1
|
Hubiernatorova A, Novak J, Vaskovicova M, Sekac D, Kropyvko S, Hodny Z. Tristetraprolin affects invasion-associated genes expression and cell motility in triple-negative breast cancer model. Cytoskeleton (Hoboken) 2025; 82:311-326. [PMID: 39319680 PMCID: PMC12063522 DOI: 10.1002/cm.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that negatively regulates its target mRNAs and has been shown to inhibit tumor progression and invasion. Tumor invasion requires precise regulation of cytoskeletal components, and dysregulation of cytoskeleton-associated genes can significantly alter cell motility and invasive capability. Several genes, including SH3PXD2A, SH3PXD2B, CTTN, WIPF1, and WASL, are crucial components of the cytoskeleton reorganization machinery and are essential for adequate cell motility. These genes are also involved in invasion processes, with SH3PXD2A, SH3PXD2B, WIPF1, and CTTN being key components of invadopodia-specialized structures that facilitate invasion. However, the regulation of these genes is not well understood. This study demonstrates that ectopic expression of TTP in MDA-MB-231 cells leads to decreased mRNA levels of CTTN and SH3PXD2A, as well as defects in cell motility and actin filament organization. Additionally, doxorubicin significantly increases TTP expression and reduces the mRNA levels of cytoskeleton-associated genes, enhancing our understanding of how doxorubicin may affect the transcriptional profile of cells. However, doxorubicin affects target mRNAs differently than TTP ectopic expression, suggesting it may not be the primary mechanism of doxorubicin in breast cancer (BC) treatment. High TTP expression is considered as a positive prognostic marker in multiple cancers, including BC. Given that doxorubicin is a commonly used drug for treating triple-negative BC, using TTP as a prognostic marker in this cohort of patients might be limited since it might be challenging to understand if high TTP expression occurred due to the favorable physiological state of the patient or as a consequence of treatment.
Collapse
Affiliation(s)
- Anastasiia Hubiernatorova
- Department of Functional GenomicsInstitute of Molecular Biology and Genetics NAS of UkraineKyivUkraine
- Laboratory of Cell Regeneration and PlasticityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Josef Novak
- Laboratory of Genome IntegrityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Michaela Vaskovicova
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
- Laboratory of DNA IntegrityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - David Sekac
- Laboratory of Cell Regeneration and PlasticityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Serhii Kropyvko
- Department of Functional GenomicsInstitute of Molecular Biology and Genetics NAS of UkraineKyivUkraine
| | - Zdenek Hodny
- Laboratory of Genome IntegrityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
2
|
Sokolik CG, Chill JH. A Triple-pose Complex Between an Extended WIP Motif and a C-terminal SH3 Domain Modulates Cortactin Activity. J Mol Biol 2025; 437:168984. [PMID: 39914658 DOI: 10.1016/j.jmb.2025.168984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The central domain of WASp-interacting protein (WIP) interacts with the cortactin SH3 domain through a previously undefined binding motif. This interaction affects extracellular matrix (ECM) degradation and the invasive phenotype of cells. Here, using NMR-based methods, we identify the major WIP epitope modulating this binding event as residues 168-183, an unexpectedly long segment uncharacteristic of SH3 peptidic ligands. A scanning mutagenesis analysis showed that peptide binding 'hotspots' are distributed throughout the binding sequence. To uncover the structural basis of WIP-cortactin recognition we utilized edited-filtered NOESY experiments to determine the structure of the intermediate-affinity SH3/peptide complex. Analysis of the NOESY pattern suggests that the peptide sequence dictates three interchanging binding modes, two oppositely oriented canonical poses involving N-terminal interactions, corresponding to class I and class II complexes, and a non-canonical pseudo-class II pose involving C-terminal interactions. The latter pose highlights the importance of the hydrophobic surface adjacent to the canonical binding grooves and accounts for the extended binding motif. Design of mutant peptides with increased affinity based on this multi-conformational complex demonstrates how these structural insights may impact design of improved inhibitors of the WIP-cortactin interaction with potential therapeutic applications.
Collapse
Affiliation(s)
- Chana G Sokolik
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900 Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900 Israel.
| |
Collapse
|
3
|
Tks5 Regulates Synaptic Podosome Formation and Stabilization of the Postsynaptic Machinery at the Neuromuscular Junction. Int J Mol Sci 2021; 22:ijms222112051. [PMID: 34769479 PMCID: PMC8585010 DOI: 10.3390/ijms222112051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.
Collapse
|
4
|
Lymphoid Organ Proteomes Identify Therapeutic Efficacy Biomarkers Following the Intracavitary Administration of Curcumin in a Highly Invasive Rat Model of Peritoneal Mesothelioma. Int J Mol Sci 2021; 22:ijms22168566. [PMID: 34445271 PMCID: PMC8395293 DOI: 10.3390/ijms22168566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify the proteomic changes produced by curcumin treatment following stimulation of the host immune system in a rat model of malignant mesothelioma. We analyzed the proteomes of secondary lymphoid organs from four normal rats, four untreated tumor-bearing rats, and four tumor-bearing rats receiving repeated intraperitoneal administrations of curcumin. Cross-comparing proteome analyses of histological sections of the spleen from the three groups first identified a list of eighty-three biomarkers of interest, thirteen of which corresponded to proteins already reported in the literature and involved in the anticancer therapeutic effects of curcumin. In a second step, comparing these data with proteomic analyses of histological sections of mesenteric lymph nodes revealed eight common biomarkers showing a similar pattern of changes in both lymphoid organs. Additional findings included a partial reduction of the increase in spleen-circulating biomarkers, a decrease in C-reactive protein and complement C3 in the spleen and lymph nodes, and an increase in lymph node purine nucleoside phosphorylase previously associated with liver immunodeficiency. Our results suggest some protein abundance changes could be related to the systemic, distant non-target antitumor effects produced by this phytochemical.
Collapse
|
5
|
Mughees M, Bano F, Wajid S. Mechanism of WASP and WAVE family proteins in the progression of prostate cancer. PROTOPLASMA 2021; 258:683-693. [PMID: 33471226 DOI: 10.1007/s00709-021-01608-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed and third lethal cause of death from cancer in men worldwide. Despite the availability of vast treatment procedures, still the high occurrence of invasion and metastasis of PCa are reported in cancer patients. The WASP (Wiskott-Aldrich syndrome protein) and WAVE (WASP family verprolin homologous protein) family of proteins are actin cytoskeleton regulatory proteins, reported to enhance cancer cell invasion and migration in prostate cancer. Hence, this review sheds light on the studies that explored the potential role of WASP and WAVE family of proteins in invasion and metastasis of prostate cancer. The research articles explored for the completion of this review were mostly from PubMed and Google Scholar by using the appropriate keywords for indexing. The conserved function of WASP and WAVE protein family is to receive the upstream signals from the Rho GTPase family and transmit them to activate the Arp2/3 complex that leads to rapid actin polymerization at leading edge of cells, which is crucial for PCa metastasis. Therefore, targeting these proteins could reflect a very interesting therapeutic opportunity to combat prostate cancer.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faizia Bano
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Eckly A, Scandola C, Oprescu A, Michel D, Rinckel JY, Proamer F, Hoffmann D, Receveur N, Léon C, Bear JE, Ghalloussi D, Harousseau G, Bergmeier W, Lanza F, Gaits-Iacovoni F, de la Salle H, Gachet C. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. J Thromb Haemost 2020; 18:2987-3001. [PMID: 32702204 DOI: 10.1111/jth.15024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/16/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Blood platelets are anucleate cell fragments that prevent bleeding and minimize blood vessel injury. They are formed from the cytoplasm of megakaryocytes located in the bone marrow. For successful platelet production, megakaryocyte fragments must pass through the sinusoid endothelial barrier by a cell biology process unique to these giant cells as compared with erythrocytes and leukocytes. Currently, the mechanisms by which megakaryocytes interact and progress through the endothelial cells are not understood, resulting in a significant gap in our knowledge of platelet production. OBJECTIVE The aim of this study was to investigate how megakaryocytes interact and progress through the endothelial cells of mouse bone marrow sinusoids. METHODS We used a combination of fluorescence, electron, and three-dimensional microscopy to characterize the cellular events between megakaryocytes and endothelial cells. RESULTS We identified protrusive, F-actin-based podosome-like structures, called in vivo-MK podosomes, which initiate the formation of pores through endothelial cells. These structures present a collective and spatial organization through their interconnection via a contractile network of actomyosin, essential to regulate the endothelial openings. This ensures proper passage of megakaryocyte-derived processes into the blood circulation to promote thrombopoiesis. CONCLUSION This study provides novel insight into the in vivo function of podosomes of megakaryocytes with critical importance to platelet production.
Collapse
Affiliation(s)
- Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Cyril Scandola
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Antoine Oprescu
- INSERM U1048, I2MC, Université Paul Sabatier, Toulouse, France
| | - Deborah Michel
- INSERM U1048, I2MC, Université Paul Sabatier, Toulouse, France
| | - Jean-Yves Rinckel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Fabienne Proamer
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - David Hoffmann
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Nicolas Receveur
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorsaf Ghalloussi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriel Harousseau
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Francois Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | | | - Henri de la Salle
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| |
Collapse
|
7
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
8
|
Escoll M, Lastra D, Robledinos-Antón N, Wandosell F, Antón IM, Cuadrado A. WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells. Antioxidants (Basel) 2020; 9:E773. [PMID: 32825452 PMCID: PMC7555221 DOI: 10.3390/antiox9090773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.
Collapse
Affiliation(s)
- Maribel Escoll
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Diego Lastra
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Natalia Robledinos-Antón
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Inés María Antón
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Cellular and Molecular Biology, Darwin 3, 28049 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| |
Collapse
|
9
|
Abstract
Cell-cell fusion is indispensable for creating life and building syncytial tissues and organs. Ever since the discovery of cell-cell fusion, how cells join together to form zygotes and multinucleated syncytia has remained a fundamental question in cell and developmental biology. In the past two decades, Drosophila myoblast fusion has been used as a powerful genetic model to unravel mechanisms underlying cell-cell fusion in vivo. Many evolutionarily conserved fusion-promoting factors have been identified and so has a surprising and conserved cellular mechanism. In this review, we revisit key findings in Drosophila myoblast fusion and highlight the critical roles of cellular invasion and resistance in driving cell membrane fusion.
Collapse
Affiliation(s)
- Donghoon M Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
10
|
Han G, Zuo J, Holliday LS. Specialized Roles for Actin in Osteoclasts: Unanswered Questions and Therapeutic Opportunities. Biomolecules 2019; 9:biom9010017. [PMID: 30634501 PMCID: PMC6359508 DOI: 10.3390/biom9010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoclasts are cells of the hematopoietic lineage that are specialized to resorb bone. In osteoclasts, the actin cytoskeleton engages in at least two unusual activities that are required for resorption. First, microfilaments form a dynamic and structurally elaborate actin ring. Second, microfilaments bind vacuolar H⁺-ATPase (V-ATPase) and are involved in forming the V-ATPase-rich ruffled plasma membrane. The current review examines these two specialized functions with emphasis on the identification of new therapeutic opportunities. The actin ring is composed of substructures called podosomes that are interwoven to form a cohesive superstructure. Studies examining the regulation of the formation of actin rings and its constituent proteins are reviewed. Areas where there are gaps in the knowledge are highlighted. Microfilaments directly interact with the V-ATPase through an actin binding site in the B2-subunit of V-ATPase. This binding interaction is required for ruffled membrane formation. Recent studies show that an inhibitor of the interaction blocks bone resorption in pre-clinical animal models, including a model of post-menopausal osteoporosis. Because the unusual actin-based resorption complex is unique to osteoclasts and essential for bone resorption, it is likely that deeper understanding of its underlying mechanisms will lead to new approaches to treat bone disease.
Collapse
Affiliation(s)
- Guanghong Han
- Department of Stomatology, College and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jian Zuo
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| | - Lexie Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
- Department of Anatomy & Cell Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
11
|
WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma. Cancers (Basel) 2018; 10:cancers10060191. [PMID: 29890731 PMCID: PMC6024887 DOI: 10.3390/cancers10060191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Wild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53) is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein), correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44), prominin-1 (CD133), yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.
Collapse
|
12
|
Garcia E, Bernardino de la Serna J. Dissecting single-cell molecular spatiotemporal mobility and clustering at focal adhesions in polarised cells by fluorescence fluctuation spectroscopy methods. Methods 2018; 140-141:85-96. [PMID: 29605734 DOI: 10.1016/j.ymeth.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022] Open
Abstract
Quantitative fluorescence fluctuation spectroscopy from optical microscopy datasets is a very powerful tool to resolve multiple spatiotemporal cellular and subcellular processes at the molecular level. In particular, raster image correlation spectroscopy (RICS) and number and brightness analyses (N&B) yield molecular mobility and clustering dynamic information extracted from real-time cellular processes. This quantitative information can be inferred in a highly flexible and detailed manner, i.e. 1) at the localisation level: from full-frame datasets and multiple regions of interest within; and 2) at the temporal level: not only from full-frame and multiple regions, but also intermediate temporal events. Here we build on previous research in deciphering the molecular dynamics of paxillin, a main component of focal adhesions. Cells use focal adhesions to attach to the extracellular matrix and interact with their local environment. Through focal adhesions and other adhesion structures, cells sense their local environment and respond accordingly; due to this continuous communication, these structures can be highly dynamic depending on the extracellular characteristics. By using a previously well-characterised model like paxillin, we examine the powerful sensitivity and some limitations of RICS and N&B analyses. We show that cells upon contact to different surfaces show differential self-assembly dynamics in terms of molecular diffusion and oligomerisation. In addition, single-cell studies show that these dynamics change gradually following an antero-posterior gradient.
Collapse
Affiliation(s)
- Esther Garcia
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell-Oxford, UK
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell-Oxford, UK; Department of Physics, King's College London, London, UK.
| |
Collapse
|
13
|
Antón IM, Gómez-Oro C, Rivas S, Wandosell F. Crosstalk between WIP and Rho family GTPases. Small GTPases 2018; 11:160-166. [PMID: 29172947 DOI: 10.1080/21541248.2017.1390522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Through actin-binding proteins such as the neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP-interacting protein (WIP), the Rho family GTPases RhoA, Rac1 and Cdc42 are major modulators of the cytoskeleton. (N-)WASP and WIP control Rho GTPase activity in various cell types, either by direct WIP/(N-)WASP/Cdc42 or potential WIP/RhoA binding, or through secondary links that regulate GTPase distribution and/or transcription levels. WIP helps to regulate filopodium generation and participates in the Rac1-mediated ruffle formation that determines cell motility. In neurons, lack of WIP increases dendritic spine size and filamentous actin content in a RhoA-dependent manner. In contrast, WIP deficiency in an adenocarcinoma cell line significantly reduces RhoA levels. These data support a role for WIP in the GTPase-mediated regulation of numerous actin-related cell functions; we discuss the possibility that this WIP effect is linked to cell proliferative status.
Collapse
Affiliation(s)
- Inés M Antón
- Departamento de biología molecular y celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Departamento de neuropatología molecular, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carla Gómez-Oro
- Departamento de biología molecular y celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sergio Rivas
- Departamento de biología molecular y celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de neuropatología molecular, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de neuropatología molecular, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
WIP Drives Tumor Progression through YAP/TAZ-Dependent Autonomous Cell Growth. Cell Rep 2017; 17:1962-1977. [PMID: 27851961 DOI: 10.1016/j.celrep.2016.10.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 11/21/2022] Open
Abstract
In cancer, the deregulation of growth signaling pathways drives changes in the cell's architecture and its environment that allow autonomous growth of tumors. These cells then acquire a tumor-initiating "stemness" phenotype responsible for disease advancement to more aggressive stages. Here, we show that high levels of the actin cytoskeleton-associated protein WIP (WASP-interacting protein) correlates with tumor growth, both of which are linked to the tumor-initiating cell phenotype. We find that WIP controls tumor growth by boosting signals that stabilize the YAP/TAZ complex via a mechanism mediated by the endocytic/endosomal system. When WIP levels are high, the β-catenin Adenomatous polyposis coli (APC)-axin-GSK3 destruction complex is sequestered to the multi-vesicular body compartment, where its capacity to degrade YAP/TAZ is inhibited. YAP/TAZ stability is dependent on Rac, p21-activated kinase (PAK) and mammalian diaphanous-related formin (mDia), and is Hippo independent. This close biochemical relationship indicates an oncogenic role for WIP in the physiology of cancer pathology by increasing YAP/TAZ stability.
Collapse
|
15
|
Escoll M, Gargini R, Cuadrado A, Anton IM, Wandosell F. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene 2017; 36:3515-3527. [DOI: 10.1038/onc.2016.518] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
|
16
|
Kropyvko S, Gryaznova T, Morderer D, Rynditch A. Mammalian verprolin CR16 acts as a modulator of ITSN scaffold proteins association with actin. Biochem Biophys Res Commun 2017; 484:813-819. [PMID: 28161632 DOI: 10.1016/j.bbrc.2017.01.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 02/03/2023]
Abstract
Actin cytoskeleton rearrangements are required for normal cell functioning, and their deregulation leads to various pathologies. Members of two mammalian protein families - ITSNs (ITSN1 and ITSN2) and verprolins (WIP, CR16 and WIRE) are involved in Cdc42/N-WASP/Arp2/3 signaling pathway-mediated remodeling of the actin cytoskeleton. Recently we demonstrated that ITSNs interact with the actin-regulating protein WIP. Here, we show that other member of verprolin family, CR16, also forms complexes with ITSN1 and ITSN2 in human cell lines. The actin-binding protein CR16 modulates ITSN/β-actin association. Moreover, overexpressed CR16 promoted co-localization of ITSN1 with F-actin in MCF-7 breast cancer cells. Our data demonstrated that CR16 mRNA is expressed in glioblastoma and breast tumors. These findings provide the basis for further functional investigations of the ITSN/CR16 complex that may play an important role in actin remodeling and cellular invasion.
Collapse
Affiliation(s)
- Sergii Kropyvko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03143, Ukraine.
| | - Tetyana Gryaznova
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Dmytro Morderer
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| |
Collapse
|
17
|
Mena INV dysregulates cortactin phosphorylation to promote invadopodium maturation. Sci Rep 2016; 6:36142. [PMID: 27824079 PMCID: PMC5099927 DOI: 10.1038/srep36142] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023] Open
Abstract
Invadopodia, actin-based protrusions of invasive carcinoma cells that focally activate extracellular matrix-degrading proteases, are essential for the migration and intravasation of tumor cells during dissemination from the primary tumor. We have previously shown that cortactin phosphorylation at tyrosine residues, in particular tyrosine 421, promotes actin polymerization at newly-forming invadopodia, promoting their maturation to matrix-degrading structures. However, the mechanism by which cells regulate the cortactin tyrosine phosphorylation-dephosphorylation cycle at invadopodia is unknown. Mena, an actin barbed-end capping protein antagonist, is expressed as various splice-isoforms. The MenaINV isoform is upregulated in migratory and invasive sub-populations of breast carcinoma cells, and is involved in tumor cell intravasation. Here we show that forced MenaINV expression increases invadopodium maturation to a far greater extent than equivalent expression of other Mena isoforms. MenaINV is recruited to invadopodium precursors just after their initial assembly at the plasma membrane, and promotes the phosphorylation of cortactin tyrosine 421 at invadopodia. In addition, we show that cortactin phosphorylation at tyrosine 421 is suppressed by the phosphatase PTP1B, and that PTP1B localization to the invadopodium is reduced by MenaINV expression. We conclude that MenaINV promotes invadopodium maturation by inhibiting normal dephosphorylation of cortactin at tyrosine 421 by the phosphatase PTP1B.
Collapse
|
18
|
Herrero-Garcia E, O'Bryan JP. Intersectin scaffold proteins and their role in cell signaling and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:23-30. [PMID: 27746143 DOI: 10.1016/j.bbamcr.2016.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Intersectins (ITSNs) are a family of multi-domain proteins involved in regulation of diverse cellular pathways. These scaffold proteins are well known for regulating endocytosis but also play important roles in cell signaling pathways including kinase regulation and Ras activation. ITSNs participate in several human cancers, such as neuroblastomas and glioblastomas, while their downregulation is associated with lung injury. Alterations in ITSN expression have been found in neurodegenerative diseases such as Down Syndrome and Alzheimer's disease. Binding proteins for ITSNs include endocytic regulatory factors, cytoskeleton related proteins (i.e. actin or dynamin), signaling proteins as well as herpes virus proteins. This review will summarize recent studies on ITSNs, highlighting the importance of these scaffold proteins in the aforementioned processes.
Collapse
Affiliation(s)
- Erika Herrero-Garcia
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
García E, Ragazzini C, Yu X, Cuesta-García E, Bernardino de la Serna J, Zech T, Sarrió D, Machesky LM, Antón IM. WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion. Sci Rep 2016; 6:23590. [PMID: 27009365 PMCID: PMC4806363 DOI: 10.1038/srep23590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer cells form actin-rich degradative protrusions (invasive pseudopods and invadopodia), which allows their efficient dispersal during metastasis. Using biochemical and advanced imaging approaches, we demonstrate that the N-WASP-interactors WIP and WICH/WIRE play non-redundant roles in cancer cell invasion. WIP interacts with N-WASP and cortactin and is essential for invadopodium assembly, whereas WICH/WIRE regulates N-WASP activation to control invadopodium maturation and degradative activity. Our data also show that Nck interaction with WIP and WICH/WIRE modulates invadopodium maturation; changes in WIP and WICH/WIRE levels induce differential distribution of Nck. We show that WIP can replace WICH/WIRE functions and that elevated WIP levels correlate with high invasiveness. These findings identify a role for WICH/WIRE in invasiveness and highlight WIP as a hub for signaling molecule recruitment during invadopodium generation and cancer progression, as well as a potential diagnostic biomarker and an optimal target for therapeutic approaches.
Collapse
Affiliation(s)
- Esther García
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Xinzi Yu
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | - Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Harwell-Oxford, UK
| | - Tobias Zech
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | - Inés M. Antón
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Nilsson G, Kannius-Janson M. Forkhead Box F1 promotes breast cancer cell migration by upregulating lysyl oxidase and suppressing Smad2/3 signaling. BMC Cancer 2016; 16:142. [PMID: 26908052 PMCID: PMC4763409 DOI: 10.1186/s12885-016-2196-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) increases cell migration and is implicated in cancer cell invasion and metastasis. We have previously described the involvement of the transcription factors, nuclear factor I-C2 (NFI-C2) and Forkhead box F1 (FoxF1), in the regulation of EMT and invasion during breast tumor progression. NFI-C2 counteracts these processes and FoxF1 is a directly repressed target of NFI-C2. FoxF1 induces EMT and invasiveness and enhances xenograft tumorigenicity in nude mice. Here we identify oppositely regulated targets of NFI-C2 and FoxF1 involved in these processes and further study a possible role for FoxF1 in tumorigenesis. Methods We used Affymetrix microarray to detect changes in the transcriptome of a mouse mammary epithelial cell line upon overexpression of NFI-C2 or FoxF1. To elucidate the effects and signaling events following FoxF1 overexpression we investigated in vitro invasion capacity and changes in transcription and protein expression resulting from RNAi and inhibitor treatment. Results The extracellular matrix enzyme lysyl oxidase (LOX) was negatively regulated by NFI-C2 and positively regulated by FoxF1, and upregulation of LOX following FoxF1 overexpression in mouse mammary epithelial cells increased in vitro cell invasion. In the nuclei of FoxF1-overexpressing cells, the phosphorylation of Smad2 decreased, while that of p38 increased. Depletion of LOX by RNAi enhanced phosphorylation of Smad2 by a focal adhesion kinase (FAK)-dependent mechanism. In addition, induced expression of FoxF1 in a non-malignant human mammary epithelial cell line showed that the increase in LOX transcription and the suppression of Smad2 activity are early effects of FoxF1. Conclusion These data show that FoxF1 enhances invasion in a LOX-dependent manner, is involved in the regulation of Smad2 signaling, and that FoxF1 overexpression ultimately leads to activation of p38 MAPK signaling. These findings provide new insights into the regulation of signaling pathways known to be important during breast tumor progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2196-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gisela Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 430, SE-405 30, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
21
|
Siar CH, Rahman ZABA, Tsujigiwa H, Mohamed Om Alblazi K, Nagatsuka H, Ng KH. Invadopodia proteins, cortactin, N-WASP and WIP differentially promote local invasiveness in ameloblastoma. J Oral Pathol Med 2016; 45:591-8. [PMID: 26752341 DOI: 10.1111/jop.12417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cell migration and invasion through interstitial tissues are dependent upon several specialized characteristics of the migratory cell notably generation of proteolytic membranous protrusions or invadopodia. Ameloblastoma is a benign odontogenic epithelial neoplasm with a locally infiltrative behaviour. Cortactin and MMT1-MMP are two invadopodia proteins implicated in its local invasiveness. Other invadopodia regulators, namely N-WASP, WIP and Src kinase remain unclarified. This study addresses their roles in ameloblastoma. MATERIALS AND METHOD Eighty-seven paraffin-embedded ameloblastoma cases (20 unicystic, 47 solid/multicystic, 3 desmoplastic and 17 recurrent) were subjected to immunohistochemistry for expression of cortactin, N-WASP, WIP, Src kinase and F-actin, and findings correlated with clinicopathological parameters. RESULTS Invadopodia proteins (except Src kinase) and F-actin were widely detected in ameloblastoma (cortactin: n = 73/87, 83.9%; N-WASP: n = 59/87; 67.8%; WIP: n = 77/87; 88.5%; and F-actin: n = 87/87, 100%). Protein localization was mainly cytoplasmic and/or membranous, and occasionally nuclear for F-actin. Cortactin, which functions as an actin-scaffolding protein, demonstrated significantly higher expression levels within ameloblastoma tumoral epithelium than in stroma (P < 0.05). N-WASP, which coordinates actin polymerization and invadopodia-mediated extracellular matrix degradation, was overexpressed in the solid/multicystic subtype (P < 0.05). WIP, an upstream regulator of N-WASP, and F-actin were significantly upregulated along the tumour invasive front compared to tumour centres (P < 0.05). Except for males with cortactin overexpression, other clinical parameters (age, ethnicity and anatomical site) showed no significant correlations. CONCLUSIONS Present results suggest that local invasiveness of ameloblastoma is dependent upon the migratory potential of its tumour cells as defined by their distribution of cortactin, N-WASP and WIP in correlation with F-actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Chong Huat Siar
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Bin Abdul Rahman
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hidetsugu Tsujigiwa
- Laboratory of Histopathology, Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Kamila Mohamed Om Alblazi
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kok Han Ng
- Unit of Stomatology, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Gryaznova T, Kropyvko S, Burdyniuk M, Gubar O, Kryklyva V, Tsyba L, Rynditch A. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Cell Signal 2015; 27:1499-508. [PMID: 25797047 DOI: 10.1016/j.cellsig.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 01/21/2023]
Abstract
Invasive cancer cells form actin-rich membrane protrusions called invadopodia that degrade extracellular matrix and facilitate cell invasion and metastasis. WIP (WASP-interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) are localized in invadopodia and play a crucial role in their formation. Here we show that WIP interacts with endocytic adaptor proteins of the intersectin (ITSN) family, ITSN1 and ITSN2. The interaction is mediated by the SH3 domains of ITSNs and the middle part of the WIP proline-rich motifs. We have also demonstrated that ITSN1, WIP and N-WASP can form a complex in cells. Endogenous ITSN1 and ITSN2 are located in invasive protrusions of MDA-MB-231 breast cancer cell line. Moreover, data from immunofluorescent analysis revealed co-localization of ITSN1 and WIP at sites of invadopodia formation and in clathrin-coated pits. Together, these findings provide insights into the molecular mechanisms of invadopodia formation and identify ITSNs as scaffold proteins involved in this process.
Collapse
Affiliation(s)
- Tetyana Gryaznova
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | - Sergii Kropyvko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Mariia Burdyniuk
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Olga Gubar
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Valentyna Kryklyva
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Liudmyla Tsyba
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| |
Collapse
|
23
|
Vijayakumar V, Monypenny J, Chen XJ, Machesky LM, Lilla S, Thrasher AJ, Antón IM, Calle Y, Jones GE. Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages. J Cell Sci 2015; 128:251-65. [PMID: 25413351 PMCID: PMC4294773 DOI: 10.1242/jcs.154880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/07/2014] [Indexed: 01/18/2023] Open
Abstract
Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP-WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP-WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP-WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor.
Collapse
Affiliation(s)
- Vineetha Vijayakumar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Monypenny
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Xing Judy Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Sergio Lilla
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Adrian J Thrasher
- Section of Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Yolanda Calle
- Department of Haematological & Molecular Medicine, King's College London, London SE5 9NU, UK
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| |
Collapse
|
24
|
Abstract
Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.
Collapse
|
25
|
Havrylov S, Park M. MS/MS-based strategies for proteomic profiling of invasive cell structures. Proteomics 2014; 15:272-86. [PMID: 25303514 DOI: 10.1002/pmic.201400220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/19/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022]
Abstract
Acquired capacity of cancer cells to penetrate through the extracellular matrix of surrounding tissues is a prerequisite for tumour metastatic spread - the main source of cancer-associated mortality. Through combined efforts of many research groups, we are beginning to understand that the ability of cells to invade through the extracellular matrix is a multi-faceted phenomenon supported by variety of specialised protrusive cellular structures, primarily pseudopodia, invadopodia and podosomes. Additionally, secreted extracellular vesicles are being increasingly recognised as important mediators of invasive cell phenotypes and therefore may be considered bona fide invasive cell structures. Dissection of the molecular makings underlying biogenesis and function of all of these structures is crucial to identify novel targets for specific anti-metastatic therapies. Rapid advances and growing accessibility of MS/MS-based protein identification made this family of techniques a suitable and appropriate choice for proteomic profiling of invasive cell structures. In this review, we provide a summary of current progress in the characterisation of protein composition and topology of protein interaction networks of pseudopodia, invadopodia, podosomes and extracellular vesicles, as well as outline challenges and perspectives of the field.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
26
|
García E, Machesky LM, Jones GE, Antón IM. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol 2014; 93:413-23. [PMID: 25169059 DOI: 10.1016/j.ejcb.2014.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022] Open
Abstract
Actin filament assembly and reorganisation during cell migration and invasion into extracellular matrices is a well-documented phenomenon. Among actin-binding proteins regulating its polymerisation, the members of the WASP (Wiskott Aldrich Syndrome Protein) family are generally thought to play the most significant role in supporting cell invasiveness. In situ, cytosolic N-WASP (neural WASP) is associated with a partner protein termed WIP (WASP Interacting Protein) that is bound to the N-terminal domain of N-WASP. Despite much effort, rather little is known about the role of WIP in regulating N-WASP and consequent actin-filament assembly. Even less is known about the function of WIP within the specialised cell adhesion and attachment structures known as podosomes and invadopodia. In particular, whilst the interaction of WIP with known participants in the development and maturation of invadopodia such as N-WASP, the Arp2/3 complex and cortactin has been described, little is known concerning the direct contribution of WIP to invadopodia and its potential role as a regulator of cancer cell invasion. In this report, we use 2D and 3D culture systems to describe the role played by WIP in modulating the morphology and invasiveness of metastatic breast cancer cells in vitro, as well as its effect on the process of mesenchymal-epithelial transition (MET) seen in these cells. We demonstrate that WIP is necessary for invadopodium formation and matrix degradation by basal breast cancer cells, but not sufficient to induce invasiveness in luminal cells.
Collapse
Affiliation(s)
- Esther García
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus UAM Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| | - Laura M Machesky
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK.
| | - Gareth E Jones
- Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Inés M Antón
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus UAM Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
27
|
Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, Anderson MA, Dredge BK, Gregory PA, Tsykin A, Neilsen C, Thomson DW, Bert AG, Leerberg JM, Yap AS, Jensen KB, Khew-Goodall Y, Goodall GJ. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J 2014; 33:2040-56. [PMID: 25069772 PMCID: PMC4195771 DOI: 10.15252/embj.201488641] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
The microRNAs of the miR-200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago-HITS-CLIP technology for transcriptome-wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR-200a and miR-200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR-200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR-200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho-ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR-200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Josephine A Wright
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Marika Salmanidis
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Matthew A Anderson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - B Kate Dredge
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Corine Neilsen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Daniel W Thomson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Joanne M Leerberg
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Kirk B Jensen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
29
|
Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2014; 256:222-39. [PMID: 24117824 DOI: 10.1111/imr.12118] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are best known for their protective search and destroy functions against invading microorganisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin-rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation-promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures.
Collapse
Affiliation(s)
- Pablo Rougerie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
30
|
Sutoh Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, Wiche G, Ohyama C, Tsuboi S. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol 2014; 93:157-69. [PMID: 24810881 DOI: 10.1016/j.ejcb.2014.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 01/17/2023] Open
Abstract
To investigate the molecular mechanisms of cancer metastasis, we have isolated a high-metastatic bladder cancer cell subpopulation from a low-metastatic cell line by using an in vivo selection system. Cells in the subpopulation showed a high ability to form invadopodia, the filamentous actin (F-actin)-based membrane protrusions that play an essential role in cancer cell invasion. Analysis of the gene expression profile revealed that the expression of an intermediate filament (IF) protein, vimentin and a cytoskeletal linker protein, plectin was up-regulated in the high-metastatic subpopulation compared with the low metastatic cell line. Here we report a novel role of vimentin IF and plectin in metastasis. In invasive bladder cancer cells, the vimentin IF-plectin-invadopodia F-actin link was formed. Disruption of this link severely impaired invadopodia formation, reducing the capacities of extracellular matrix degradation, transendothelial migration and metastasis. In addition, the vimentin assembly into the filaments was required for invadopodia formation. Our results suggest that plectin anchoring invadopodia to vimentin IF scaffolds and stabilizes invadopodia, which is a critical molecular process for cancer cell invasion and extravasation for metastasis.
Collapse
Affiliation(s)
- Mihoko Sutoh Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Toshiya Nakamura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Tomihisa Funyu
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - Gerhard Wiche
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna 1030, Austria
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeru Tsuboi
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Japan.
| |
Collapse
|
31
|
Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol 2014; 5:2. [PMID: 24478771 PMCID: PMC3896857 DOI: 10.3389/fimmu.2014.00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA ; Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
32
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
33
|
Banon-Rodriguez I, Saez de Guinoa J, Bernardini A, Ragazzini C, Fernandez E, Carrasco YR, Jones GE, Wandosell F, Anton IM. WIP regulates persistence of cell migration and ruffle formation in both mesenchymal and amoeboid modes of motility. PLoS One 2013; 8:e70364. [PMID: 23950925 PMCID: PMC3737202 DOI: 10.1371/journal.pone.0070364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/17/2013] [Indexed: 02/08/2023] Open
Abstract
The spatial distribution of signals downstream from receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCR) regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein) family. WIP (WASP Interacting Protein) is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor) but the underlying mechanism is poorly understood. Using lentivirally-reconstituted WIP-deficient murine fibroblasts we define the requirement for WIP interaction with N-WASP (neural WASP) and Nck for efficient dorsal ruffle formation and of WIP-Nck binding for fibroblast chemotaxis towards PDGF-AA. The formation of both circular dorsal ruffles in PDGF-AA-stimulated primary fibroblasts and lamellipodia in CXCL13-treated B lymphocytes are also compromised by WIP-deficiency. We provide data to show that a WIP-Nck signalling complex interacts with RTK to promote polarised actin remodelling in fibroblasts and provide the first evidence for WIP involvement in the control of migratory persistence in both mesenchymal (fibroblast) and amoeboid (B lymphocytes) motility.
Collapse
Affiliation(s)
| | - Julia Saez de Guinoa
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandra Bernardini
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Chiara Ragazzini
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estefania Fernandez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gareth E. Jones
- The Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Francisco Wandosell
- Department of Molecular Neurobiology, Centro de Biología Molecular “Severo Ochoa” (CBM-UAM), Madrid, Spain
| | - Ines Maria Anton
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
34
|
Najm P, El-Sibai M. Palladin regulation of the actin structures needed for cancer invasion. Cell Adh Migr 2013; 8:29-35. [PMID: 24525547 DOI: 10.4161/cam.28024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration and invasion involve the formation of cell adhesion structures as well as the dynamic and spatial regulation of the cytoskeleton. The adhesive structures known as podosomes and invadopodia share a common role in cell motility, adhesion, and invasion, and form when the plasma membrane of motile cells undergoes highly regulated protrusions. Palladin, a molecular scaffold, co-localizes with actin-rich structures where it plays a role in their assembly and maintenance in a wide variety of cell lines. Palladin regulates actin cytoskeleton organization as well as cell adhesion formation. Moreover, palladin contributes to the invasive nature of cancer metastatic cells by regulating invadopodia formation. Palladin seems to regulate podosome and invodopodia formation through Rho GTPases, which are known as key players in coordinating the cellular responses required for cell migration and metastasis.
Collapse
Affiliation(s)
- Paul Najm
- Department of Natural Sciences; Lebanese American University; Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences; Lebanese American University; Beirut, Lebanon
| |
Collapse
|