1
|
Karmakar R, Karanam A, Tang MH, Rappel WJ. Eukaryotic Chemotaxis under Periodic Stimulation Shows Temporal Gradient Dependence. PHYSICAL REVIEW LETTERS 2024; 133:068401. [PMID: 39178438 DOI: 10.1103/physrevlett.133.068401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/08/2024] [Indexed: 08/25/2024]
Abstract
When cells of the social amoeba Dictyostelium discoideum are starved of nutrients they start to synthesize and secrete the chemical messenger and chemoattractant cyclic adenosine monophosphate (cAMP). This signal is relayed by other cells, resulting in the establishment of periodic waves. The cells aggregate through chemotaxis toward the center of these waves. We investigated the chemotactic response of individual cells to repeated exposure to waves of cAMP generated by a microfluidic device. For fast-moving waves (short period), the chemotactic ability of the cells was found to increase upon exposure to more waves, suggesting the development of a memory over several cycles. This effect was not significant for slow-moving waves (large period). We show that the experimental results are consistent with a local excitation global inhibition-based model, extended by including a component that rises and decays slowly and that is activated by the temporal gradient of cAMP concentration. The observed enhancement in chemotaxis is relevant to populations in the wild: once sustained, periodic waves of the chemoattractant are established, it is beneficial to cells to improve their chemotactic ability in order to reach the aggregation center sooner.
Collapse
|
2
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
3
|
Perrodin P, Sella C, Thouin L. Electrochemical Generation of Steady-State Linear Concentration Gradients within Microfluidic Channels Perpendicular to the Flow Field. Anal Chem 2020; 92:7699-7707. [DOI: 10.1021/acs.analchem.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pierre Perrodin
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Catherine Sella
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Laurent Thouin
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
4
|
Huyke DA, Ramachandran A, Oyarzun DI, Kroll T, DePonte DP, Santiago JG. On the competition between mixing rate and uniformity in a coaxial hydrodynamic focusing mixer. Anal Chim Acta 2020; 1103:1-10. [PMID: 32081173 DOI: 10.1016/j.aca.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Fast microfluidic mixers for use with line-of-sight integrating detection schemes pose unique challenges. Such detectors typically cannot discriminate signal from slow moving (e.g. near internal walls) and fast-moving portions of the fluid stream. This convolves reaction rate dynamics with fluid flow residence time dynamics. Further, the small cross sections of typical three-dimensional hydrodynamic focusing devices lead to lower detection signals. The current study focuses on achieving both small time scales of mixing and homogenous residence times. This is achieved by injecting sample through a center capillary and hydrodynamically focusing using a sheath flow within a tapered second capillary. The current design also features a third, larger coaxial capillary. The mixed stream flows into the large cross-section of this third capillary to decelerate and expand the stream by up to 14-fold to improve line-of-sight signal strength of reaction products. Hydrodynamic focusing, mixing, and expansion are studied using analytical and numerical models and also studied experimentally using a fluorescein-iodide quenching reaction. The experimentally validated models are used to explore trade-offs between mixing rate and uniformity. For the first time, this work presents detailed analysis of the Lagrangian time history of species transport during mixing inside coaxial capillaries to measure mixing nonuniformity. The mixing region enables order 100 μs mixing times and residence time widths of the same order (140 μs).
Collapse
Affiliation(s)
- Diego A Huyke
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, USA
| | - Diego I Oyarzun
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Daniel P DePonte
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS One 2019; 14:e0219708. [PMID: 31314801 PMCID: PMC6636736 DOI: 10.1371/journal.pone.0219708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
Considering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g. microfluidic-based devices, bridge assays) can generate well-defined, long-term stable chemical gradients, crucial for quantitative investigation of chemotaxis in slow-moving cells. However, the majority of chemotaxis tools are designed for the purpose of an in-depth, but labor-intensive analysis of migratory behavior of single cells. This is rather inefficient for applications requiring higher experimental throughput, as it is the case of e.g. clinical examinations, chemoattractant screening or studies of the chemotaxis-related signaling pathways based on subcellular perturbations. Here, we present an advanced migration assay for accelerated and facilitated evaluation of the chemotactic response of slow-moving cells. The revised chemotaxis chamber contains a hydrogel microstructure–the migration arena, designed to enable identification of chemotactic behavior of a cell population in respect to the end-point of the experiment. At the same time, the assay in form of a microscopy slide enables direct visualization of the cells in either 2D or 3D environment, and provides a stable and linear gradient of chemoattractant. We demonstrate the correctness of the assay on the model study of HT-1080 chemotaxis in 3D and on 2D surface. Finally, we apply the migration arena chemotaxis assay to screen for a chemoattractant of primary keratinocytes, cells that play a major role in wound healing, being responsible for skin re-epithelialization and a successful wound closure. In direction of new therapeutic strategies to promote wound repair, we identified the chemotactic activity of the epithelial growth factor receptor (EGFR) ligands EGF and TGFα (transforming growth factor α).
Collapse
|
6
|
Dore TM. Light-Activated Chemotaxis. Cell Chem Biol 2019; 23:531-532. [PMID: 27203370 DOI: 10.1016/j.chembiol.2016.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Using light to control cellular processes is one of the attractive areas of research. Here, availability of different, light-responsive caged compounds has played a critical role. In this issue of Cell Chemical Biology, Hövelmann et al. (2016) give us an example of how to design and use caged lipids to guide chemotaxis at the single cell level.
Collapse
Affiliation(s)
- Timothy M Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Nagel O, Frey M, Gerhardt M, Beta C. Harnessing Motile Amoeboid Cells as Trucks for Microtransport and -Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801242. [PMID: 30775225 PMCID: PMC6364505 DOI: 10.1002/advs.201801242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Cell-driven microtransport is one of the most prominent applications in the emerging field of biohybrid systems. While bacterial cells have been successfully employed to drive the swimming motion of micrometer-sized cargo particles, the transport capacities of motile adherent cells remain largely unexplored. Here, it is demonstrated that motile amoeboid cells can act as efficient and versatile trucks to transport microcargo. When incubated together with microparticles, cells of the social amoeba Dictyostelium discoideum readily pick up and move the cargo particles. Relying on the unspecific adhesive properties of the amoeba, a wide range of different cargo materials can be used. The cell-driven transport can be directionally guided based on the chemotactic responses of amoeba to chemoattractant gradients. On the one hand, the cargo can be assembled into clusters in a self-organized fashion, relying on the developmentally induced chemotactic aggregation of cells. On the other hand, chemoattractant gradients can be externally imposed to guide the cellular microtrucks to a desired location. Finally, larger cargo particles of different shapes that exceed the size of a single cell by more than an order of magnitude, can also be transported by the collective effort of large numbers of motile cells.
Collapse
Affiliation(s)
- Oliver Nagel
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Manuel Frey
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Matthias Gerhardt
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Carsten Beta
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| |
Collapse
|
8
|
Cherstvy AG, Nagel O, Beta C, Metzler R. Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. Phys Chem Chem Phys 2018; 20:23034-23054. [DOI: 10.1039/c8cp04254c] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells?
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Oliver Nagel
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Carsten Beta
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
9
|
Xie D, Liu Z, Wu J, Feng W, Yang K, Deng J, Tian G, Santos S, Cui X, Lin F. The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction. Exp Cell Res 2017; 357:107-115. [DOI: 10.1016/j.yexcr.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023]
|
10
|
Elitas M, Sadeghi S, Karamahmutoglu H, Gozuacik D, Serdar Turhal N. Microfabricated platforms to quantitatively investigate cellular behavior under the influence of chemical gradients. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Anielski A, Pfannes EKB, Beta C. Adaptive microfluidic gradient generator for quantitative chemotaxis experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:034301. [PMID: 28372375 DOI: 10.1063/1.4978535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell.
Collapse
Affiliation(s)
- Alexander Anielski
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Eva K B Pfannes
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Attayek PJ, Ahmad AA, Wang Y, Williamson I, Sims CE, Magness ST, Allbritton NL. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment. PLoS One 2016; 11:e0153795. [PMID: 27100890 PMCID: PMC4839657 DOI: 10.1371/journal.pone.0153795] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
The polarity of proliferative and differentiated cellular compartments of colonic crypts is believed to be specified by gradients of key mitogens and morphogens. Indirect evidence demonstrates a tight correlation between Wnt- pathway activity and the basal-luminal patterning; however, to date there has been no direct experimental manipulation demonstrating that a chemical gradient of signaling factors can produce similar patterning under controlled conditions. In the current work, colonic organoids (colonoids) derived from cultured, multicellular organoid fragments or single stem cells were exposed in culture to steep linear gradients of two Wnt-signaling ligands, Wnt-3a and R-spondin1. The use of a genetically engineered Sox9-Sox9EGFP:CAGDsRED reporter gene mouse model and EdU-based labeling enabled crypt patterning to be quantified in the developing colonoids. Colonoids derived from multicellular fragments cultured for 5 days under a Wnt-3a or a combined Wnt-3a and R-spondin1 gradient were highly polarized with proliferative cells localizing to the region of the higher morphogen concentration. In a Wnt-3a gradient, Sox9EGFP polarization was 7.3 times greater than that of colonoids cultured in the absence of a gradient; and the extent of EdU polarization was 2.2 times greater than that in the absence of a gradient. Under a Wnt-3a/R-spondin1 gradient, Sox9EGFP polarization was 8.2 times greater than that of colonoids cultured in the absence of a gradient while the extent of EdU polarization was 10 times greater than that in the absence of a gradient. Colonoids derived from single stem cells cultured in Wnt-3a/R-spondin1 gradients were most highly polarized demonstrated by a Sox9EGFP polarization 20 times that of colonoids grown in the absence of a gradient. This data provides direct evidence that a linear gradient of Wnt signaling factors applied to colonic stem cells is sufficient to direct patterning of the colonoid unit in culture.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Asad A. Ahmad
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Ian Williamson
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Scott T. Magness
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
- * E-mail:
| |
Collapse
|
13
|
Vjestica A, Merlini L, Dudin O, Bendezu FO, Martin SG. Microscopy of Fission Yeast Sexual Lifecycle. J Vis Exp 2016. [PMID: 27022830 DOI: 10.3791/53801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The fission yeast Schizosaccharomyces pombe has been an invaluable model system in studying the regulation of the mitotic cell cycle progression, the mechanics of cell division and cell polarity. Furthermore, classical experiments on its sexual reproduction have yielded results pivotal to current understanding of DNA recombination and meiosis. More recent analysis of fission yeast mating has raised interesting questions on extrinsic stimuli response mechanisms, polarized cell growth and cell-cell fusion. To study these topics in detail we have developed a simple protocol for microscopy of the entire sexual lifecycle. The method described here is easily adjusted to study specific mating stages. Briefly, after being grown to exponential phase in a nitrogen-rich medium, cell cultures are shifted to a nitrogen-deprived medium for periods of time suited to the stage of the sexual lifecycle that will be explored. Cells are then mounted on custom, easily built agarose pad chambers for imaging. This approach allows cells to be monitored from the onset of mating to the final formation of spores.
Collapse
Affiliation(s)
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne
| | - Omaya Dudin
- Department of Fundamental Microbiology, University of Lausanne
| | | | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne;
| |
Collapse
|
14
|
Gerhardt M, Walz M, Beta C. Fluorescence Readout of a Patch Clamped Membrane by Laser Scanning Microscopy. Methods Mol Biol 2016; 1407:325-339. [PMID: 27271912 DOI: 10.1007/978-1-4939-3480-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we describe how to shield a patch of a cell membrane against extracellularly applied chemoattractant stimuli. Classical patch clamp methodology is applied to allow for controlled shielding of a membrane patch by measuring the seal resistivity. In Dictyostelium cells, a seal resistivity of 50 MΩ proved to be tight enough to exclude molecules from diffusing into the shielded membrane region. This allowed for separating a shielded and a non-shielded region of a cell membrane to study the spatiotemporal dynamics of intracellular chemotactic signaling events at the interface between shielded and non-shielded areas. The spatiotemporal dynamics of signaling events in the membrane was read out by means of appropriate fluorescent markers using laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Matthias Gerhardt
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - Michael Walz
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany.
| |
Collapse
|
15
|
Oliveira A, Pelegati V, Carvalho H, Cesar C, Bastos R, de la Torre L. Cultivation of yeast in diffusion-based microfluidic device. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Shen C, Xu P, Huang Z, Cai D, Liu SJ, Du W. Bacterial chemotaxis on SlipChip. LAB ON A CHIP 2014; 14:3074-80. [PMID: 24968180 DOI: 10.1039/c4lc00213j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper describes a simple and reusable microfluidic SlipChip device for studying bacterial chemotaxis based on free interface diffusion. The device consists of two glass plates with reconfigurable microwells and ducts, which can set up 20 parallel chemotaxis units as duplicates. In each unit, three nanoliter microwells and connecting ducts were assembled for pipette loading of a chemoeffector solution, bacterial suspension, and 1X PBS buffer solution. By a simple slipping operation, three microwells were disconnected from other units and interconnected by the ducts, which allowed the formation of diffusion concentration gradients of the chemoeffector for inducing cell migration from the cell microwell towards the other two microwells. The migration of cells in the microwells was monitored and accurately counted to evaluate chemotaxis. Moreover, the migrated cells were easily collected by pipetting for further studies after a slip step to reconnect the chemoeffector microwells. The performance of the device was characterized by comparing chemotaxis of two Escherichia coli species, using aspartic acid as the attractant and nitrate sulfate as the repellent. It also enables the separation of bacterial species from a mixture, based on the difference of chemotactic abilities, and collection of the cells with strong chemotactic phenomena for further studies off the chip.
Collapse
Affiliation(s)
- Chaohua Shen
- Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | | | | | | | | | | |
Collapse
|
17
|
Shi X, Gao W, Wang J, Chao SH, Zhang W, Meldrum DR. Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices. Crit Rev Biotechnol 2014; 35:448-60. [DOI: 10.3109/07388551.2014.899556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
|
19
|
Cattoni DI, Fiche JB, Valeri A, Mignot T, Nöllmann M. Super-resolution imaging of bacteria in a microfluidics device. PLoS One 2013; 8:e76268. [PMID: 24146850 PMCID: PMC3797773 DOI: 10.1371/journal.pone.0076268] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
Bacteria have evolved complex, highly-coordinated, multi-component cellular engines to achieve high degrees of efficiency, accuracy, adaptability, and redundancy. Super-resolution fluorescence microscopy methods are ideally suited to investigate the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. These techniques require the long-term stability of samples, high signal-to-noise-ratios, low chromatic aberrations and surface flatness, conditions difficult to meet with traditional immobilization methods. We present a method in which cells are functionalized to a microfluidics device and fluorophores are injected and imaged sequentially. This method has several advantages, as it permits the long-term immobilization of cells and proper correction of drift, avoids chromatic aberrations caused by the use of different filter sets, and allows for the flat immobilization of cells on the surface. In addition, we show that different surface chemistries can be used to image bacteria at different time-scales, and we introduce an automated cell detection and image analysis procedure that can be used to obtain cell-to-cell, single-molecule localization and dynamic heterogeneity as well as average properties at the super-resolution level.
Collapse
Affiliation(s)
- Diego I. Cattoni
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Montpellier, France
- Institut Nationale de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Montpellier, France
- Institut Nationale de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Alessandro Valeri
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Montpellier, France
- Institut Nationale de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix-Marseille University, Unité Mixte de Recherche 7283, Marseille, France
| | - Marcelo Nöllmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Montpellier, France
- Institut Nationale de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
- * E-mail:
| |
Collapse
|
20
|
Wu J, Wu X, Lin F. Recent developments in microfluidics-based chemotaxis studies. LAB ON A CHIP 2013; 13:2484-99. [PMID: 23712326 DOI: 10.1039/c3lc50415h] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
21
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC. Fluorescent reporters and methods to analyze fluorescent signals. Methods Mol Biol 2013; 983:93-112. [PMID: 23494303 DOI: 10.1007/978-1-62703-302-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of fluorescent reporters and the development of new imaging technologies have revolutionized studies in cell biology. During recent years the number of fluorescent proteins offering the ability to visualize the distribution of proteins, organelles, and cells has increased tremendously. In parallel, the imaging tools available were refined rapidly enabling now the use of a huge spectrum of specialized methods to explore the cellular and subcellular localization and dynamics of fluorescently tagged markers. This chapter presents an overview of fluorescent reporters and methods available, and describes a selection of those that are routinely applicable in imaging studies using Dictyostelium discoideum.
Collapse
|
22
|
Amselem G, Theves M, Bae A, Beta C, Bodenschatz E. Control parameter description of eukaryotic chemotaxis. PHYSICAL REVIEW LETTERS 2012; 109:108103. [PMID: 23005333 DOI: 10.1103/physrevlett.109.108103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 06/01/2023]
Abstract
The chemotaxis of eukaryotic cells depends both on the average concentration of the chemoattractant and on the steepness of its gradient. For the social amoeba Dictyostelium discoideum, we test quantitatively the prediction by Ueda and Shibata [Biophys. J. 93, 11 (2007)] that the efficacy of chemotaxis depends on a single control parameter only, namely, the signal-to-noise ratio (SNR), determined by the stochastic fluctuations of (i) the binding of the chemoattractant molecule to the transmembrane receptor and (ii) the intracellular activation of the effector of the signaling cascade. For SNR < or approximately equal to 1, the theory captures the experimental findings well, while for larger SNR noise sources further downstream in the signaling pathway need to be taken into account.
Collapse
Affiliation(s)
- Gabriel Amselem
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Amselem G, Theves M, Bae A, Bodenschatz E, Beta C. A stochastic description of Dictyostelium chemotaxis. PLoS One 2012; 7:e37213. [PMID: 22662138 PMCID: PMC3360683 DOI: 10.1371/journal.pone.0037213] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/15/2012] [Indexed: 12/05/2022] Open
Abstract
Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes. Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium discoideum, a model organism for eukaryotic chemotaxis. A large number of cell trajectories in stationary, linear chemoattractant gradients is measured, using microfluidic tools in combination with automated cell tracking. We describe the directional motion as the interplay between deterministic and stochastic contributions based on a Langevin equation. The functional form of this equation is directly extracted from experimental data by angle-resolved conditional averages. It contains quadratic deterministic damping and multiplicative noise. In the presence of an external gradient, the deterministic part shows a clear angular dependence that takes the form of a force pointing in gradient direction. With increasing gradient steepness, this force passes through a maximum that coincides with maxima in both speed and directionality of the cells. The stochastic part, on the other hand, does not depend on the orientation of the directional cue and remains independent of the gradient magnitude. Numerical simulations of our probabilistic model yield quantitative agreement with the experimental distribution functions. Thus our model captures well the dynamics of chemotactic cells and can serve to quantify differences and similarities of different chemotactic eukaryotes. Finally, on the basis of our model, we can characterize the heterogeneity within a population of chemotactic cells.
Collapse
Affiliation(s)
- Gabriel Amselem
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Matthias Theves
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Albert Bae
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, United States of America
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, United States of America
- Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - Carsten Beta
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|