1
|
Hsu CY, Chandramoorthy HC, Mohammed JS, Al-Hasnaawei S, Yaqob M, Kundlas M, Samikan K, Sahoo S, Sunori SK, Abbas ZA. Exosomes as key mediators in immune and cancer cell interactions: insights in melanoma progression and therapy. Arch Dermatol Res 2025; 317:729. [PMID: 40252131 DOI: 10.1007/s00403-025-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Exosomes (30-150 nm) are small extracellular vesicles that are secreted by cells into the extracellular environment and are known to mediate cell-to-cell communication. Exosomes contain proteins, lipids, and RNA molecules in relative abundance, capable of modifying the activity of target cells. Melanoma-derived exosomes (MEXs) promote the transfer of oncogenic signals and immunosuppressive factors into immune cells, resulting in a bias of the immune response towards tumor-promoting processes. MEXs could suppress the activation and proliferation of T cells and dendritic cells and induce differentiation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). They can induce apoptosis of antigen-specific CD8 + T cells and promote the transfer of tumor antigens, resulting in immune evasion. Specifically, MEXs can shuttle cytokines like interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) to immune cells or express programmed death-ligand 1 (PD-L1 or CD274), creating an immune-suppressive microenvironment that promotes tumorigenesis. Since exosomes preferentially accumulate in melanoma tissues, this targeted delivery could enhance the bioavailability of treatments while limiting side effects. Here, we review the molecular composition of melanoma-derived exosomes, their mechanisms of action, and their potential as therapeutic targets or biomarkers in melanoma. The summarizations of these mechanisms to appropriately influence exosome-mediated interactions could yield new tactics to elicit anti-melanoma immunity or augment the therapeutic effects of current therapies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine and Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | | | - Shaker Al-Hasnaawei
- College of Pharmacy, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Mohammed Yaqob
- Department of Biology, Mazaya University College, Dhiqar, Iraq
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Krishnakumar Samikan
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - S K Sunori
- Graphic Era Hill University, Bhimtal, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Zainab Ahmed Abbas
- College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
3
|
Zhang J, Luo Q, Li X, Guo J, Zhu Q, Lu X, Wei L, Xiang Z, Peng M, Ou C, Zou Y. Novel role of immune-related non-coding RNAs as potential biomarkers regulating tumour immunoresponse via MICA/NKG2D pathway. Biomark Res 2023; 11:86. [PMID: 37784183 PMCID: PMC10546648 DOI: 10.1186/s40364-023-00530-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023] Open
Abstract
Major histocompatibility complex class I related chain A (MICA) is an important and stress-induced ligand of the natural killer group 2 member D receptor (NKG2D) that is expressed in various tumour cells. Given that the MICA/NKG2D signalling system is critically embedded in the innate and adaptive immune responses, it is particularly involved in the surveillance of cancer and viral infections. Emerging evidence has revealed the important roles of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in different cancer types. We searched for all relevant publications in the PubMed, Scopus and Web of Science database using the keywords ncRNA, MICA, NKG2D, cancer, and miRNAs. All relevant studies published from 2008 to the 2023 were retrieved and collated. Notably, we found that miRNAs can target to NKG2D mRNA and MICA mRNA 3'-untranslated regions (3'-UTR), leading to translation inhibition of NKG2D and MICA degradation. Several immune-related MICA/NKG2D pathways may be dysregulated in cancer with aberrant miRNA expressions. At the same time, the competitive endogenous RNA (ceRNA) hypothesis holds that circRNAs, lncRNAs, and mRNAs induce an abnormal MICA expression by directly targeting downstream miRNAs to mediate mRNA suppression in cancer. This review summarizes the novel mechanism of immune escape in the ncRNA-related MICA/NKG2D pathway mediated by NK cells and cancer cells. Moreover, we identified the miRNA-NKG2D, miRNA-MICA and circRNA/lncRNA/mRNA-miRNA-mRNA/MICA axis. Thus, we were particularly concerned with the regulation of mediated immune escape in the MICA/NKG2D pathway by ncRNAs as potential therapeutic targets and diagnostic biomarkers of immunity and cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Qizhi Luo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Xin Li
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Junshuang Guo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Quan Zhu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Leiyan Wei
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Manqing Peng
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
4
|
Cappello S, Sung HM, Ickes C, Gibhardt CS, Vultur A, Bhat H, Hu Z, Brafford P, Denger A, Stejerean-Todoran I, Köhn RM, Lorenz V, Künzel N, Salinas G, Stanisz H, Legler T, Rehling P, Schön MP, Lang KS, Helms V, Herlyn M, Hoth M, Kummerow C, Bogeski I. Protein Signatures of NK Cell-Mediated Melanoma Killing Predict Response to Immunotherapies. Cancer Res 2021; 81:5540-5554. [PMID: 34518212 DOI: 10.1158/0008-5472.can-21-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Despite impressive advances in melanoma-directed immunotherapies, resistance is common and many patients still succumb to metastatic disease. In this context, harnessing natural killer (NK) cells, which have thus far been sidelined in the development of melanoma immunotherapy, could provide therapeutic benefits for cancer treatment. To identify molecular determinants of NK cell-mediated melanoma killing (NKmK), we quantified NK-cell cytotoxicity against a panel of genetically diverse melanoma cell lines and observed highly heterogeneous susceptibility. Melanoma protein microarrays revealed a correlation between NKmK and the abundance and activity of a subset of proteins, including several metabolic factors. Oxidative phoshorylation, measured by oxygen consumption rate, negatively correlated with melanoma cell sensitivity toward NKmK, and proteins involved in mitochondrial metabolism and epithelial-mesenchymal transition were confirmed to regulate NKmK. Two- and three-dimensional killing assays and melanoma xenografts established that the PI3K/AKT/mTOR signaling axis controls NKmK via regulation of NK cell-relevant surface proteins. A "protein-killing-signature" based on the protein analysis predicted NKmK of additional melanoma cell lines and the response of patients with melanoma to anti-PD-1 checkpoint therapy. Collectively, these findings identify novel NK cell-related prognostic biomarkers and may contribute to improved and personalized melanoma-directed immunotherapies. SIGNIFICANCE: NK-cell cytotoxicity assays and protein microarrays reveal novel biomarkers of NK cell-mediated melanoma killing and enable development of signatures to predict melanoma patient responsiveness to immunotherapies.
Collapse
Affiliation(s)
- Sabrina Cappello
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany.,Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Hsu-Min Sung
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Christian Ickes
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Adina Vultur
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany.,The Wistar Institute, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Hilal Bhat
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Zhongwen Hu
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Patricia Brafford
- The Wistar Institute, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Andreas Denger
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Rixa-Mareike Köhn
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Verena Lorenz
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Nicolas Künzel
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Gabriela Salinas
- NGS- Core Unit for Integrative Genomics, Institute for Human Genetics, University Medical Center, Göttingen, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Tobias Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center, Georg-August-University, Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Markus Hoth
- Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Carsten Kummerow
- Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany. .,Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
6
|
Reina-Ortiz C, Constantinides M, Fayd-Herbe-de-Maudave A, Présumey J, Hernandez J, Cartron G, Giraldos D, Díez R, Izquierdo I, Azaceta G, Palomera L, Marzo I, Naval J, Anel A, Villalba M. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 2020; 10:1853314. [PMID: 33457074 PMCID: PMC7781838 DOI: 10.1080/2162402x.2020.1853314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study we evaluated the potential of expanded NK cells (eNKs) from two sources combined with the mAbs daratumumab and pembrolizumab to target primary multiple myeloma (MM) cells ex vivo. In order to ascertain the best source of NK cells, we expanded and activated NK cells from peripheral blood (PB) of healthy adult donors and from umbilical cord blood (UCB). The resulting expanded NK (eNK) cells express CD16, necessary for carrying out antibody-dependent cellular cytotoxicity (ADCC). Cytotoxicity assays were performed on bone marrow aspirates of 18 MM patients and 4 patients with monoclonal gammopathy of undetermined significance (MGUS). Expression levels of PD-1 on eNKs and PD-L1 on MM and MGUS cells were also quantified. Results indicate that most eNKs obtained using our expansion protocol express a low percentage of PD-1+ cells. UCB eNKs were highly cytotoxic against MM cells and addition of daratumumab or pembrolizumab did not further increase their cytotoxicity. PB eNKs, while effective against MM cells, were significantly more cytotoxic when combined with daratumumab. In a minority of cases, eNK cells showed a detectable population of PD1+ cells. This correlated with low cytotoxic activity, particularly in UCB eNKs. Addition of pembrolizumab did not restore their activity. Results indicate that UCB eNKs are to be preferentially used against MM in the absence of daratumumab while PB eNKs have significant cytotoxic advantage when combined with this mAb.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | | | | | | | | | | | - David Giraldos
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Rosana Díez
- Hematology Department, Miguel Servet Hospital, Zaragoza, Spain
| | | | - Gemma Azaceta
- Hematology Department, Lozano Blesa Hospital, Zaragoza, Spain
| | - Luis Palomera
- Hematology Department, Lozano Blesa Hospital, Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Martín Villalba
- CHU Montpellier, IRMB, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
7
|
Furfaro AL, Ottonello S, Loi G, Cossu I, Piras S, Spagnolo F, Queirolo P, Marinari UM, Moretta L, Pronzato MA, Mingari MC, Pietra G, Nitti M. HO-1 downregulation favors BRAF V600 melanoma cell death induced by Vemurafenib/PLX4032 and increases NK recognition. Int J Cancer 2019; 146:1950-1962. [PMID: 31376303 DOI: 10.1002/ijc.32611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023]
Abstract
Heme oxygenase 1 (HO-1) plays a pivotal role in preventing cell damage. Indeed, through the antioxidant, antiapoptotic and anti-inflammatory properties of its metabolic products, it favors cell adaptation against different stressors. However, HO-1 induction has also been related to the gain of resistance to therapy in different types of cancers and its involvement in cancer immune-escape has been hypothesized. We have investigated the role of HO-1 expression in Vemurafenib-treated BRAFV600 melanoma cells in modulating their susceptibility to NK cell-mediated recognition. Different cell lines, isolated in house from melanoma patients, have been exposed to 1-10 μM PLX4032, which efficiently reduced ERK phosphorylation. In three lines, Vemurafenib was able to induce only a limited decrease in cell viability, while HO-1 expression was upregulated. HO-1 silencing/inhibition was able to induce a further significant reduction of Vemurafenib-treated melanoma viability. Moreover, while NK cell degranulation and killing activity were decreased upon interaction with melanoma exposed to Vemurafenib, HO-1 silencing was able to completely restore NK cell ability to degranulate and kill. Furthermore, melanoma cell treatment with Vemurafenib downregulated the expression of ligands of NKp30 and NKG2D activating receptors, and HO-1 silencing/inhibition was able to restore their expression. Our results indicate that HO-1 downregulation can both improve the efficacy of Vemurafenib on melanoma cells and favor melanoma susceptibility to NK cell-mediated recognition and killing.
Collapse
Affiliation(s)
- Anna L Furfaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Selene Ottonello
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,CEBR, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Giulia Loi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Irene Cossu
- UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabrina Piras
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesco Spagnolo
- UO Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Queirolo
- UO Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | - Maria A Pronzato
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria C Mingari
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,CEBR, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, Wang Y, Xiong F, Guo C, Li Y, Li X, Li G, Zeng Z, Xiong W, Wang F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 2019; 18:29. [PMID: 30813924 PMCID: PMC6391774 DOI: 10.1186/s12943-019-0956-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The immune system plays important roles in tumor development. According to the immune-editing theory, immune escape is the key to tumor survival, and exploring the mechanisms of tumor immune escape can provide a new basis for the treatment of tumors. In this review, we describe the mechanisms of natural killer group 2D (NKG2D) receptor and NKG2D ligand (NKG2DL) in tumor immune responses. Natural killer (NK) cells are important cytotoxic cells in the immune system, and the activated NKG2D receptor on the NK cell surface can bind to NKG2DL expressed in tumor cells, enabling NK cells to activate and kill tumor cells. However, tumors can escape the immune clearance mediated by NKG2D receptor/NKG2DL through various mechanisms. The expression of NKG2D receptor on NK cells can be regulated by cells, molecules, and hypoxia in the tumor microenvironment. Tumor cells regulate the expression of NKG2DL at the level of transcription, translation, and post-translation and thereby escape recognition by NK cells. In particular, viruses and hormones have special mechanisms to affect the expression of NKG2D receptor and NKG2DL. Therefore, NKG2D\NKG2DL may have applications as targets for more effective antitumor therapy.
Collapse
Affiliation(s)
- Shixin Duan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Guo
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuxing Xu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yunbo He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chuting Liang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2018; 33:3481-3495. [PMID: 30452881 DOI: 10.1096/fj.201801350rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Collapse
Affiliation(s)
- Akram Obiedat
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Seidel
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,e-Noesis Inspired Operational Systems Applications Private Company PC, Kallithea-Athens, Greece
| | - Mari McMahon
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and.,Apoptosis Research Centre (ARC), National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Tony Avril
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, Zhang L, Iannello A, Mathur N, Jardine KE, Kirn GA, Bell JC, McBurney MW, Raulet DH, Ardolino M. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest 2018; 128:4654-4668. [PMID: 30198904 DOI: 10.1172/jci99317] [Citation(s) in RCA: 588] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Checkpoint blockade immunotherapy targeting the PD-1/PD-L1 inhibitory axis has produced remarkable results in the treatment of several types of cancer. Whereas cytotoxic T cells are known to provide important antitumor effects during checkpoint blockade, certain cancers with low MHC expression are responsive to therapy, suggesting that other immune cell types may also play a role. Here, we employed several mouse models of cancer to investigate the effect of PD-1/PD-L1 blockade on NK cells, a population of cytotoxic innate lymphocytes that also mediate antitumor immunity. We discovered that PD-1 and PD-L1 blockade elicited a strong NK cell response that was indispensable for the full therapeutic effect of immunotherapy. PD-1 was expressed on NK cells within transplantable, spontaneous, and genetically induced mouse tumor models, and PD-L1 expression in cancer cells resulted in reduced NK cell responses and generation of more aggressive tumors in vivo. PD-1 expression was more abundant on NK cells with an activated and more responsive phenotype and did not mark NK cells with an exhausted phenotype. These results demonstrate the importance of the PD-1/PD-L1 axis in inhibiting NK cell responses in vivo and reveal that NK cells, in addition to T cells, mediate the effect of PD-1/PD-L1 blockade immunotherapy.
Collapse
Affiliation(s)
- Joy Hsu
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Jonathan J Hodgins
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Malvika Marathe
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Chris J Nicolai
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Marie-Claude Bourgeois-Daigneault
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Troy N Trevino
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Camillia S Azimi
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Amit K Scheer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Haley E Randolph
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Thornton W Thompson
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Lily Zhang
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Alexandre Iannello
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Nikhita Mathur
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Karen E Jardine
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Georgia A Kirn
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - John C Bell
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael W McBurney
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David H Raulet
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA
| | - Michele Ardolino
- Department of Molecular and Cell Biology, Immunotherapy and Vaccine Research Initiative, Cancer Research Laboratory, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, USA.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Immune Profiling of Cancer Patients Treated with Immunotherapy: Advances and Challenges. Biomedicines 2018; 6:biomedicines6030076. [PMID: 30004433 PMCID: PMC6163220 DOI: 10.3390/biomedicines6030076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
The recent advances in immunotherapy and the availability of novel drugs to target the tumor microenvironment have dramatically changed the paradigm of cancer treatment. Nevertheless, a significant proportion of cancer patients are unresponsive or develop resistance to these treatments. With the aim to increase the clinical efficacy of immunotherapy, combinations of agents and standard therapies with complementary actions have been developed mostly on an empirical base, since their mechanisms of actions are not yet fully dissected. The characterization of immune responsiveness and its monitoring along with the treatment of cancer patients with immunotherapy can provide insights into the mechanisms of action of these therapeutic regimens and contribute to the optimization of patients’ stratification and of combination strategies and to the prediction of treatment-related toxicities. Thus far, none of the immunomonitoring strategies has been validated for routine clinical practice. Moreover, it is becoming clear that the genomic and molecular make-up of tumors and of the infiltrating immune system represent important determinants of the clinical responses to immunotherapy. This review provides an overview of different approaches for the immune profiling of cancer patients and discusses their advantages and limitations. Recent advances in genomic-based assays and in the identification of host genomic relationships with immune responses represent promising approaches to identify molecular determinants and biomarkers to improve the clinical efficacy of cancer immunotherapy.
Collapse
|
12
|
Forget MA, Haymaker C, Hess KR, Meng YJ, Creasy C, Karpinets T, Fulbright OJ, Roszik J, Woodman SE, Kim YU, Sakellariou-Thompson D, Bhatta A, Wahl A, Flores E, Thorsen ST, Tavera RJ, Ramachandran R, Gonzalez AM, Toth CL, Wardell S, Mansaray R, Patel V, Carpio DJ, Vaughn C, Farinas CM, Velasquez PG, Hwu WJ, Patel SP, Davies MA, Diab A, Glitza IC, Tawbi H, Wong MK, Cain S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Wargo JA, Radvanyi LG, Torres-Cabala CA, Beroukhim R, Hwu P, Amaria RN, Bernatchez C. Prospective Analysis of Adoptive TIL Therapy in Patients with Metastatic Melanoma: Response, Impact of Anti-CTLA4, and Biomarkers to Predict Clinical Outcome. Clin Cancer Res 2018; 24:4416-4428. [PMID: 29848573 DOI: 10.1158/1078-0432.ccr-17-3649] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has consistently demonstrated clinical efficacy in metastatic melanoma. Recent widespread use of checkpoint blockade has shifted the treatment landscape, raising questions regarding impact of these therapies on response to TIL and appropriate immunotherapy sequence.Patients and Methods: Seventy-four metastatic melanoma patients were treated with autologous TIL and evaluated for clinical response according to irRC, overall survival, and progression-free survival. Immunologic factors associated with response were also evaluated.Results: Best overall response for the entire cohort was 42%; 47% in 43 checkpoint-naïve patients, 38% when patients were exposed to anti-CTLA4 alone (21 patients) and 33% if also exposed to anti-PD1 (9 patients) prior to TIL ACT. Median overall survival was 17.3 months; 24.6 months in CTLA4-naïve patients and 8.6 months in patients with prior CTLA4 blockade. The latter patients were infused with fewer TIL and experienced a shorter duration of response. Infusion of higher numbers of TIL with CD8 predominance and expression of BTLA correlated with improved response in anti-CTLA4 naïve patients, but not in anti-CTLA4 refractory patients. Baseline serum levels of IL9 predicted response to TIL ACT, while TIL persistence, tumor recognition, and mutation burden did not correlate with outcome.Conclusions: This study demonstrates the deleterious effects of prior exposure to anti-CTLA4 on TIL ACT response and shows that baseline IL9 levels can potentially serve as a predictive tool to select the appropriate sequence of immunotherapies. Clin Cancer Res; 24(18); 4416-28. ©2018 AACR.
Collapse
Affiliation(s)
- Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MDACC, Houston, Texas
| | - Yuzhong Jeff Meng
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Tatiana Karpinets
- Department of Genomic Medicine, The University of Texas MDACC, Houston, Texas
| | - Orenthial J Fulbright
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas.,Department of Genomic Medicine, The University of Texas MDACC, Houston, Texas
| | - Scott E Woodman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Young Uk Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | | | - Ankit Bhatta
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Arely Wahl
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Esteban Flores
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Shawne T Thorsen
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - René J Tavera
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Renjith Ramachandran
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Audrey M Gonzalez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Christopher L Toth
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Seth Wardell
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Rahmatu Mansaray
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Vruti Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Destiny Joy Carpio
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Carol Vaughn
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Chantell M Farinas
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Portia G Velasquez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Isabella C Glitza
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Michael K Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Suzanne Cain
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MDACC, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MDACC, Houston, Texas
| | | | - Anthony Lucci
- Department of Surgical Oncology, The University of Texas MDACC, Houston, Texas
| | - Richard Royal
- Department of Surgical Oncology, The University of Texas MDACC, Houston, Texas
| | - Janice N Cormier
- Department of Surgical Oncology, The University of Texas MDACC, Houston, Texas
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MDACC, Houston, Texas.,Department of Surgical Oncology, The University of Texas MDACC, Houston, Texas
| | - Laszlo G Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | | | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas.
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas.
| |
Collapse
|
13
|
Espinoza JL, Minami M. Sensing Bacterial-Induced DNA Damaging Effects via Natural Killer Group 2 Member D Immune Receptor: From Dysbiosis to Autoimmunity and Carcinogenesis. Front Immunol 2018; 9:52. [PMID: 29422899 PMCID: PMC5788971 DOI: 10.3389/fimmu.2018.00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
The human genome is constantly exposed to exogenous and endogenous DNA damaging factors that frequently cause DNA damages. Unless repaired, damaged DNA can result in deleterious mutations capable of causing malignant transformation. Accordingly, cells have developed an advanced and effective surveillance system, the DNA damage response (DDR) pathway, which maintains genetic integrity. In addition to well-defined outcomes, such as cell cycle arrest, apoptosis, and senescence, another consequence of DDR activation is the induction of natural killer group 2 member D ligands (NKG2D-Ls) on the surface of stressed cells. Consequently, NKG2D-Ls-expressing cells are recognized and eliminated by NKG2D receptor-expressing immune cells, including NK cells, and various subsets of T-cells. Recent pieces of evidence indicate that commensal microbial imbalance (known as dysbiosis) can trigger DDR activation in host cells, which may result in sustained inflammatory responses. Therefore, dysbiosis can be seen as an important source of DNA damage agents that may be partially responsible for the overexpression of NKG2D-Ls on intestinal epithelial cells that is frequently observed in patients with inflammatory bowel disease and other disorders associated with altered human microbiota, including the development of colorectal cancer. In this article, we discuss recent evidence that appears to link an altered human microbiota with autoimmunity and carcinogenesis via the activation of DDR signals and the induction of NKG2D-Ls in stressed cells.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Mika Minami
- Faculty of Medicine, Kindai University, Higashi-osaka, Japan
| |
Collapse
|
14
|
Frazao A, Colombo M, Fourmentraux-Neves E, Messaoudene M, Rusakiewicz S, Zitvogel L, Vivier E, Vély F, Faure F, Dréno B, Benlalam H, Bouquet F, Savina A, Pasmant E, Toubert A, Avril MF, Caignard A. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib. Cancer Immunol Res 2017; 5:582-593. [PMID: 28576831 DOI: 10.1158/2326-6066.cir-16-0380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
Abstract
Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF-mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | - Marina Colombo
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | | | - Brigitte Dréno
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Houssem Benlalam
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | | | | | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Toubert
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | - Anne Caignard
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France.
| |
Collapse
|
15
|
Maccalli C, Giannarelli D, Chiarucci C, Cutaia O, Giacobini G, Hendrickx W, Amato G, Annesi D, Bedognetti D, Altomonte M, Danielli R, Calabrò L, Di Giacomo AM, Marincola FM, Parmiani G, Maio M. Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients. Oncoimmunology 2017; 6:e1323618. [PMID: 28811958 DOI: 10.1080/2162402x.2017.1323618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/23/2022] Open
Abstract
The introduction of immune checkpoint blockade into the clinical practice resulted in improvement of survival of a significant portion of melanoma patients. Consequently, predictive biomarkers of response are needed to optimize patient's stratification and the development of combination therapies. The aim of this study was to determine whether levels of soluble NKG2D ligands (MICA, MICB, ULBP1, 2 and 3; sNKG2DLs) in the serum of melanoma patients can serve as useful predictors of response to the treatment with immune checkpoint blockade. sNKG2DLs were measured by ELISA in baseline and post-treatment serum and these results were correlated with the clinical outcome of melanoma patients (N = 194). The same determinations were performed also in a cohort of patients (N = 65) treated with either chemotherapy, radiotherapy, or mutated BRAF inhibitors (BRAFi). Absence of soluble MICB and ULBP-1 in baseline serum correlated with improved survival (OS = 21.6 and 25.3 mo and p = 0.02 and 0.01, respectively) of patients treated with immunological therapies while detectable levels of these molecules were found in poor survivors (OS = 8.8 and 12.1 mo, respectively). Multivariate analysis showed that LDH (p <0.0001), sULBP-1 (p = 0.02), and sULBP-2 (p = 0.02) were independent predictors of clinical outcome for the cohort of melanoma patients treated with immune checkpoint blockade. Only LDH but not sNKG2DLs was significantly associated with the clinical outcome of patients treated with standard or BRAFi regimens. These findings highlight the relevance of sNKG2DLs in the serum of melanoma patients as biomarkers for patients' stratification and optimization of immune checkpoint inhibition regimens.
Collapse
Affiliation(s)
- Cristina Maccalli
- Research Branch, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Diana Giannarelli
- Unit of Statistics, Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Chiarucci
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,University of Siena, Siena, Italy
| | - Ornella Cutaia
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,University of Siena, Siena, Italy
| | - Gianluca Giacobini
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,University of Siena, Siena, Italy
| | - Wouter Hendrickx
- Research Branch, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Giovanni Amato
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Diego Annesi
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Davide Bedognetti
- Research Branch, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Maresa Altomonte
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Riccardo Danielli
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Luana Calabrò
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Anna Maria Di Giacomo
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Francesco M Marincola
- Office of the Chief Research Officer (CRO), Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Giorgio Parmiani
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,Italian Network for Bio-therapy of Tumors-(NIBIT)-Laboratory, Siena, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| |
Collapse
|
16
|
Stabile H, Fionda C, Gismondi A, Santoni A. Role of Distinct Natural Killer Cell Subsets in Anticancer Response. Front Immunol 2017; 8:293. [PMID: 28360915 PMCID: PMC5352654 DOI: 10.3389/fimmu.2017.00293] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Italian Institute of Technology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Jacquelot N, Pitt JM, Enot DP, Roberti MP, Duong CPM, Rusakiewicz S, Eggermont AM, Zitvogel L. Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. Oncoimmunology 2017; 6:e1299303. [PMID: 28919986 DOI: 10.1080/2162402x.2017.1299303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 01/05/2023] Open
Abstract
Existing clinical, anatomopathological and molecular biomarkers fail to reliably predict the prognosis of cutaneous melanoma. Biomarkers for determining which patients receive adjuvant therapies are needed. The emergence of new technologies and the discovery of new immune populations with different prognostic values allow the immune network in the tumor to be better understood. Importantly, new molecules identified and expressed by immune cells have been shown to reduce the antitumor immune efficacy of therapies, prompting researchers to develop antibodies targeting these so-called "immune checkpoints", which have now entered the oncotherapeutic armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Jonathan M Pitt
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - David P Enot
- Gustave Roussy, Université Paris-saclay, Metabolomics and Cell Biology Platforms, Villejuif, F-94805, France
| | - Maria Paula Roberti
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Connie P M Duong
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Sylvie Rusakiewicz
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France.,Gustave Roussy, Université Paris-saclay, CIC Biothérapie IGR Curie CIC 1428, Villejuif, F-94805, France
| | | | - Laurence Zitvogel
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France.,Gustave Roussy, Université Paris-saclay, CIC Biothérapie IGR Curie CIC 1428, Villejuif, F-94805, France
| |
Collapse
|
18
|
Seliger B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA 2016; 88:213-220. [PMID: 27659281 DOI: 10.1111/tan.12898] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Although the human immune system can recognize and eradicate tumor cells, tumors have also been shown to develop different strategies to escape immune surveillance, which has been described for the first time in different mouse models. The evasion of immune recognition was often associated with a poor prognosis and reduced survival of patients. During the last years the molecular mechanisms, which protect tumor cells from this immune attack, have been identified and appear to be more complex than initially expected. However, next to the composition of cellular, soluble and physical components of the tumor microenvironment, the tumor cells changes to limit immune responses. Of particular importance are classical and non-classical human leukocyte antigen (HLA) class I antigens, which often showed a deregulated expression in cancers of distinct origin. Furthermore, HLA class I abnormalities were linked to defects in the interferon signaling, which have both been shown to be essential for mounting immune responses and are involved in resistances to T cell-based immunotherapies. Therefore this review summarizes the expression, regulation, function and clinical relevance of HLA class I antigens in association with the interferon signal transduction pathway and its role in adaptive resistances to immunotherapies.
Collapse
Affiliation(s)
- B Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
19
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
20
|
Maccalli C, Giannarelli D, Capocefalo F, Pilla L, Fonsatti E, Di Giacomo AM, Parmiani G, Maio M. Immunological markers and clinical outcome of advanced melanoma patients receiving ipilimumab plus fotemustine in the NIBIT-M1 study. Oncoimmunology 2015; 5:e1071007. [PMID: 27057436 DOI: 10.1080/2162402x.2015.1071007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/04/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
Clinical activity was observed in metastatic melanoma (MM) patients treated with ipilimumab (IPI) combined with fotemustine (FTM) in the phase II NIBIT-M1 study. Peripheral blood mononuclear cells (PBMCs) and serum were collected from MM patients at pre- and at weeks 12 and 24 post-treatment. A comprehensive phenotypic and functional immunomonitoring of circulating T cells, and the detection of soluble immunoregulatory molecules was carried out and correlated with clinical outcome. The frequency at baseline and along the treatment of circulating T central memory cells expressing activation/differentiation markers, such as CD3+CD4+CD45RO+BTLA+, CD3+CD4+4-1BB or Th17 lymphocytes correlated with the clinical outcome of MM patients. Moreover, either the absence or the presence of soluble NKG2D ligands (ULBP-1 or -2) at baseline in the serum of MM patients enabled to discriminate subjects with long-term survival (median overall survival, (OS) = 33.6 mo for ULBP-1 and -2) from poor survivors (OS = 9.8 or 6.6 mo, respectively). Conversely, no significant association between the levels of soluble MICA, MICB and ULBP-3 and the clinical outcome of patients was observed. An inverse correlation between circulating levels of these molecules at baseline and frequency of either CD3+CD4+CD45RO+BTLA+ or Th17 or CD3+CD4+4-1BB+ T cells occurred in patients with a favorable clinical outcome. The simultaneous monitoring of different immune parameters, though validation in a large cohort of patients is needed, allowed to identify an association between phenotypic and soluble markers representing a possible predictive immunological signature for the clinical activity of IPI plus FTM.
Collapse
Affiliation(s)
- Cristina Maccalli
- Italian Network for Biotherapy of Tumors-(NIBIT)-Laboratory, Siena, Italy; Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center, Milan, Italy
| | - Diana Giannarelli
- Unit of Statistics, Regina Elena National Cancer Institute , Rome, Italy
| | - Filippo Capocefalo
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center , Milan, Italy
| | - Lorenzo Pilla
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center, Milan, Italy
| | - Ester Fonsatti
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori , Siena, Italy
| | - Anna Maria Di Giacomo
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori , Siena, Italy
| | - Giorgio Parmiani
- Italian Network for Biotherapy of Tumors-(NIBIT)-Laboratory, Siena, Italy; Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center, Milan, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori , Siena, Italy
| |
Collapse
|