1
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
2
|
Kage F, Döring H, Mietkowska M, Schaks M, Grüner F, Stahnke S, Steffen A, Müsken M, Stradal TEB, Rottner K. Lamellipodia-like actin networks in cells lacking WAVE regulatory complex. J Cell Sci 2022; 135:276259. [PMID: 35971979 PMCID: PMC9511706 DOI: 10.1242/jcs.260364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022] Open
Abstract
Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP. Summary: Rac-dependent actin remodeling can occur in the absence of WAVE regulatory complex, triggered by active Cdc42. WAVE regulatory complex-independent actin structures harbor Arp2/3 complex but not VASP.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Franziska Grüner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Simanov G, Dang I, Fokin AI, Oguievetskaia K, Campanacci V, Cherfils J, Gautreau AM. Arpin Regulates Migration Persistence by Interacting with Both Tankyrases and the Arp2/3 Complex. Int J Mol Sci 2021; 22:ijms22084115. [PMID: 33923443 PMCID: PMC8073056 DOI: 10.3390/ijms22084115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
During cell migration, protrusion of the leading edge is driven by the polymerization of Arp2/3-dependent branched actin networks. Migration persistence is negatively regulated by the Arp2/3 inhibitory protein Arpin. To better understand Arpin regulation in the cell, we looked for its interacting partners and identified both Tankyrase 1 and 2 (TNKS) using a yeast two-hybrid screening and coimmunoprecipitation with full-length Arpin as bait. Arpin interacts with ankyrin repeats of TNKS through a C-terminal-binding site on its acidic tail, which overlaps with the Arp2/3-binding site. Arpin was found to dissolve the liquid–liquid phase separation of TNKS upon overexpression. To uncouple the interactions of Arpin with TNKS and Arp2/3, we introduced point mutations in the Arpin tail and attempted to rescue the increased migration persistence of the Arpin knockout cells using random plasmid integration or compensating knock-ins at the ARPIN locus. Arpin mutations impairing interactions with either Arp2/3 or TNKS were insufficient to fully abolish Arpin activity. Only the mutation that affected both interactions rendered Arpin completely inactive, suggesting the existence of two independent pathways, whereby Arpin controls the migration persistence.
Collapse
Affiliation(s)
- Gleb Simanov
- CNRS UMR7654, Institut Polytechnique de Paris, 91120 Palaiseau, France; (G.S.); (I.D.); (A.I.F.); (K.O.)
| | - Irene Dang
- CNRS UMR7654, Institut Polytechnique de Paris, 91120 Palaiseau, France; (G.S.); (I.D.); (A.I.F.); (K.O.)
| | - Artem I. Fokin
- CNRS UMR7654, Institut Polytechnique de Paris, 91120 Palaiseau, France; (G.S.); (I.D.); (A.I.F.); (K.O.)
| | - Ksenia Oguievetskaia
- CNRS UMR7654, Institut Polytechnique de Paris, 91120 Palaiseau, France; (G.S.); (I.D.); (A.I.F.); (K.O.)
| | - Valérie Campanacci
- Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, 91190 Gif-sur-Yvette, France; (V.C.); (J.C.)
| | - Jacqueline Cherfils
- Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, 91190 Gif-sur-Yvette, France; (V.C.); (J.C.)
| | - Alexis M. Gautreau
- CNRS UMR7654, Institut Polytechnique de Paris, 91120 Palaiseau, France; (G.S.); (I.D.); (A.I.F.); (K.O.)
- Correspondence: ; Tel.: +33-169334870
| |
Collapse
|
4
|
Li W, Sancho A, Chung WL, Vinik Y, Groll J, Zick Y, Medalia O, Bershadsky AD, Geiger B. Differential cellular responses to adhesive interactions with galectin-8- and fibronectin-coated substrates. J Cell Sci 2021; 134:jcs252221. [PMID: 33722978 PMCID: PMC8106957 DOI: 10.1242/jcs.252221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying the cellular response to extracellular matrices (ECMs) that consist of multiple adhesive ligands are still poorly understood. Here, we address this topic by monitoring specific cellular responses to two different extracellular adhesion molecules - the main integrin ligand fibronectin and galectin-8, a lectin that binds β-galactoside residues - as well as to mixtures of the two proteins. Compared with cell spreading on fibronectin, cell spreading on galectin-8-coated substrates resulted in increased projected cell area, more-pronounced extension of filopodia and, yet, the inability to form focal adhesions and stress fibers. These differences can be partially reversed by experimental manipulations of small G-proteins of the Rho family and their downstream targets, such as formins, the Arp2/3 complex and Rho kinase. We also show that the physical adhesion of cells to galectin-8 was stronger than adhesion to fibronectin. Notably, galectin-8 and fibronectin differently regulate cell spreading and focal adhesion formation, yet act synergistically to upregulate the number and length of filopodia. The physiological significance of the coherent cellular response to a molecularly complex matrix is discussed. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ana Sancho
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, 97070, Germany
- Department of Automatic Control and Systems Engineering, University of the Basque Country UPV/EHU, San Sebastian, 20018, Spain
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, 97070, Germany
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Alexander D. Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
5
|
Schaks M, Döring H, Kage F, Steffen A, Klünemann T, Blankenfeldt W, Stradal T, Rottner K. RhoG and Cdc42 can contribute to Rac-dependent lamellipodia formation through WAVE regulatory complex-binding. Small GTPases 2021; 12:122-132. [PMID: 31451035 PMCID: PMC7849749 DOI: 10.1080/21541248.2019.1657755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 01/19/2023] Open
Abstract
Cell migration frequently involves the formation of lamellipodial protrusions, the initiation of which requires Rac GTPases signalling to heteropentameric WAVE regulatory complex (WRC). While Rac-related RhoG and Cdc42 can potently stimulate lamellipodium formation, so far presumed to occur by upstream signalling to Rac activation, we show here that the latter can be bypassed by RhoG and Cdc42 given that WRC has been artificially activated. This evidence arises from generation of B16-F1 cells simultaneously lacking both Rac GTPases and WRC, followed by reconstitution of lamellipodia formation with specific Rho-GTPase and differentially active WRC variant combinations. We conclude that formation of canonical lamellipodia requires WRC activation through Rac, but can possibly be tuned, in addition, by WRC interactions with RhoG and Cdc42.
Collapse
Affiliation(s)
- Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anika Steffen
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia Stradal
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Dimchev V, Lahmann I, Koestler SA, Kage F, Dimchev G, Steffen A, Stradal TEB, Vauti F, Arnold HH, Rottner K. Induced Arp2/3 Complex Depletion Increases FMNL2/3 Formin Expression and Filopodia Formation. Front Cell Dev Biol 2021; 9:634708. [PMID: 33598464 PMCID: PMC7882613 DOI: 10.3389/fcell.2021.634708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023] Open
Abstract
The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.
Collapse
Affiliation(s)
- Vanessa Dimchev
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Lahmann
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan A Koestler
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Georgi Dimchev
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Franz Vauti
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hans-Henning Arnold
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| |
Collapse
|
7
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Depau L, Brunetti J, Falciani C, Mandarini E, Riolo G, Zanchi M, Karousou E, Passi A, Pini A, Bracci L. Heparan Sulfate Proteoglycans Can Promote Opposite Effects on Adhesion and Directional Migration of Different Cancer Cells. J Med Chem 2020; 63:15997-16011. [PMID: 33284606 DOI: 10.1021/acs.jmedchem.0c01848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate proteoglycans take part in crucial events of cancer progression, such as epithelial-mesenchymal transition, cell migration, and cell invasion. Through sulfated groups on their glycosaminoglycan chains, heparan sulfate proteoglycans interact with growth factors, morphogens, chemokines, and extracellular matrix (ECM) proteins. The amount and position of sulfated groups are highly variable, thus allowing differentiated ligand binding and activity of heparan sulfate proteoglycans. This variability and the lack of specific ligands have delayed comprehension of the molecular basis of heparan sulfate proteoglycan functions. Exploiting a tumor-targeting peptide tool that specifically recognizes sulfated glycosaminoglycans, we analyzed the role of membrane heparan sulfate proteoglycans in the adhesion and migration of cancer cell lines. Starting from the observation that the sulfated glycosaminoglycan-specific peptide exerts a different effect on adhesion, migration, and invasiveness of different cancer cell lines, we identified and characterized three cell migration phenotypes, where different syndecans are associated with alternative signaling for directional cell migration.
Collapse
Affiliation(s)
- Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Marta Zanchi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
9
|
McGowan SE, Lansakara TI, McCoy DM, Zhu L, Tivanski AV. Platelet-derived Growth Factor-α and Neuropilin-1 Mediate Lung Fibroblast Response to Rigid Collagen Fibers. Am J Respir Cell Mol Biol 2020; 62:454-465. [DOI: 10.1165/rcmb.2019-0173oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stephen E. McGowan
- Department of Veterans Affairs Research Service, and
- Department of Internal Medicine, Carver College of Medicine, and
| | | | - Diann M. McCoy
- Department of Veterans Affairs Research Service, and
- Department of Internal Medicine, Carver College of Medicine, and
| | - Lien Zhu
- Department of Veterans Affairs Research Service, and
- Department of Internal Medicine, Carver College of Medicine, and
| | | |
Collapse
|
10
|
Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT. The Small GTPase Rac1 Increases Cell Surface Stiffness and Enhances 3D Migration Into Extracellular Matrices. Sci Rep 2019; 9:7675. [PMID: 31118438 PMCID: PMC6531482 DOI: 10.1038/s41598-019-43975-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Membrane ruffling and lamellipodia formation promote the motility of adherent cells in two-dimensional motility assays by mechano-sensing of the microenvironment and initiation of focal adhesions towards their surroundings. Lamellipodium formation is stimulated by small Rho GTPases of the Rac subfamily, since genetic removal of these GTPases abolishes lamellipodium assembly. The relevance of lamellipodial or invadopodial structures for facilitating cellular mechanics and 3D cell motility is still unclear. Here, we hypothesized that Rac1 affects cell mechanics and facilitates 3D invasion. Thus, we explored whether fibroblasts that are genetically deficient for Rac1 (lacking Rac2 and Rac3) harbor altered mechanical properties, such as cellular deformability, intercellular adhesion forces and force exertion, and exhibit alterations in 3D motility. Rac1 knockout and control cells were analyzed for changes in deformability by applying an external force using an optical stretcher. Five Rac1 knockout cell lines were pronouncedly more deformable than Rac1 control cells upon stress application. Using AFM, we found that cell-cell adhesion forces are increased in Rac1 knockout compared to Rac1-expressing fibroblasts. Since mechanical deformability, cell-cell adhesion strength and 3D motility may be functionally connected, we investigated whether increased deformability of Rac1 knockout cells correlates with changes in 3D motility. All five Rac1 knockout clones displayed much lower 3D motility than Rac1-expressing controls. Moreover, force exertion was reduced in Rac1 knockout cells, as assessed by 3D fiber displacement analysis. Interference with cellular stiffness through blocking of actin polymerization by Latrunculin A could not further reduce invasion of Rac1 knockout cells. In contrast, Rac1-expressing controls treated with Latrunculin A were again more deformable and less invasive, suggesting actin polymerization is a major determinant of observed Rac1-dependent effects. Together, we propose that regulation of 3D motility by Rac1 partly involves cellular mechanics such as deformability and exertion of forces.
Collapse
Affiliation(s)
- Tom Kunschmann
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Stefanie Puder
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci 2018; 130:3427-3435. [PMID: 29032357 DOI: 10.1242/jcs.206433] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Bogdan
- Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Akhtar N, Syed DN, Lall RK, Mirza B, Mukhtar H. Targeting epithelial to mesenchymal transition in prostate cancer by a novel compound, plectranthoic acid, isolated fromFicus microcarpa. Mol Carcinog 2018; 57:653-663. [DOI: 10.1002/mc.22790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Nosheen Akhtar
- Department of Dermatology; School of Medicine and Public Health; University of Wisconsin; Madison Wisconsin
- Department of Molecular Medicine; National University of Medical Sciences; Rawalpindi Pakistan
| | - Deeba N. Syed
- Department of Dermatology; School of Medicine and Public Health; University of Wisconsin; Madison Wisconsin
| | - Rahul K. Lall
- Department of Dermatology; School of Medicine and Public Health; University of Wisconsin; Madison Wisconsin
| | - Bushra Mirza
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Hasan Mukhtar
- Department of Dermatology; School of Medicine and Public Health; University of Wisconsin; Madison Wisconsin
| |
Collapse
|
13
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
14
|
Abstract
Animal cell migration constitutes a complex process involving a multitude of forces generated and maintained by the actin cytoskeleton. Dynamic changes of the cell surface, for instance to effect cell edge protrusion, are at the core of initiating migratory processes, both in tissue culture models and whole animals. Here we sketch different aspects of imaging representative molecular constituents in such actin-driven processes, which power and regulate the polymerisation of actin filaments into bundles and networks, constituting the building blocks of such protrusions. The examples presented illustrate both the diversity of subcellular distributions of distinct molecular components, according to their function, and the complexity of dynamic changes in protrusion size, shape, and/or orientation in 3D. Considering these dynamics helps mechanistically connecting subcellular distributions of molecular machines driving protrusion and migration with their biochemical function.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
15
|
Differential functions of WAVE regulatory complex subunits in the regulation of actin-driven processes. Eur J Cell Biol 2017; 96:715-727. [PMID: 28889942 DOI: 10.1016/j.ejcb.2017.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
The WAVE regulatory complex (WRC) links upstream Rho-family GTPase signaling to the activation of the ARP2/3 complex in different organisms. WRC-induced and ARP2/3 complex-mediated actin nucleation beneath the plasma membrane is critical for actin assembly in the leading edge to drive efficient cell migration. The WRC is a stable heteropentamer composed of SCAR/WAVE, Abi, Nap, Pir and the small polypeptide Brk1/Hspc300. Functional interference with individual subunits of the complex frequently results in diminished amounts of the remaining polypeptides of the WRC complex, implying the complex to act as molecular entity. However, Abi was also found to associate with mammalian N-WASP, formins, Eps8/SOS1 or VASP, indicating additional functions of individual WRC subunits in eukaryotic cells. To address this issue systematically, we inactivated all WRC subunits, either alone or in combination with VASP in Dictyostelium cells and quantified the protein content of the remaining subunits in respective WRC knockouts. The individual mutants displayed highly differential phenotypes concerning various parameters, including cell morphology, motility, cytokinesis or multicellular development, corroborating the view of additional roles for individual subunits, beyond their established function in WRC-mediated Arp2/3 complex activation. Finally, our data uncover the interaction of the actin polymerase VASP with WRC-embedded Abi to mediate VASP accumulation in cell protrusions, driving efficient cell migration.
Collapse
|
16
|
Dimchev G, Steffen A, Kage F, Dimchev V, Pernier J, Carlier MF, Rottner K. Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly. Mol Biol Cell 2017; 28:1311-1325. [PMID: 28331069 PMCID: PMC5426846 DOI: 10.1091/mbc.e16-05-0334] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 11/26/2022] Open
Abstract
Lamellipodia protrusion requires actin network formation driven by the Arp2/3 complex and its upstream regulators WAVE complex and Rac. Actin assembly factors of the formin and Ena/VASP families can influence protrusion, in particular by maintaining a balance between lamellipodial and cytosolic actin filament assembly. Cell migration and cell–cell communication involve the protrusion of actin-rich cell surface projections such as lamellipodia and filopodia. Lamellipodia are networks of actin filaments generated and turned over by filament branching through the Arp2/3 complex. Inhibition of branching is commonly agreed to eliminate formation and maintenance of lamellipodial actin networks, but the regulation of nucleation or elongation of Arp2/3-independent filament populations within the network by, for example, formins or Ena/VASP family members and its influence on the effectiveness of protrusion have been unclear. Here we analyzed the effects of a set of distinct formin fragments and VASP on site-specific, lamellipodial versus cytosolic actin assembly and resulting consequences on protrusion. Surprisingly, expression of formin variants but not VASP reduced lamellipodial protrusion in B16-F1 cells, albeit to variable extents. The rates of actin network polymerization followed a similar trend. Unexpectedly, the degree of inhibition of both parameters depended on the extent of cytosolic but not lamellipodial actin assembly. Indeed, excess cytosolic actin assembly prevented actin monomer from rapid translocation to and efficient incorporation into lamellipodia. Thus, as opposed to sole regulation by actin polymerases operating at their tips, the protrusion efficiency of lamellipodia is determined by a finely tuned balance between lamellipodial and cytosolic actin assembly.
Collapse
Affiliation(s)
- Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Vanessa Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julien Pernier
- Cytoskeleton Dynamics and Motility, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany .,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
17
|
A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proc Natl Acad Sci U S A 2016; 113:E7464-E7473. [PMID: 27821733 DOI: 10.1073/pnas.1611024113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas.
Collapse
|
18
|
Bouchet J, Del Río-Iñiguez I, Lasserre R, Agüera-Gonzalez S, Cuche C, Danckaert A, McCaffrey MW, Di Bartolo V, Alcover A. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation. EMBO J 2016; 35:1160-74. [PMID: 27154205 DOI: 10.15252/embj.201593274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 11/09/2022] Open
Abstract
The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.
Collapse
Affiliation(s)
- Jérôme Bouchet
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | - Iratxe Del Río-Iñiguez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | - Rémi Lasserre
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France
| | - Sonia Agüera-Gonzalez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | | | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, Biosciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France CNRS URA 1961, Paris, France INSERM U1221, Paris, France
| |
Collapse
|
19
|
Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 2015; 126:1357-66. [PMID: 26232173 DOI: 10.1182/blood-2015-01-624809] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell.
Collapse
|