1
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
2
|
Al-Yahya S, Al-Saif M, Al-Ghamdi M, Moghrabi W, Khabar KS, Al-Souhibani N. Post-transcriptional regulation of BIRC5/survivin expression and induction of apoptosis in breast cancer cells by tristetraprolin. RNA Biol 2024; 21:1-15. [PMID: 38111129 PMCID: PMC10761079 DOI: 10.1080/15476286.2023.2286101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Inhibition of apoptosis is one of the hallmarks of cancer and is a target of various therapeutic interventions. BIRC5 is an inhibitor of apoptosis that is aberrantly expressed in cancer leading to sustained growth of tumours. Post-transcriptional control mechanisms involving RNA-binding proteins and AU-rich elements (AREs) are fundamental to many cellular processes and changes in the expression or function of these proteins can promote an aberrant and pathological phenotype. BIRC5 mRNA has an ARE in its 3' UTR making it a candidate for regulation by the RNA binding proteins tristetraprolin (TTP) and HuR (ELAVL1). In this study, we investigated the binding of TTP and HuR by RNA-immunoprecipitation assays and found that these proteins were associated with BIRC5 mRNA to varying extents. Consequently, BIRC5 expression decreased when TTP was overexpressed and apoptosis was induced. In the absence of TTP, BIRC5 mRNA was stabilized, protein expression increased and the number of apoptotic cells declined. As an ARE-mRNA stabilizing protein, recombinant HuR led to upregulation of BIRC5 expression, whereas HuR silencing was concomitant with downregulation of BIRC5 mRNA and protein and increased cell death. Survival analyses demonstrated that increased TTP and low BIRC5 expression predicted an overall better prognosis compared to dysregulated TTP and high BIRC5. Thus, the results present a novel target of ARE-mediated post-transcriptional regulation.
Collapse
Affiliation(s)
- Suhad Al-Yahya
- Molecular Biomedicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maher Al-Saif
- Molecular Biomedicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Al-Ghamdi
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Molecular Biomedicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid S.A. Khabar
- Molecular Biomedicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Norah Al-Souhibani
- Molecular Biomedicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Liu J, Zhang Q, Wang C, Yang J, Yang S, Wang T, Wang B. Knockdown of BAP31 Overcomes Hepatocellular Carcinoma Doxorubicin Resistance through Downregulation of Survivin. Int J Mol Sci 2023; 24:ijms24087622. [PMID: 37108785 PMCID: PMC10142662 DOI: 10.3390/ijms24087622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The expression of B-cell receptor associated protein 31 (BAP31) is increased in many tumor types, and it is reported to participate in proliferation, migration, and apoptosis. However, the relationship between BAP31 and chemoresistance is uncertain. This study investigated the role of BAP31 in regulating the doxorubicin (Dox) resistance of hepatocellular carcinoma (HCC). The expression of proteins was assessed by Western blotting. The correlation between BAP31 expression and Dox resistance was examined by MTT and colony formation assays. Apoptosis was analyzed by flow cytometry and TdT-mediated dUTP nick end labeling assays. Western blot and immunofluorescence analyses were performed in the knockdown cell lines to explore the possible mechanisms. In this study, BAP31 was strongly expressed, and knockdown of BAP31 increased Dox chemosensitivity in cancer cells. Furthermore, the expression of BAP31 was higher in the Dox-resistant HCC cells than that in their parental cells; knockdown of BAP31 reduced the half maximal inhibitory concentration value and overcame Dox resistance in Dox-resistant HCC cells. In HCC cells, knockdown of BAP31 increased Dox-induced apoptosis and enhanced Dox chemosensitivity in vitro and in vivo. The potential mechanism by which BAP31 increased Dox-induced apoptosis is that BAP31 inhibited survivin expression by promoting FoxO1 nucleus-cytoplasm translocation. Knockdown of BAP31 and survivin had a synergistic effect on Dox chemosensitivity by enhancing the apoptosis of HCC cells. These findings reveal that BAP31 knockdown enhances Dox chemosensitivity through the downregulation of survivin, suggesting that BAP31 is a potential therapeutic target for improving the treatment response of HCC with resistance to Dox.
Collapse
Affiliation(s)
- Jingjing Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Qi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Changli Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaying Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Sheng Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tianyi Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Mentoor I, Engelbrecht AM, van de Vyver M, van Jaarsveld PJ, Nell T. The paracrine effects of adipocytes on lipid metabolism in doxorubicin-treated triple negative breast cancer cells. Adipocyte 2021; 10:505-523. [PMID: 34812105 PMCID: PMC8632082 DOI: 10.1080/21623945.2021.1979758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipocytes in the breast tumour microenvironment promotes acquired treatment resistance. We used an in vitro adipocyte-conditioned media approach to investigate the direct paracrine effects of adipocyte secretory factors on MDA-MB-231 breast cancer cells treated with doxorubicin to clarify the underlying treatment resistance mechanisms. Cell-viability assays, and Western blots were performed to determine alterations in apoptotic, proliferation and lipid metabolism protein markers. Free fatty acids (FFA) and inflammatory markers in the collected treatment-conditioned media were also quantified. Adipocyte secretory factors increased the cell-viability of doxorubicin-treated cells (p < 0.0001), which did not correspond to apoptosis or proliferation pathways. Adipocyte secretory factors increased the protein expression of hormone-sensitive lipase (p < 0.05) in doxorubicin-treated cells. Adipocyte secretory factors increased the utilization of leptin (p < 0.05) and MCP-1 (p < 0.01) proteins and possibly inhibited release of linoleic acid by doxorubicin-treated cells (treatment-conditioned media FFA profiles). Adipocyte secretory factors induced doxorubicin treatment resistance, by increasing the utilization of inflammatory mediators and inhibiting the release of FFA by doxorubicin-treated cells. This further promotes inflammation and lipid metabolic reprogramming (lipid storage) in the tumour microenvironment, which breast cancer cells use to evade the toxic effects induced by doxorubicin and confers to acquired treatment resistance.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Biomedical Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
5
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
6
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
7
|
Pastornická A, Rybárová S, Drahošová S, Mihalik J, Kreheľová A, Pavliuk-Karachevtseva A, Hodorová I. Influence of Paclitaxel and Doxorubicin Therapy of ßIII-Tubulin, Carbonic Anhydrase IX, and Survivin in Chemically Induced Breast Cancer in Female Rat. Int J Mol Sci 2021; 22:6363. [PMID: 34198613 PMCID: PMC8232094 DOI: 10.3390/ijms22126363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer in females. The aim of this study was to determine the effect of paclitaxel (PTX) and doxorubicin (DOX) therapy on the βIII-tubulin, carbonic anhydrase IX (CA IX), and survivin expression in chemically-induced rat mammary tumors. Animals with induced mammary carcinogenesis were randomly divided into treatment groups and an untreated group. The total proportion of tumors, the proportion of carcinoma in situ (CIS), and invasive carcinoma (IC) were evaluated. Protein expression in tumor tissue was determined using IHC. Statistical analysis of the data, evaluated by Fisher-exact test and unpaired t-test. Significantly increased levels of proteins in the tumor cells were confirmed using the IHC method for all studied proteins. The expression of βIII-tubulin, CA IX, and survivin increased significantly after treatment with both cytostatics (PTX and DOX). Depending on the type of tumor, a significant increase in all proteins was observed in IC samples after PTX treatment, and CA IX expression after DOX treatment. In CIS samples, a significant increase of βIII-tubulin and survivin expression was observed after a DOX treatment. The results suggest that βIII-tubulin, survivin, and CA IX may be significant drug resistance markers and the clinical regulation of their activity may be an effective means of reversing this resistance.
Collapse
Affiliation(s)
- Alena Pastornická
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Silvia Rybárová
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Slávka Drahošová
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University, Kollárova 2, 036 59 Martin, Slovakia;
| | - Jozef Mihalik
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Andrea Kreheľová
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Andriana Pavliuk-Karachevtseva
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Ingrid Hodorová
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| |
Collapse
|
8
|
Yang F, Li X, Yuan R, Xiang Y. High-Fidelity and Simultaneous Sensing of Endogenous Mutant and Wild p53 Proteins for Precise Cancer Diagnosis and Drug Screening. Anal Chem 2021; 93:8084-8090. [PMID: 34034482 DOI: 10.1021/acs.analchem.1c01540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous sensing of endogenous wild and mutant proteins plays a critical role in disease diagnosis and drug screening, and this remains a major current challenge. Here, we present a new and highly specific target-triggered dual proximity ligation assay (dPLA) strategy for sensitive and simultaneous sensing of wild and mutant p53 proteins from cancer cells. Two proximity DNA probes bind the target protein to form the primer/circular DNA template complexes with two nicks in the presence of the hairpin and ssDNA connector sequences via the strand displacement reaction. Only when the two nicks are simultaneously ligated can the rolling circle amplification be triggered with high fidelity for yielding substantially enhanced fluorescence. By encoding the hairpin sequence, two distinct fluorescence signals can be generated for simultaneous detection of the wild and mutant p53 proteins. Importantly, our method significantly reduces the possibility of nonspecific ligation reactions by using two ligation nicks, which minimizes the background noise. With this dPLA method, the regulation transition of intracellular mutant p53 to wild p53 proteins upon anticancer drug treatment has also been demonstrated, highlighting its usefulness for potential early disease diagnosis and drug screening with high fidelity.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
9
|
Gupta G, Borglum K, Chen H. Immunogenic Cell Death: A Step Ahead of Autophagy in Cancer Therapy. JOURNAL OF CANCER IMMUNOLOGY 2021; 3:47-59. [PMID: 34263254 PMCID: PMC8276988 DOI: 10.33696/cancerimmunol.3.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunogenic cell death (ICD) plays a major role in providing long lasting protective antitumor immunity by the chronic exposure of damage associated molecular patterns (DAMPs) in the tumor microenvironment (TME). DAMPs are essential for attracting immunogenic cells to the TME, maturation of DCs, and proper presentation of tumor antigens to the T cells so they can kill more cancer cells. Thus for the proper release of DAMPs, a controlled mechanism of cell death is necessary. Drug induced tumor cell killing occurs by apoptosis, wherein autophagy may act as a shield protecting the tumor cells and sometimes providing multi-drug resistance to chemotherapeutics. However, autophagy is required for the release of ATP as it remains one of the key DAMPs for the induction of ICD. In this review, we discuss the intricate balance between autophagy and apoptosis and the various strategies that we can apply to make these immunologically silent processes immunogenic. There are several steps of autophagy and apoptosis that can be regulated to generate an immune response. The genes involved in the processes can be regulated by drugs or inhibitors to amplify the effects of ICD and therefore serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Gourab Gupta
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Kristina Borglum
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Hexin Chen
- Department of Biological Science, Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
10
|
Lungu II, Nistorescu S, Badea MA, Petre AM, Udrea AM, Banici AM, Fleacă C, Andronescu E, Dinischiotu A, Dumitrache F, Staicu A, Balaș M. Doxorubicin-Conjugated Iron Oxide Nanoparticles Synthesized by Laser Pyrolysis: In Vitro Study on Human Breast Cancer Cells. Polymers (Basel) 2020; 12:E2799. [PMID: 33256060 PMCID: PMC7760716 DOI: 10.3390/polym12122799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Even today, breast cancer remains a global public problem, with a high mortality rate among women. Nanoparticle (NP) based systems are developed to enhance drug delivery, reducing the toxic effect of medicine molecules. By using iron oxide nanoparticles for cancer treatment, several advantages were highlighted: the ability to target specific locations derived from their magnetic properties and reduced side effects. The aim of this study was to examine on breast cancer cell line the anticancer potential of γ-Fe2O3 NPs loaded with doxorubicin (DOX) and stabilized with carboxymethylcellulose sodium (CMCNa). The γ-Fe2O3 NPs were synthesized by laser pyrolysis technique and their nanometric size and crystallinity were confirmed by X-ray diffraction and transmission electron microscopy. The loading efficiency was estimated by using absorption and fluorescence spectroscopy. The DOX conjugated//CMCNa coated γ-Fe2O3 NPs proved through the biological studies to have a good anticancer effect through the inhibition of tumoral cell proliferation, disruption of the cellular membrane, induction of cell death and reduced effects on normal breast cells. Our data showed that DOX cytotoxicity increases significantly when conjugated with ɣ-Fe2O3 and ɣ-Fe2O3_CMCNa, a 50% reduction of cancer cell viability was obtained with a concentration around 0.1 µg/mL.
Collapse
Affiliation(s)
- Iulia Ioana Lungu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Nistorescu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (A.-M.P.); (A.D.)
| | - Mădălina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (A.-M.P.); (A.D.)
| | - Andreea-Mihaela Petre
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (A.-M.P.); (A.D.)
| | - Ana-Maria Udrea
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (A.-M.P.); (A.D.)
| | - Ana-Maria Banici
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
| | - Claudiu Fleacă
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (A.-M.P.); (A.D.)
| | - Florian Dumitrache
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
| | - Angela Staicu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania; (I.I.L.); (S.N.); (A.-M.U.); (A.-M.B.); (C.F.)
| | - Mihaela Balaș
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (A.-M.P.); (A.D.)
| |
Collapse
|
11
|
Khodadust R, Alpsoy A, Ünsoy G, GÜndÜz U. Poly (I:C)- and doxorubicin-loaded magnetic dendrimeric nanoparticles affect the apoptosis-related gene expressions in MCF-7 cells. ACTA ACUST UNITED AC 2020; 44:133-144. [PMID: 32922121 PMCID: PMC7478132 DOI: 10.3906/biy-1912-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Use of nanoparticles as drug carrier vectors has great potential to circumvent the limitations associated with chemotherapy, including drug resistance and destructive side effects. For this purpose, magnetic generation 4 dendrimeric nanoparticles were prepared to carry chemotherapeutic agent doxorubicin (G4-DOX) and immune modulator polyinosinic:polycytidylic acid [Poly(I:C)]. As previously reported, DOX and Poly(I:C) was loaded onto G4 nanoparticles (PIC-G4-DOX). Cellular internalization study using confocal microscopy demonstrated high levels of cellular internalization of PIC-G4-DOX nanoparticles by MCF-7 cells. This resulted in higher efficacy of PIC-G4-DOX nanoparticles in killing MCF-7 breast cancer cells. Alteration in the expression levels of selected genes was determined by RT-qPCR analyses. Proapoptotic NOXA, PUMA, and BAX genes were upregulated, and SURVIVIN, APOLLON, and BCL-2 genes were downregulated, indicating the cell-killing effectiveness of PIC-G4-DOX nanoparticles. Gene expression analysis provided some insights into the possible molecular mechanisms on cytotoxicity of DOX and Poly(I:C) delivered through G4 magnetic nanoparticles. The results demonstrated that PIC-G4-DOX can be useful for targeted delivery affecting apoptotic pathways, resulting in an advanced degree of cancer-cell–killing. They are promising for targeting cancer-cells because of their stability, biocompatibility, higher internalization, and toxicity.
Collapse
Affiliation(s)
- Rouhollah Khodadust
- Department of Biotechnology, Middle East Technical University, Ankara Turkey.,Department of Biotechnology, Hamidiye Health Science Institute, University of Health Science-Turkey, İstanbul Turkey
| | - Aktan Alpsoy
- Department of Biological Sciences, Middle East Technical University, Ankara Turkey
| | - Gözde Ünsoy
- Department of Biotechnology, Middle East Technical University, Ankara Turkey
| | - Ufuk GÜndÜz
- Department of Biotechnology, Middle East Technical University, Ankara Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara Turkey
| |
Collapse
|
12
|
Delbue D, Mendonça BS, Robaina MC, Lemos LGT, Lucena PI, Viola JPB, Magalhães LM, Crocamo S, Oliveira CAB, Teixeira FR, Maia RC, Nestal de Moraes G. Expression of nuclear XIAP associates with cell growth and drug resistance and confers poor prognosis in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118761. [PMID: 32485270 DOI: 10.1016/j.bbamcr.2020.118761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Evasion from apoptosis is one of the hallmarks of cancer. X-linked inhibitor of apoptosis protein (XIAP) is known to modulate apoptosis by inhibiting caspases and ubiquitinating target proteins. XIAP is mainly found at the cytoplasm, but recent data link nuclear XIAP to poor prognosis in breast cancer. Here, we generated a mutant form of XIAP with a nuclear localization signal (XIAPNLS-C-term) and investigated the oncogenic mechanisms associated with nuclear XIAP in breast cancer. Our results show that cells overexpressing XIAPΔRING (RING deletion) and XIAPNLS-C-term exhibited XIAP nuclear localization more abundantly than XIAPwild-type. Remarkably, overexpression of XIAPNLS-C-term, but not XIAPΔRING, conferred resistance to doxorubicin and increased cellular proliferative capacity. Interestingly, Survivin and c-IAP1 expression were not associated with XIAP oncogenic effects. However, NFκB expression and ubiquitination of K63, but not K48 chains, were increased following XIAPNLS-C-term overexpression, pointing to nuclear signaling transduction. Consistently, multivariate analysis revealed nuclear, but not cytoplasmic XIAP, as an independent prognostic factor in hormone receptor-negative breast cancer patients. Altogether, our findings suggest that nuclear XIAP confers poor outcome and RING-associated breast cancer growth and chemoresistance.
Collapse
Affiliation(s)
- Deborah Delbue
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, Centro, 20 230 130 Rio de Janeiro, RJ, Brazil
| | - Bruna S Mendonça
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, Centro, 20 230 130 Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Stricto Sensu em Oncologia, INCA, Rua André Cavalcanti, 37, 5° andar, Centro, 20 230 050, RJ, Brazil
| | - Marcela C Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, Centro, 20 230 130 Rio de Janeiro, RJ, Brazil
| | - Lauana G T Lemos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, Centro, 20 230 130 Rio de Janeiro, RJ, Brazil
| | - Pedro I Lucena
- Programa de Imunologia e Biologia Tumoral, INCA, Rua André Cavalcanti, 37, 5° andar, Centro, 20 230 050, RJ, Brazil
| | - João P B Viola
- Programa de Imunologia e Biologia Tumoral, INCA, Rua André Cavalcanti, 37, 5° andar, Centro, 20 230 050, RJ, Brazil
| | - Lídia M Magalhães
- Divisão de Anatomia Patológica, INCA, Rua Cordeiro da Graça, 156, Santo Cristo, 20 220 400 Rio de Janeiro, Brazil
| | - Susanne Crocamo
- Núcleo de Pesquisa Clínica, Hospital de Câncer III, INCA, Rua Visconde de Santa Isabel, 274, Vila Isabel, 20 560 120 Rio de Janeiro, Brazil
| | - Caio A B Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13 560 300 São Carlos, São Paulo, Brazil
| | - Felipe R Teixeira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13 560 300 São Carlos, São Paulo, Brazil
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, Centro, 20 230 130 Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, Centro, 20 230 130 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Mello FV, de Moraes GN, Maia RC, Kyeremateng J, Iram SH, Santos-Oliveira R. The Effect of Nanosystems on ATP-Binding Cassette Transporters: Understanding the Influence of Nanosystems on Multidrug Resistance Protein-1 and P-glycoprotein. Int J Mol Sci 2020; 21:E2630. [PMID: 32290047 PMCID: PMC7178121 DOI: 10.3390/ijms21072630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The cancer multidrug resistance is involved in the failure of several treatments during cancer treatment. It is a phenomenon that has been receiving great attention in the last years due to the sheer amount of mechanisms discovered and involved in the process of resistance which hinders the effectiveness of many anti-cancer drugs. Among the mechanisms involved in the multidrug resistance, the participation of ATP-binding cassette (ABC) transporters is the main one. The ABC transporters are a group of plasma membrane and intracellular organelle proteins involved in the process of externalization of substrates from cells, which are expressed in cancer. They are involved in the clearance of intracellular metabolites as ions, hormones, lipids and other small molecules from the cell, affecting directly and indirectly drug absorption, distribution, metabolism and excretion. Other mechanisms responsible for resistance are the signaling pathways and the anti- and pro-apoptotic proteins involved in cell death by apoptosis. In this study we evaluated the influence of three nanosystem (Graphene Quantum Dots (GQDs), mesoporous silica (MSN) and poly-lactic nanoparticles (PLA)) in the main mechanism related to the cancer multidrug resistance such as the Multidrug Resistance Protein-1 and P-glycoprotein. We also evaluated this influence in a group of proteins involved in the apoptosis-related resistance including cIAP-1, XIAP, Bcl-2, BAK and Survivin proteins. Last, colonogenic and MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assays have also been performed. The results showed, regardless of the concentration used, GQDs, MSN and PLA were not cytotoxic to MDA-MB-231 cells and showed no impairment in the colony formation capacity. In addition, it has been observed that P-gp membrane expression was not significantly altered by any of the three nanomaterials. The results suggest that GQDs nanoparticles would be suitable for the delivery of other multidrug resistance protein 1 (MRP1) substrate drugs that bind to the transporter at the same binding pocket, while MSN can strongly inhibit doxorubicin efflux by MRP1. On the other hand, PLA showed moderate inhibition of doxorubicin efflux by MRP1 suggesting that this nanomaterial can also be useful to treat MDR (Multidrug resistance) due to MRP1 overexpression.
Collapse
Affiliation(s)
- Francisco V.C. Mello
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil;
| | - Gabriela N. de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), CEP 20230130 Rio de Janeiro, Brazil; (G.N.d.M.); (R.C.M.)
| | - Raquel C. Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), CEP 20230130 Rio de Janeiro, Brazil; (G.N.d.M.); (R.C.M.)
| | - Jennifer Kyeremateng
- Department of Chemistry & Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.K.); (S.H.I.)
| | - Surtaj Hussain Iram
- Department of Chemistry & Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.K.); (S.H.I.)
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Campo Grande, CEP 23070200 Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Xin X, Yang ST. Development of a dual fluorescence system for simultaneous detection of two cell populations in a 3D coculture. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231. Molecules 2019; 24:molecules24142619. [PMID: 31323836 PMCID: PMC6680398 DOI: 10.3390/molecules24142619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.
Collapse
|
16
|
Fourie C, Davis T, Kriel J, Engelbrecht AM. The paracrine effects of fibroblasts on Doxorubicin-treated breast cancer cells. Exp Cell Res 2019; 381:280-287. [PMID: 31121155 DOI: 10.1016/j.yexcr.2019.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Breast cancer is frequently diagnosed in women and poses a major health problem throughout the world. Currently, the unresponsiveness of cancer cells to chemotherapeutics is a major concern. During chemotherapeutic treatment with Doxorubicin, neighbouring cells in the tumor microenvironment are also damaged. Depending on the concentration of Doxorubicin, apoptotic or senescent fibroblasts in the tumor microenvironment can then secrete a variety of bioactive molecules which promote tumor growth, metastasis and drug resistance. Mouse embryonic fibroblasts (MEFs) were treated with Doxorubicin to induce apoptosis and senescence respectively. Conditioned media was collected from the MEFs and was used to assess the paracrine effects between fibroblasts and E0771 murine breast cancer cells. Senescent fibroblasts significantly increased cell viability in E0771 cells following Doxorubicin treatment by activating Akt and ERK. Autophagy contributed to cancer cell death and not to treatment resistance in breast cancer cells. Our results highlight the complexity of the tumor microenvironment where chemotherapeutic agents such as Doxorubicin can induce significant changes fibroblasts which can affect tumor growth via the secretion of paracrine factors. Here we have demonstrated that those secreted paracrine factors enhance breast cancer growth and induce therapeutic resistance through the evasion of apoptotic cell death.
Collapse
Affiliation(s)
- Carla Fourie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Tanja Davis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Jurgen Kriel
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
17
|
Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL-27 cells. Arch Oral Biol 2019; 103:47-54. [PMID: 31132617 DOI: 10.1016/j.archoralbio.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aims to investigate the apoptotic effect of Doxorubicin and its nano-formulated form (Doxil) on oral squamous cell carcinoma CAL-27 cells. DESIGN Cell viability using MTT assay, mode of cell death using fluorescence analysis, expression of the apoptotic marker caspase-3 using indirect ELISA technique and expression of C-Myc gene using reverse transcriptase and real time PCR. RESULTS Doxil treatment resulted in a higher percentage of apoptotic cells than doxorubicin treatment, while doxorubicin treatment resulted in a higher percentage of necrotic cells than Doxil treatment. Doxil-treated cells exhibited 3.38-fold higher caspase-3 levels than control cells, while doxorubicin significantly increased caspase-3 levels by 2.72-fold. The percentage of C-Myc mRNA inhibition was 27% in doxorubicin-treated cells and 41% in Doxil-treated cells. CONCLUSIONS Doxil exerted a higher apoptotic effect on CAL-27 cells compared to doxorubicin. It showed a higher increase in capase-3 level than doxorubicin and also exerted a more percentage of C-Myc mRNA inhibition.
Collapse
|
18
|
Shen BY, Chen C, Xu YF, Shen JJ, Guo HM, Li HF, Li XN, Kang D, Shao YH, Zhu ZP, Yin XX, Xie L, Wang GJ, Liang Y. Is the combinational administration of doxorubicin and glutathione a reasonable proposal? Acta Pharmacol Sin 2019; 40:699-709. [PMID: 30218071 PMCID: PMC6786300 DOI: 10.1038/s41401-018-0158-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022]
Abstract
The combinational administration of antioxidants and chemotherapeutic agents during conventional cancer treatment is among one of the most controversial areas in oncology. Although the data on the combinational usage of doxorubicin (DOX) and glutathione (GSH) agents have been explored for over 20 years, the duration, administration route, and authentic rationality have not yet been fully understood yet. In the current study, we systematically investigated the pharmacokinetics (PK) and pharmacodynamics (PD) with both in vivo and in vitro models to elucidate the influence of GSH on the toxicity and efficacy of DOX. We first studied the cardioprotective and hepatoprotective effects of GSH in Balb/c mice, H9c2, and HL7702 cells. We showed that coadministration of exogenous GSH (5, 50, and 500 mg/kg per day, intragastric) significantly attenuated DOX-induced cardiotoxicity and hepatotoxicity by increasing intracellular GSH levels, whereas the elevated GSH concentrations did not affect the exposure of DOX in mouse heart and liver. From PK and PD perspectives, then the influences of GSH on the chemotherapeutic efficacy of DOX were investigated in xenografted nude mice and cancer cell models, including MCF-7, HepG2, and Caco-2 cells, which revealed that administration of exogenous GSH dose-dependently attenuated the anticancer efficacy of DOX in vivo and in vitro, although the elevated GSH levels neither influenced the concentration of DOX in tumors in vivo, nor the uptake of DOX in MCF-7 tumor cells in vitro. Based on the results we suggest that the combined administration of GSH and DOX should be contraindicated during chemotherapy unless DOX has caused serious hepatotoxicity and cardiotoxicity.
Collapse
Affiliation(s)
- Bo-Yu Shen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Chong Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Yang-Fan Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Jia-Jia Shen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Hui-Min Guo
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Hao-Feng Li
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Xi-Nuo Li
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Dian Kang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Yu-Hao Shao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Zhang-Pei Zhu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Xiao-Xi Yin
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Lin Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Guang-Ji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| | - Yan Liang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
19
|
Mitre-Aguilar IB, Barrios-Garcia T, Ruiz-Lopez VM, Cabrera-Quintero AJ, Mejia-Dominguez NR, Ventura-Gallegos JL, Moreno-Mitre D, Aranda-Gutierrez A, Mejia-Rangel J, Escalona-Guzman AR, Chavarri-Guerra Y, Leon-Del-Rio A, Zentella-Dehesa A. Glucocorticoid-dependent expression of IAP participates in the protection against TNF-mediated cytotoxicity in MCF7 cells. BMC Cancer 2019; 19:356. [PMID: 30987626 PMCID: PMC6466787 DOI: 10.1186/s12885-019-5563-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background Glucocorticoid receptor (GR) activation has been associated with breast cancer cell survival in vitro. Glucocorticoid (GC)-dependent protection against tumor necrosis factor (TNF)-induced cell death has been well characterized in MCF7 luminal A breast cancer cells. The GR activates a variety of protective mechanisms, such as inhibitors of apoptosis proteins (IAPs). However, the relative contribution of the GR-dependent expression of IAPs in the protection of cell death has not, to our knowledge, been evaluated. Methods MCF7 cells were used for all experiments. GR was activated with cortisol (CORT) or dexamethasone (DEX) and inhibited with mifepristone (RU486). Cell viability was determined in real-time with the xCELLigence™ RTCA System and at specific endpoints using crystal violet stain. The mRNA levels of the eight members of the IAP family were measured by qRT-PCR. The protein levels of GR, PR, ERα, HER2, PARP1, c-IAP1 and XIAP were evaluated by Western blot analysis. The knockdown of c-IAP1 and XIAP was accomplished via transient transfection with specific siRNAs. GR activation was verified by a gene reporter assay. Via the cBioportal interphase we queried the mRNA levels of GR and IAPs in breast cancer tumors. Results RU486 significantly inhibited the anti-cytotoxic effect of both GCs. PARP1 processing was diminished in the presence of both GCs. The combined treatments of GCs + TNF increased the relative mRNA levels of Survivin>c-IAP1 > NAIP>Apollon>XIAP>Ts-IAP > ML-IAP > c-IAP2. Additionally, GR mRNA content increased with the combined treatments of GCs + TNF. Sustained levels of the proteins c-IAP1 and XIAP were observed after 48 h of the combined treatments with GCs + TNF. With c-IAP1 and XIAP gene silencing, the GC-mediated protection was diminished. In the breast tumor samples, the GR mRNA was coexpressed with Apollon and XIAP with a Pearson coefficient greater than 0.3. Conclusions The effect of GCs against TNF-mediated cytotoxicity involves increased mRNA expression and sustained protein levels of c-IAP1 and XIAP. The antagonist effects of RU486 and the qRT-PCR results also suggest the role of the GR in this process. This finding may have clinical implications because the GR and IAPs are expressed in breast tumor samples. Electronic supplementary material The online version of this article (10.1186/s12885-019-5563-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irma B Mitre-Aguilar
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Tonatiuh Barrios-Garcia
- Programa de Investigacion en Cancer de Mama, IIBO, UNAM, 04510, Mexico, CDMX, Mexico.,Departamento de Biologia Molecular y Biotecnologia, IIBO, UNAM, 04510, Mexico, CDMX, Mexico
| | - Victor M Ruiz-Lopez
- Departamento de Biologia Molecular, Instituto Nacional de Enfermedades Respiratorias (INER), 14080, Mexico, CDMX, Mexico
| | - Alberto J Cabrera-Quintero
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Nancy R Mejia-Dominguez
- Red de Apoyo a la Investigacion-Coordinacion de la Investigacion Cientifica (RAI-CIC), UNAM, 14080, Mexico, CDMX, Mexico
| | - Jose L Ventura-Gallegos
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Daniel Moreno-Mitre
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Alejandro Aranda-Gutierrez
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Janini Mejia-Rangel
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Alma R Escalona-Guzman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico.,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico
| | - Yanin Chavarri-Guerra
- Departamento de Hemato-Oncologia, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, 14080, Mexico, CDMX, Mexico
| | - Alfonso Leon-Del-Rio
- Programa de Investigacion en Cancer de Mama, IIBO, UNAM, 04510, Mexico, CDMX, Mexico.,Departamento de Biologia Molecular y Biotecnologia, IIBO, UNAM, 04510, Mexico, CDMX, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas (IIBO), Universidad Nacional Autonoma de Mexico (UNAM), 04510 Ciudad de Mexico (CDMX), Mexico, Mexico. .,Programa de Investigacion en Cancer de Mama, IIBO, UNAM, 04510, Mexico, CDMX, Mexico. .,Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), 14080, Mexico, CDMX, Mexico. .,Centro de Cancer, Centro Medico ABC, 01120, Mexico, CDMX, Mexico.
| |
Collapse
|
20
|
Franco MS, Roque MC, Oliveira MC. Short and Long-Term Effects of the Exposure of Breast Cancer Cell Lines to Different Ratios of Free or Co-Encapsulated Liposomal Paclitaxel and Doxorubicin. Pharmaceutics 2019; 11:pharmaceutics11040178. [PMID: 30979090 PMCID: PMC6523953 DOI: 10.3390/pharmaceutics11040178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Associating paclitaxel (PTX) to doxorubicin (DXR) is one of the main chemotherapy strategies for breast cancer (BC) management. Protocols currently available consist in administering both drugs on their maximum tolerated dose, not taking into account the possible differences in efficacy due to their combination ratio. In the present study, the short and long-term cytotoxic effects as well as migratory effects of PTX, DXR, and its combinations at 10:1; 1:1 and 1:10 PTX:DXR molar ratios either free or co-encapsulated in liposomes were evaluated against three human BC cell lines (MDA-MB-231, MCF-7, and SKBR-3). Method: The MTT assay was used to screen for synergy or antagonism between PTX and DXR and the combination index value was calculated using the CalcuSyn software. Nuclear morphological alterations were evaluated by staining the cells with Hoescht 33342. The investigation of senescence and clonogenicity of BC cell lines exposed to different treatments was also studied. In addition, the ability of these cells to migrate was assessed. Results: Taken together, the results presented herein allow us to suggest that there is no benefit in enhancing the PTX concentration above that of DXR in the combination for any of the three cell lines tested. Conclusion: The developed liposomes co-encapsulating PTX and DXR in different molar ratios retained the biological properties of the mixture of free drugs and are valuable for planning new therapeutic strategies.
Collapse
Affiliation(s)
- Marina Santiago Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Zhong S, Li C, Han X, Li X, Yang YG, Wang H. Idarubicin Stimulates Cell Cycle- and TET2-Dependent Oxidation of DNA 5-Methylcytosine in Cancer Cells. Chem Res Toxicol 2019; 32:861-868. [PMID: 30816036 DOI: 10.1021/acs.chemrestox.9b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The topoisomerase II inhibitor idarubicin (Ida) is an effective anticancer anthracycline drug and has been used for clinical therapies of multiple cancers. It is well-known that Ida and its analogues can induce DNA double strand breakage (DSB) by inhibiting topoisomer II and kill tumor cells. To date, it remains unknown whether they alter DNA epigenomes. Here, we show that Ida significantly stimulates the oxidation of a key epigenetic mark DNA 5-methyl-2'-deoxycytidine (5mC), which results in elevation of 5-hydroxymethyl-2'-deoxycytidine (5hmC) in four tested cell lines. Similarly, Ida analogues also display elevated 5hmC. DSB-causing topoisomer II inhibitor etopside fails to induce 5hmC change even at very high dose, which suggests the independence of the DSB. Moreover, the structure comparison supports that the histone eviction-associated amino sugar moiety is a characteristic of the anthracyclines required to promote the 5hmC elevation. Noteworthy, we also found that the 5mC oxidation is also cell-cycle dependent and mainly occurs during the S and G2/M phases. TET2 depletion diminishes the observed 5hmC elevation, which suggests that the Ida stimulation of 5hmC formation is mainly TET2-dependent. Deep-sequencing shows that 5hmC increases in all regions of the tested genome of T47D cells. The observation of a novel effect of Ida as well as other anthracycline compounds on epigenetic DNA modifications may help to further elucidate their biological and clinical effects.
Collapse
Affiliation(s)
- Shangwei Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicoogy , Research Center for Eco-Environmental Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Cuiping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicoogy , Research Center for Eco-Environmental Sciences , Beijing 100085 , China
| | - Xiao Han
- University of Chinese Academy of Sciences , Beijing 100049 , China.,Key Laboratory of Genomics and Precision Medicine , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China.,Sino-Danish College , University of Chinese Academy of Sciences , Beijing 101408 , China
| | - Xiangjun Li
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yun-Gui Yang
- Key Laboratory of Genomics and Precision Medicine , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicoogy , Research Center for Eco-Environmental Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
22
|
Xin X, Wu Y, Zang R, Yang ST. A fluorescent 3D cell culture assay for high throughput screening of cancer drugs down-regulating survivin. J Biotechnol 2019; 289:80-87. [DOI: 10.1016/j.jbiotec.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
|
23
|
Wang Y, Zhou Y, Zheng Z, Li J, Yan Y, Wu W. Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption. Cell Death Dis 2018; 9:1134. [PMID: 30429459 PMCID: PMC6235886 DOI: 10.1038/s41419-018-1174-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Long treatment with paclitaxel (PTX) might increase resistance and side-effects causing a failure in cancer chemotherapy. Here we uncovered that either sulforaphane-cysteine (SFN-Cys) or sulforaphane-N-acetyl-cysteine (SFN-NAC) induced apoptosis via phosphorylated ERK1/2-mediated upregulation of 26 S proteasome and Hsp70, and downregulation of βIII-tubulin, XIAP, Tau, Stathmin1 and α-tubulin causing microtubule disruption in human PTX-resistant non-small cell lung cancer (NSCLC) cells. Knockdown of either βIII-tubulin or α-tubulin via siRNA increased cell sensitivity to PTX, indicating that these two proteins help cells increase the resistance. Tissue microarray analysis showed that overexpression of βIII-tubulin correlated to NSCLC malignant grading. Immunofluorescence staining also showed that SFN metabolites induced a nest-like microtubule protein distribution with aggregation and disruption. Co-immunoprecipitation showed that SFN metabolites reduced the interaction between βIII-tubulin and Tau, and that between α-tubulin and XIAP. The combination of PTX with SFN metabolites decreased the resistance to PTX, and doses of both PTX and SFN metabolites, and enhanced apoptosis resulting from activated Caspase-3-caused microtubule degradation. Importantly, the effective dose of SFN metabolites combined with 20 nM PTX will be low to 4 μM. Thus, we might combine SFN metabolites with PTX for preclinical trial. Normally, more than 20 μM SFN metabolites only leading to apoptosis for SFN metabolites hindered their applications. These findings will help us develop a low-resistance and high-efficiency chemotherapy via PTX/SFN metabolites combination.
Collapse
Affiliation(s)
- Yalin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Capital Medical University, Beijing, P.R. China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Capital Medical University, Beijing, P.R. China
| | - Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Capital Medical University, Beijing, P.R. China
| | - Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China.
- Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Capital Medical University, Beijing, P.R. China.
- Institute of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, No. 10, Xitoutiao, You An Men Wai Ave., Feng Tai District, Beijing, 100069, P.R. China.
| |
Collapse
|
24
|
Yang WZ, Zhou H, Yan Y. XIAP underlies apoptosis resistance of renal cell carcinoma cells. Mol Med Rep 2017; 17:125-130. [PMID: 29115633 PMCID: PMC5780075 DOI: 10.3892/mmr.2017.7925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 09/06/2017] [Indexed: 01/28/2023] Open
Abstract
X-linked inhibitor of apoptosis (XIAP), a key member of the inhibitors of apoptosis protein family, can inhibit apoptosis by directly binding to the initiator caspase-9, −3 and −7, thereby promoting tumor cell survival during tumor progression. In the present study, XIAP basal expression levels were investigated and its contribution to the resistance to apoptosis was evaluated, in the RCC cell lines exposed to apoptosis-inducing drugs. This was investigated by histological methods and western blot analysis. Using RNA interference, elimination of XIAP in Caki-1 cells was also studied, and its contribution to the sensitivity to apoptosis induced through the intrinsic pathway was observed. Differences in XIAP expression were detected between ClearCa-2 and ClearCa-6 cell lines. ClearCa-6 cells with lower expression of XIAP were more sensitive to apoptosis-inducing drugs, compared with ClearCa-2 cells. However, the levels of XIAP expression in both cell lines were stable during apoptosis. Furthermore, a Caki-1 cell line with no XIAP expression was used, and was demonstrated to be more sensitive to the apoptosis induced by the mitochondrial pathway. These results suggested that downregulation of XIAP expression could enhance the sensitivity of RCC cells to apoptosis, and the basal expression of XIAP during apoptosis is stable. This may provide novel insight for targeted gene therapy against XIAP, in the clinic.
Collapse
Affiliation(s)
- Wen Zheng Yang
- Department of Anesthesiology, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Haijiang Zhou
- Department of Emergency Medicine, Beijing Chao‑Yang Hospital, Beijing 100038, P.R. China
| | - Yong Yan
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
25
|
Liu Y, Zhang B, Shi T, Qin H. Inhibition of X-linked inhibitor of apoptosis protein suppresses tumorigenesis and enhances chemosensitivity in anaplastic thyroid carcinoma. Oncotarget 2017; 8:95764-95772. [PMID: 29221164 PMCID: PMC5707058 DOI: 10.18632/oncotarget.21320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most lethal carcinoma with a poor prognosis; however, molecular mechanisms underlying the aggressiveness of ATC remain unclear. Our goal was to examine the expression of X-linked inhibitor of apoptosis protein (XIAP) in ATC, as well as its role in ATC tumorigenesis. This is a retrospective study of ATC patients from the Second Affiliated Hospital of Harbin Medical University during June 2003 to October 2013. The expression of XIAP in tumor specimens of ATC patients was examined by immunohistochemical staining. The roles of XIAP in proliferation, migration, invasion, and chemoresistance were investigated by shRNA mediated-knockdown of XIAP in human ATC cell lines. The effect of XIAP on tumorigenesis was evaluated using a xenograft tumor model with nude mice. XIAP expression was significantly higher in the invasive area of ATC samples, whereas XIAP expression was negative in either normal thyroid follicular epithelial cells or the differentiated papillary thyroid carcinoma. XIAP-depleted ATC cells showed a remarkable decrease in the proliferation, migration, and invasion compared with the scramble group. Knockdown of XIAP expression significantly enhanced the chemosensitivity of WRO and SW1736 cells to docetaxel or taxane. Moreover, knockdown of XIAP significantly suppressed ATC tumorigenesis in vivo. XIAP is highly expressed in ATC cells and tumors. XIAP play important roles in tumor behaviors and chemosensitivity of ATC cells. XIAP may function in ATC aggressiveness and may serve as a potential therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Yao Liu
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Bing Zhang
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tiefeng Shi
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Huadong Qin
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
26
|
Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Invest New Drugs 2017; 35:706-717. [PMID: 28733703 DOI: 10.1007/s10637-017-0493-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Chemotherapeutic agents can induce accelerated senescence in tumor cells, an irreversible state of cell cycle arrest. Paclitaxel, a microtubule-stabilizing agent used to treat solid tumors of the breast, ovary, and lung and discodermolide, another stabilizing agent from a marine sponge, induce senescence in cultured cancer cells. The aim of this study was to determine if the microtubule-stabilizing agent peloruside A, a polyketide natural product from a marine sponge, can induce accelerated senescence in a breast cancer cell line MCF7. Doxorubicin, a DNA-damaging agent, paclitaxel, and discodermolide were used as positive controls. Senescence-associated-β-galactosidase activity was increased by peloruside A, similar to paclitaxel, discodermolde, and doxorubicin, with a potency heirarchy of doxorubicin > paclitaxel > discodermolide > peloruside, based on IC25 concentrations that inhibit proliferation. Clonogenic survival was significantly decreased by peloruside A, similar to doxorubicin and the two other microtubule-stabilizing agents. The tumor suppressor protein p53 increased after treatment, whereas pRb decreased in response to all four compounds. It was concluded that in addition to apoptosis, peloruside A causes accelerated senescence in a subpopulation of MCF7 cells that contributes to its potential anticancer activity in a breast cancer cell line.
Collapse
|
27
|
Survivin and gynaecological tumours. Pathol Res Pract 2017; 213:295-300. [DOI: 10.1016/j.prp.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
|
28
|
Jia Y, Weng Z, Wang C, Zhu M, Lu Y, Ding L, Wang Y, Cheng X, Lin Q, Wu K. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes. Oncol Lett 2017; 13:206-214. [PMID: 28123543 PMCID: PMC5245142 DOI: 10.3892/ol.2016.5402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80.
Collapse
Affiliation(s)
- Yijun Jia
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ziyi Weng
- Department of General Surgery, Shanghai International Medical Center, Shanghai 201318, P.R. China
| | - Chuanying Wang
- School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Mingjie Zhu
- Department of Pathology, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yunshu Lu
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Longlong Ding
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xianhua Cheng
- School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Qing Lin
- Department of Radiology, Tenth People's Hospital, Shanghai Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kejin Wu
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
- Department of Breast Surgery, Shanghai Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
29
|
Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL, Magalhães LM, Lam EWF, Maia RC. FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal 2015; 27:2496-505. [PMID: 26404623 DOI: 10.1016/j.cellsig.2015.09.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
Drug resistance is a major hurdle for successful treatment of breast cancer, the leading cause of deaths in women throughout the world. The FOXM1 transcription factor is a potent oncogene that transcriptionally regulates a wide range of target genes involved in DNA repair, metastasis, cell invasion, and migration. However, little is known about the role of FOXM1 in cell survival and the gene targets involved. Here, we show that FOXM1-overexpressing breast cancer cells display an apoptosis-resistant phenotype, which associates with the upregulation of expression of XIAP and Survivin antiapoptotic genes. Conversely, FOXM1 knockdown results in XIAP and Survivin downregulation as well as decreased binding of FOXM1 to the promoter regions of XIAP and Survivin. Consistently, FOXM1, XIAP, and Survivin expression levels were higher in taxane and anthracycline-resistant cell lines when compared to their sensitive counterparts and could not be downregulated in response to drug treatment. In agreement with our in vitro findings, we found that FOXM1 expression is significantly associated with Survivin and XIAP expression in samples from patients with IIIa stage breast invasive ductal carcinoma. Importantly, patients co-expressing FOXM1, Survivin, and nuclear XIAP had significantly worst overall survival, further confirming the physiological relevance of the regulation of Survivin and XIAP by FOXM1. Together, these findings suggest that the overexpression of FOXM1, XIAP, and Survivin contributes to the development of drug-resistance and is associated with poor clinical outcome in breast cancer patients.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil; Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Deborah Delbue
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil
| | - Karina L Silva
- Programa de Biologia Celular, INCA, Rua André Cavalcanti, 37/5° andar, Centro, 20231-050 Rio de Janeiro, Brazil
| | - Marcela Cristina Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil
| | - Pasarat Khongkow
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Ana R Gomes
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Susanne Crocamo
- Núcleo de Pesquisa Clínica, Hospital de Câncer III, INCA, Rua Visconde de Santa Isabel, 274, Vila Isabel, 20560-120 Rio de Janeiro, Brazil
| | - André Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87 fundos, 4° andar, Vila Isabel, 20551-030 Rio de Janeiro, Brazil
| | - Lídia M Magalhães
- Divisão de Anatomia Patológica, INCA, Rua Cordeiro da Graça, 156, Santo Cristo, 20220-400 Rio de Janeiro, Brazil
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Liu HQ, Wang YH, Wang LL, Hao M. P16INK4A and survivin: Diagnostic and prognostic markers in cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Exp Mol Pathol 2015; 99:44-9. [PMID: 25910412 DOI: 10.1016/j.yexmp.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To explore the the correlations of p16INK4A (p16) and survivin expressions with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma. METHODS The p16 and survivin expressions were detected in 50 cervical squamous cell carcinoma tissues, 150 various grades of CIN tissues and 30 normal cervical tissues using immunohistochemistry. All data were analyzed applying SPSS 17.0 software. RESULTS The p16 and survivin expressions showed the presence of statistical significance in cervical cancer, CINI, CINII, CINIII and normal cervical tissues (P<0.05), and the comparison also revealed statistical significance among groups (all P<0.05); the p16 and survivin expressions were positively correlated with the grade of cervical diseases (both P<0.05). Moreover, p16 protein was associated with CIN grade and lymph node metastases in cervical cancer (all P<0.05); survivin protein was also related with clinical stages, CIN grade and lymph node metastases (all P<0.05); the p16 and survivin expressions were positively correlated with cervical cancer (r=0.854, P<0.001), and associated with poor prognosis of cervical cancer. CONCLUSION Briefly, p16 and survivin expression may be correlated with the clinico-pathological and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Hui-Qiang Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yong-Hong Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Lan-Lan Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
31
|
Wang H, Ye YF. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells. ASIAN PAC J TROP MED 2015; 8:225-8. [DOI: 10.1016/s1995-7645(14)60320-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 11/29/2022] Open
|
32
|
Pavlidou A, Kroupis C, Dimas K. Association of survivin splice variants with prognosis and treatment of breast cancer. World J Clin Oncol 2014; 5:883-894. [PMID: 25493226 PMCID: PMC4259950 DOI: 10.5306/wjco.v5.i5.883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/01/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was the overview of current knowledge regarding the use of survivin and its isoforms in prognosis and treatment of breast cancer. An advanced search of Medline was performed using the following search strategy: “(survivin isoforms) OR (survivin transcript variants) AND (breast cancer) AND (neoplasm OR tumor OR cancer OR carcinoma)”. Relevant studies were retrieved and processed thoroughly in order to analyze the related data. Besides wild-type survivin full-length transcript, another six splice variants have been identified. Overexpression of survivin and its isoforms leads to shorter overall and disease-free survival; the transcript variants are correlated with apoptosis and could assist prognosis prediction. It has been proved through numerous studies that inhibiting survivin isoforms might become a promising target of drug therapy of carcinomas. Use of small molecule YM155 could offer new therapy for triple negative breast cancer patients, while, chemotherapy with 5-fluorouracil + epirubicin + cyclophosphamide and Tax-Epi could be guided by survivin splice variants measurements. Survivin transcript variants could become prognostic biomarkers and could provide information about clinical management of patients suffering from breast cancer.
Collapse
|
33
|
Hu R, Li J, Liu Z, Miao M, Yao K. GDC-0152 induces apoptosis through down-regulation of IAPs in human leukemia cells and inhibition of PI3K/Akt signaling pathway. Tumour Biol 2014; 36:577-84. [PMID: 25273171 DOI: 10.1007/s13277-014-2648-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022] Open
Abstract
The inhibitor of apoptosis proteins (IAPs) is closely related to leukemia apoptosis. The present study was undertaken to determine the molecular mechanisms by which GDC-0152, an IAP inhibitor, induces apoptosis in human leukemia cells (K562 and HL60 cells). GDC-0152 inhibited the proliferation of K562 and HL60 cells in a dose- and time-dependent manner, which was largely attributed to intrinsic apoptosis. GDC-0152 down-regulated the IAPs including X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein-1 (cIAP1), and cellular inhibitor of apoptosis protein-2 (cIAP2) expression and induced the activation of caspase-9 and caspase-3. GDC-0152-induced cell proliferation inhibition in K562 cells was prevented by pan-caspase inhibitor. GDC-0152 also inhibited PI3K and Akt expression in K562 and HL60 cells. Taken together, these findings suggest that GDC-0152 results in human leukemia apoptosis through caspase-dependent mechanisms involving down-regulation of IAPs and inhibition of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Rong Hu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | | | | | | | | |
Collapse
|