, Czech Republic
| | - Andrew Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
9
|
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Záhonová K, Najle SR, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Eliáš M, Slamovits CH, Weirauch MT, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol 2021; 19:142. [PMID: 34294116 PMCID: PMC8296547 DOI: 10.1186/s12915-021-01078-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
Collapse
Affiliation(s)
- Emily K Herman
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Alex Greninger
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
- Department of Laboratory Medicine, University of Washington Medical Center, Montlake, USA
| | - Mark van der Giezen
- Centre for Organelle Research, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Michael L Ginger
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Inmaculada Ramirez-Macias
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca. Instituto Murciano de Investigación Biosanitaria. Centro de Investigación Biomedica en Red-Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
- CSIRO, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | - Katrina Velle
- Department of Biology, University of Massachusetts, Amherst, UK
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristína Záhonová
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Sebastian Rodrigo Najle
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Catalonia, Spain
| | - Georgina MacIntyre
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Norbert Muller
- Institute of Parasitology, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Mattias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Charles Chiu
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, The Natural History Museum, London, UK.
| |
Collapse
|
10
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
11
|
Nahacka Z, Zobalova R, Dubisova M, Rohlena J, Neuzil J. Miro proteins connect mitochondrial function and intercellular transport. Crit Rev Biochem Mol Biol 2021; 56:401-425. [PMID: 34139898 DOI: 10.1080/10409238.2021.1925216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are organelles present in most eukaryotic cells, where they play major and multifaceted roles. The classical notion of the main mitochondrial function as the powerhouse of the cell per se has been complemented by recent discoveries pointing to mitochondria as organelles affecting a number of other auxiliary processes. They go beyond the classical energy provision via acting as a relay point of many catabolic and anabolic processes, to signaling pathways critically affecting cell growth by their implication in de novo pyrimidine synthesis. These additional roles further underscore the importance of mitochondrial homeostasis in various tissues, where its deregulation promotes a number of pathologies. While it has long been known that mitochondria can move within a cell to sites where they are needed, recent research has uncovered that mitochondria can also move between cells. While this intriguing field of research is only emerging, it is clear that mobilization of mitochondria requires a complex apparatus that critically involves mitochondrial proteins of the Miro family, whose role goes beyond the mitochondrial transfer, as will be covered in this review.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Australia
| |
Collapse
|
12
|
Panchal K, Tiwari AK. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 2021; 56:118-135. [PMID: 33127590 DOI: 10.1016/j.mito.2020.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Miro (mitochondrial Rho GTPases) a mitochondrial outer membrane protein, plays a vital role in the microtubule-based mitochondrial axonal transport, mitochondrial dynamics (fusion and fission) and Mito-Ca2+ homeostasis. It forms a major protein complex with Milton (an adaptor protein), kinesin and dynein (motor proteins), and facilitates bidirectional mitochondrial axonal transport such as anterograde and retrograde transport. By forming this protein complex, Miro facilitates the mitochondrial axonal transport and fulfills the neuronal energy demand, maintain the mitochondrial homeostasis and neuronal survival. It has been demonstrated that altered mitochondrial biogenesis, improper mitochondrial axonal transport, and mitochondrial dynamics are the early pathologies associated with most of the neurodegenerative diseases (NDs). Being the sole mitochondrial outer membrane protein associated with mitochondrial axonal transport-related processes, Miro proteins can be one of the key players in various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). Thus, in the current review, we have discussed the evolutionarily conserved Miro proteins and its role in the pathogenesis of the various NDs. From this, we indicated that Miro proteins may act as a potential target for a novel therapeutic intervention for the treatment of various NDs.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
13
|
Covill-Cooke C, Toncheva VS, Kittler JT. Regulation of peroxisomal trafficking and distribution. Cell Mol Life Sci 2020; 78:1929-1941. [PMID: 33141311 PMCID: PMC7966214 DOI: 10.1007/s00018-020-03687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Peroxisomes are organelles that perform a wide range of essential metabolic processes. To ensure that peroxisomes are optimally positioned in the cell, they must be transported by both long- and short-range trafficking events in response to cellular needs. Here, we review our current understanding of the mechanisms by which the cytoskeleton and organelle contact sites alter peroxisomal distribution. Though the focus of the review is peroxisomal transport in mammalian cells, findings from flies and fungi are used for comparison and to inform the gaps in our understanding. Attention is given to the apparent overlap in regulatory mechanisms for mitochondrial and peroxisomal trafficking, along with the recently discovered role of the mitochondrial Rho-GTPases, Miro, in peroxisomal dynamics. Moreover, we outline and discuss the known pathological and pharmacological conditions that perturb peroxisomal positioning. We conclude by highlighting several gaps in our current knowledge and suggest future directions that require attention.
Collapse
Affiliation(s)
| | - Viktoriya S Toncheva
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Beljan S, Herak Bosnar M, Ćetković H. Rho Family of Ras-Like GTPases in Early-Branching Animals. Cells 2020; 9:cells9102279. [PMID: 33066017 PMCID: PMC7600811 DOI: 10.3390/cells9102279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa. These early-diverging animals are crucial for understanding the evolution of the entire animal lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small GTPases, which function as key molecular switches that play important roles in converting and amplifying external signals into cellular responses. This review represents a compilation of the current knowledge on Rho-family GTPases in non-bilaterian animals, the available experimental data about their biochemical characteristics and functions, as well as original bioinformatics analysis, in order to gain a general insight into the evolutionary history of Rho-family GTPases in simple animals.
Collapse
Affiliation(s)
- Silvestar Beljan
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Division of Molecular Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-456-1115
| |
Collapse
|
15
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
16
|
Grossmann D, Berenguer-Escuder C, Chemla A, Arena G, Krüger R. The Emerging Role of RHOT1/Miro1 in the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:587. [PMID: 33041957 PMCID: PMC7523470 DOI: 10.3389/fneur.2020.00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
The expected increase in prevalence of Parkinson's disease (PD) as the most common neurodegenerative movement disorder over the next years underscores the need for a better understanding of the underlying molecular pathogenesis. Here, first insights provided by genetics over the last two decades, such as dysfunction of molecular and organellar quality control, are described. The mechanisms involved relate to impaired intracellular calcium homeostasis and mitochondrial dynamics, which are tightly linked to the cross talk between the endoplasmic reticulum (ER) and mitochondria. A number of proteins related to monogenic forms of PD have been mapped to these pathways, i.e., PINK1, Parkin, LRRK2, and α-synuclein. Recently, Miro1 was identified as an important player, as several studies linked Miro1 to mitochondrial quality control by PINK1/Parkin-mediated mitophagy and mitochondrial transport. Moreover, Miro1 is an important regulator of mitochondria-ER contact sites (MERCs), where it acts as a sensor for cytosolic calcium levels. The involvement of Miro1 in the pathogenesis of PD was recently confirmed by genetic evidence based on the first PD patients with heterozygous mutations in RHOT1/Miro1. Patient-based cellular models from RHOT1/Miro1 mutation carriers showed impaired calcium homeostasis, structural alterations of MERCs, and increased mitochondrial clearance. To account for the emerging role of Miro1, we present a comprehensive overview focusing on the role of this protein in PD-related neurodegeneration and highlighting new developments in our understanding of Miro1, which provide new avenues for neuroprotective therapies for PD patients.
Collapse
Affiliation(s)
- Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Section for Translational Neurodegeneration "Albrecht Kossel", Department of Neurology, Universitätsmedizin Rostock, Rostock, Germany
| | - Clara Berenguer-Escuder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Axel Chemla
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| |
Collapse
|
17
|
Grossmann D, Berenguer-Escuder C, Bellet ME, Scheibner D, Bohler J, Massart F, Rapaport D, Skupin A, Fouquier d'Hérouël A, Sharma M, Ghelfi J, Raković A, Lichtner P, Antony P, Glaab E, May P, Dimmer KS, Fitzgerald JC, Grünewald A, Krüger R. Mutations in RHOT1 Disrupt Endoplasmic Reticulum-Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease. Antioxid Redox Signal 2019; 31:1213-1234. [PMID: 31303019 PMCID: PMC6798875 DOI: 10.1089/ars.2018.7718] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aims: The outer mitochondrial membrane protein Miro1 is a crucial player in mitochondrial dynamics and calcium homeostasis. Recent evidence indicated that Miro1 mediates calcium-induced mitochondrial shape transition, which is a prerequisite for the initiation of mitophagy. Moreover, altered Miro1 protein levels have emerged as a shared feature of monogenic and sporadic Parkinson's disease (PD), but, so far, no disease-associated variants in RHOT1 have been identified. Here, we aim to explore the genetic and functional contribution of RHOT1 mutations to PD in patient-derived cellular models. Results: For the first time, we describe heterozygous RHOT1 mutations in two PD patients (het c.815G>A; het c.1348C>T) and identified mitochondrial phenotypes with reduced mitochondrial mass in patient fibroblasts. Both mutations led to decreased endoplasmic reticulum-mitochondrial contact sites and calcium dyshomeostasis. As a consequence, energy metabolism was impaired, which in turn caused increased mitophagy. Innovation and Conclusion: Our study provides functional evidence that ROTH1 is a genetic risk factor for PD, further implicating Miro1 in calcium homeostasis and mitochondrial quality control.
Collapse
Affiliation(s)
- Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clara Berenguer-Escuder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Estelle Bellet
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - David Scheibner
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jill Bohler
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Francois Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Biomedical Computation Resource, University of California San Diego, La Jolla, California
| | - Aymeric Fouquier d'Hérouël
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany
| | - Julia Catherine Fitzgerald
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Neurodegenerative Diseases, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| |
Collapse
|
18
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
19
|
Peters DT, Kay L, Eswaran J, Lakey JH, Soundararajan M. Human Miro Proteins Act as NTP Hydrolases through a Novel, Non-Canonical Catalytic Mechanism. Int J Mol Sci 2018; 19:ijms19123839. [PMID: 30513825 PMCID: PMC6321465 DOI: 10.3390/ijms19123839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are highly dynamic organelles that play a central role in multiple cellular processes, including energy metabolism, calcium homeostasis and apoptosis. Miro proteins (Miros) are “atypical” Ras superfamily GTPases that display unique domain architecture and subcellular localisation regulating mitochondrial transport, autophagy and calcium sensing. Here, we present systematic catalytic domain characterisation and structural analyses of human Miros. Despite lacking key conserved catalytic residues (equivalent to Ras Y32, T35, G60 and Q61), the Miro N-terminal GTPase domains display GTPase activity. Surprisingly, the C-terminal GTPase domains previously assumed to be “relic” domains were also active. Moreover, Miros show substrate promiscuity and function as NTPases. Molecular docking and structural analyses of Miros revealed unusual features in the Switch I and II regions, facilitating promiscuous substrate binding and suggesting the usage of a novel hydrolytic mechanism. The key substitution in position 13 in the Miros leads us to suggest the existence of an “internal arginine finger”, allowing an unusual catalytic mechanism that does not require GAP protein. Together, the data presented here indicate novel catalytic functions of human Miro atypical GTPases through altered catalytic mechanisms.
Collapse
Affiliation(s)
- Daniel T Peters
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Laura Kay
- Department of Applied Sciences Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jeyanthy Eswaran
- Northern Institute for Cancer Research, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU, UK.
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Meera Soundararajan
- Department of Applied Sciences Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
20
|
Castro IG, Schrader M. Miro1 - the missing link to peroxisome motility. Commun Integr Biol 2018; 11:e1526573. [PMID: 30534345 PMCID: PMC6284566 DOI: 10.1080/19420889.2018.1526573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are ubiquitous, highly dynamic, multifunctional compartments in eukaryotic cells, which perform key roles in cellular lipid metabolism and redox balance. Like other membrane-bound organelles, peroxisomes must move in the cellular landscape to perform localized functions, interact with other organelles and to properly distribute during cell division. However, our current knowledge of peroxisome motility in mammalian cells is still very limited. Recently, three independent studies have identified Miro1 as a regulator of peroxisome motility in mammalian cells. In these studies, the authors show that Miro1 is targeted to peroxisomes in several cell lines, in a process that relies on its interaction with the peroxisomal chaperone Pex19. Interestingly, however, different conclusions are drawn about which Miro1 isoforms are targeted to peroxisomes, how it interacts with Pex19 and most importantly, the type of motility Miro1 is regulating.
Collapse
Affiliation(s)
- Inês G. Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
21
|
Wideman JG, Balacco DL, Fieblinger T, Richards TA. PDZD8 is not the 'functional ortholog' of Mmm1, it is a paralog. F1000Res 2018; 7:1088. [PMID: 30109028 PMCID: PMC6069729 DOI: 10.12688/f1000research.15523.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
Authors of a recent paper demonstrate that, like ERMES (ER-mitochondria encounter structure) in fungal cells, PDZD8 (PDZ domain containing 8) tethers mitochondria to the ER in mammalian cells. However, identifying PDZD8 as a "functional ortholog" of yeast Mmm1 (maintenance of mitochondrial morphology protein 1) is at odds with the phylogenetic data. PDZD8 and Mmm1 are paralogs, not orthologs, which affects the interpretation of the data with respect to the evolution of ER-mitochondria tethering. Our phylogenetic analyses show that PDZD8 co-occurs with ERMES components in lineages closely related to animals solidifying its identity as a paralog of Mmm1. Additionally, we identify two related paralogs, one specific to flagellated fungi, and one present only in unicellular relatives of animals. These results point to a complex evolutionary history of ER-mitochondria tethering involving multiple gene gains and losses in the lineage leading to animals and fungi.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.,Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| | - Dario L Balacco
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Tim Fieblinger
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany.,Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| | - Thomas A Richards
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
22
|
Kay LJ, Sangal V, Black GW, Soundararajan M. Proteomics and bioinformatics analyses identify novel cellular roles outside mitochondrial function for human miro GTPases. Mol Cell Biochem 2018; 451:21-35. [PMID: 29943371 PMCID: PMC6342832 DOI: 10.1007/s11010-018-3389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/16/2018] [Indexed: 12/03/2022]
Abstract
The human Miro GTPases (hMiros) have recently emerged as important mediators of mitochondrial transport and may significantly contribute to the development of disorders such as Alzheimer’s and schizophrenia. The hMiros represent two highly atypical members of the Ras superfamily, and exhibit several unique features: the presence of a GTPase domain at both the N-terminus and C-terminus, the presence of two calcium-binding EF-hand domains and localisation to the mitochondrial outer membrane. Here, elucidation of Miro GTPase signalling pathway components was achieved through the use of molecular biology, cell culture techniques and proteomics. An investigation of this kind has not been performed previously; we hoped, through these techniques, to enable the profiling and identification of pathways regulated by the human Miro GTPases. The results indicate several novel putative interaction partners for hMiro1 and hMiro2, including numerous proteins previously implicated in neurodegenerative pathways and the development of schizophrenia. Furthermore, we show that the N-terminal GTPase domain appears to fine-tune hMiro signalling, with GTP-bound versions of this domain associated with a diverse range of interaction partners in comparison to corresponding GDP-bound versions. Recent evidences suggest that human Miros participate in host–pathogen interactions with Vibrio Cholerae type III secretion proteins. We have undertaken a bioinformatics investigation to identify novel pathogenic effectors that might interact with Miros.
Collapse
Affiliation(s)
- Laura J Kay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Vartul Sangal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK.
| |
Collapse
|
23
|
Understanding Miro GTPases: Implications in the Treatment of Neurodegenerative Disorders. Mol Neurobiol 2018; 55:7352-7365. [PMID: 29411264 PMCID: PMC6096957 DOI: 10.1007/s12035-018-0927-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
The Miro GTPases represent an unusual subgroup of the Ras superfamily and have recently emerged as important mediators of mitochondrial dynamics and for maintaining neuronal health. It is now well-established that these enzymes act as essential components of a Ca2+-sensitive motor complex, facilitating the transport of mitochondria along microtubules in several cell types, including dopaminergic neurons. The Miros appear to be critical for both anterograde and retrograde mitochondrial transport in axons and dendrites, both of which are considered essential for neuronal health. Furthermore, the Miros may be significantly involved in the development of several serious pathological processes, including the development of neurodegenerative and psychiatric disorders. In this review, we discuss the molecular structure and known mitochondrial functions of the Miro GTPases in humans and other organisms, in the context of neurodegenerative disease. Finally, we consider the potential human Miros hold as novel therapeutic targets for the treatment of such disease.
Collapse
|
24
|
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolisko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol 2017; 15:e2003769. [PMID: 28892507 PMCID: PMC5608401 DOI: 10.1371/journal.pbio.2003769] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Collapse
Affiliation(s)
- Eleni Gentekaki
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A. Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Courtney W. Stairs
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dayana E. Salas-Leiva
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emily K. Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Eme
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maria C. Arias
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mary J. Klute
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima, Japan
| | - Shehre-Banoo Malik
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arthur W. Pightling
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Kolisko
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren M. Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Anastasios D. Tsaousis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M. Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - Steven G. Ball
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - C. Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Andrew J. Roger
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| |
Collapse
|
25
|
Guan Y, Wang DY, Ying SH, Feng MG. Miro GTPase controls mitochondrial behavior affecting stress tolerance and virulence of a fungal insect pathogen. Fungal Genet Biol 2016; 93:1-9. [DOI: 10.1016/j.fgb.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
26
|
Woods LC, Berbusse GW, Naylor K. Microtubules Are Essential for Mitochondrial Dynamics-Fission, Fusion, and Motility-in Dictyostelium discoideum. Front Cell Dev Biol 2016; 4:19. [PMID: 27047941 PMCID: PMC4801864 DOI: 10.3389/fcell.2016.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/03/2016] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function.
Collapse
Affiliation(s)
- Laken C. Woods
- Department of Biology, University of Central ArkansasConway, AR, USA
| | - Gregory W. Berbusse
- Interdisciplinary Biomedical Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Kari Naylor
- Department of Biology, University of Central ArkansasConway, AR, USA
| |
Collapse
|
27
|
Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:900-912. [PMID: 26825688 DOI: 10.1016/j.bbalip.2016.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
28
|
Tang BL. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology. Cells 2015; 5:1. [PMID: 26729171 PMCID: PMC4810086 DOI: 10.3390/cells5010001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca(2+)-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
29
|
Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites. J Neurosci 2015; 35:5754-71. [PMID: 25855186 DOI: 10.1523/jneurosci.1035-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.
Collapse
|
30
|
Lee KS, Lu B. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond. Front Cell Neurosci 2014; 8:330. [PMID: 25389385 PMCID: PMC4211407 DOI: 10.3389/fncel.2014.00330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule (MT) cytoskeleton. Recent studies showed that through binding to the EF hands of Miro and causing conformational changes of Miro and alteration of protein-protein interactions within the transport complex, Ca2+ can alter the engagement of mitochondria with the MT/kinesin network, offering one mechanism to match mitochondrial distribution with neuronal activity. Despite the importance of the Miro/Milton/Kinesin complex in regulating mitochondrial transport in metazoans, not all components of the transport complex are conserved in lower organisms, and transport-independent functions of Miro are emerging. Here we review the diverse functions of the evolutionarily conserved Miro proteins that are relevant to the development, maintenance, and functioning of the nervous system and discuss the potential contribution of Miro dysfunction to the pathogenesis of diseases of the nervous system.
Collapse
Affiliation(s)
- Kyu-Sun Lee
- Department of Pathology, Stanford University School of Medicine Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
31
|
Affiliation(s)
- Katherine Labbé
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Andrew Murley
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| |
Collapse
|
32
|
Yamaoka S, Hara-Nishimura I. The mitochondrial Ras-related GTPase Miro: views from inside and outside the metazoan kingdom. FRONTIERS IN PLANT SCIENCE 2014; 5:350. [PMID: 25076955 PMCID: PMC4100572 DOI: 10.3389/fpls.2014.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 05/24/2023]
Abstract
Miro GTPase, a member of the Ras superfamily, consists of two GTPase domains flanking a pair of EF hand motifs and a C-terminal transmembrane domain that anchors the protein to the mitochondrial outer membrane. Since the identification of Miro in humans, a series of studies in metazoans, including mammals and fruit flies, have shown that Miro plays a role in the calcium-dependent regulation of mitochondrial transport along microtubules. However, in non-metazoans, including yeasts, slime molds, and plants, Miro is primarily involved in the maintenance of mitochondrial morphology and homeostasis. Given the high level of conservation of Miro in eukaryotes and the variation in the molecular mechanisms of mitochondrial transport between eukaryotic lineages, Miro may have a common ancestral function in mitochondria, and its roles in the regulation of mitochondrial transport may have been acquired specifically by metazoans after the evolutionary divergence of eukaryotes.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | | |
Collapse
|
33
|
Serrat R, Mirra S, Figueiro-Silva J, Navas-Pérez E, Quevedo M, López-Doménech G, Podlesniy P, Ulloa F, Garcia-Fernàndez J, Trullas R, Soriano E. The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation. Cell Death Dis 2014; 5:e1163. [PMID: 24722288 PMCID: PMC5424104 DOI: 10.1038/cddis.2014.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents Aβ-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against Aβ-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.
Collapse
Affiliation(s)
- R Serrat
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - S Mirra
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - J Figueiro-Silva
- 1] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [2] Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - E Navas-Pérez
- Department of Genetics, University of Barcelona, Barcelona E-08028, Spain
| | - M Quevedo
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - G López-Doménech
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - P Podlesniy
- 1] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [2] Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - F Ulloa
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - J Garcia-Fernàndez
- Department of Genetics, University of Barcelona, Barcelona E-08028, Spain
| | - R Trullas
- 1] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [2] Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - E Soriano
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [3] Fundación CIEN, Vallecas E-28031, Madrid, Spain [4] Vall d'Hebron Institut de Recerca, Barcelona E-08035, Spain
| |
Collapse
|
34
|
Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta Gen Subj 2013; 1840:1413-32. [PMID: 24161926 DOI: 10.1016/j.bbagen.2013.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/05/2013] [Accepted: 10/10/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum. SCOPE OF REVIEW This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders. MAJOR CONCLUSIONS Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein. GENERAL SIGNIFICANCE Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- S J Annesley
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S Chen
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - L M Francione
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - O Sanislav
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - A J Chavan
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C Farah
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S W De Piazza
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C L Storey
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - J Ilievska
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S G Fernando
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P K Smith
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S T Lay
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P R Fisher
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086.
| |
Collapse
|
35
|
Davidson AJ, King JS, Insall RH. The use of streptavidin conjugates as immunoblot loading controls and mitochondrial markers for use with Dictyostelium discoideum. Biotechniques 2013; 55:39-41. [PMID: 23834384 DOI: 10.2144/000114054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022] Open
Abstract
The loading controls used for quantitative immunoblotting of mammalian proteins are not appropriate for use with Dictyostelium discoideum. Actin levels, for example, change greatly during Dictyostelium development. In addition, Dictyostelium-specific antibodies for other potential control proteins are not commercially available. Here we demonstrate the use of labeled streptavidin to detect biotinylated mitochondrial 3-methylcrotonyl-CoA carboxylase α (MCCC1), providing a robust and convenient tool for quantitative normalization of Dictyostelium Western blots, as well as fluorescently labeling mitochondria for microscopy of fixed cells.
Collapse
|
36
|
Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The Ancient and Widespread Nature of the ER–Mitochondria Encounter Structure. Mol Biol Evol 2013; 30:2044-9. [DOI: 10.1093/molbev/mst120] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
37
|
Murley A, Lackner LL, Osman C, West M, Voeltz GK, Walter P, Nunnari J. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2013; 2:e00422. [PMID: 23682313 PMCID: PMC3654481 DOI: 10.7554/elife.00422] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/02/2013] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER-mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER-mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER-mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells. DOI:http://dx.doi.org/10.7554/eLife.00422.001.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Laura L Lackner
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Christof Osman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Matthew West
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Gia K Voeltz
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
38
|
Eliáš M, Klimeš V. Rho GTPases: deciphering the evolutionary history of a complex protein family. Methods Mol Biol 2012; 827:13-34. [PMID: 22144265 DOI: 10.1007/978-1-61779-442-1_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rho GTPases constitute a significant subgroup of the eukaryotic Ras superfamily of small GTPases implicated in the regulation of diverse cellular processes, such as the dynamics of the actin cytoskeleton, establishment, and maintenance of cell polarity and membrane trafficking. Whereas a few eukaryotes lack Rho genes, a majority of species typically bear multiple Rho paralogs, raising a question about the origin of the family and the paths of its diversification in individual eukaryotic lineages. In this chapter, we ruminate on several aspects of the evolutionary history of the Rho family and methodological challenges of its reconstruction. First, we provide an updated survey of Rho GTPases in diverse eukaryotic branches, demonstrating almost ubiquitous occurrence of Rho genes across the eukaryotic phylogeny most consistent with the presence of at least one Rho gene already in the last eukaryotic common ancestor. Second, we discuss the obstacles in reconstructing the history of gene duplications giving rise to the extant diversity of Rho paralogs in different species, and point to numerous limitations posed by the current phylogenetic methodology. Third, as a case study demonstrating various issues of data collection, phylogenetic analyses and interpretations of trees, we present an analysis of the Rho family in the fungal kingdom, revealing the existence of at least four separate paralogs (Cdc42, Rac, Rho1, and Rho4) in early fungi and subsequent potentially independent expansions of the family in different fungal subgroups. We conclude with the warning that the currently dominating perception of the Rho phylogeny is biased by the metazoan (and especially vertebrate) perspective, and a new, more global view is to be worked out when a better genome sampling and more adequate methods of phylogenetic inference are employed.
Collapse
Affiliation(s)
- Marek Eliáš
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | | |
Collapse
|