1
|
de Menezes AAPM, Moura MLV, de Oliveira Filho JWG, do Nascimento MLLB, Gonçalves JCR, Sobral MV, Marques KKG, da Silva FCC, De Freitas GBL, Silva VC, Coêlho SGC, Gualter MP, Negreiros HA, do Lago JPAD, de Sousa IGB, Rolim HML, de Castro E Sousa JM. Molecular docking and antitumor evaluation of liposomal nanoformulations containing citrinin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04201-z. [PMID: 40310529 DOI: 10.1007/s00210-025-04201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
The search for novel drugs based on natural products combined with nanosystems has circumvented limitations and barriers in cancer treatment. Citrinin (CIT), a mycotoxin produced by the fungus Penicillium citrinum, has demonstrated cytotoxicity in tumor models and may represent a promising antitumor agent. In this study, we aimed to evaluate the cytotoxic, genotoxic, and mutagenic effects of CIT and a liposomal nanoformulation containing CIT (LP-CIT) in MCF7 breast cancer cells. The selected concentrations were based on preliminary range-finding assays to determine optimal cytotoxicity while maintaining assay reliability. The toxicogenetic evaluations and mechanistic analyses included MTT, trypan blue exclusion, cytokinesis-block micronucleus (CBMN) assays, fluorescence confocal microscopy, and molecular docking studies. CIT and LP-CIT showed cytotoxicity in MCF7 cells, with LP-CIT presenting significantly reduced IC50 values (0.90 µg/mL) compared to free CIT (18.25 µg/mL), possibly due to enhanced cellular uptake via liposomal delivery. Confocal microscopy revealed that both treatments significantly reduced cell viability and increased apoptosis. In addition, CBMN assays demonstrated equivalent cytostatic and mutagenic effects for CIT and LP-CIT. Docking analysis suggested interactions of CIT with mitogen-activated protein kinases, including MAPK-1, B-Raf, and ERK, indicating possible activation of apoptotic pathways via ERK1/2. In conclusion, CIT and its liposomal nanoformulation (LP-CIT) exhibited cytotoxic and mutagenic activity in human breast tumor cells by inducing apoptosis and modulating oncogenic pathways.
Collapse
Affiliation(s)
- Ag-Anne Pereira Melo de Menezes
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - Michely Laiany Vieira Moura
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - José Williams Gomes de Oliveira Filho
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - Maria Luisa Lima Barreto do Nascimento
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | | | - Marianna Vieira Sobral
- Laboratory of Oncopharmacology (ONCOFAR/UFPB), Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | | | - Vladimir Costa Silva
- Laboratory of Genomic Surveillance and Molecular Biology - Fiocruz-Piauí, Teresina, Piauí, Brazil
| | - Shamya Gabriella Corrêa Coêlho
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - Marjorie Pereira Gualter
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - Helber Alves Negreiros
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - João Pedro Alves Damaceno do Lago
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - Igor Gabriel Barbosa de Sousa
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems-NANOSFAR, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Genetical Toxicology, Postgraduation Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64,049 - 550, Brazil.
| |
Collapse
|
2
|
Wang SY, Wu JX, An X, Yuan Z, Ren YF, Yu XF, Tian XD, Wei W. Structural and temporal dynamics analysis on immune response in low-dose radiation: History, research hotspots and emerging trends. World J Radiol 2025; 17:101636. [PMID: 40309477 PMCID: PMC12038408 DOI: 10.4329/wjr.v17.i4.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 03/27/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Radiotherapy (RT) is a cornerstone of cancer treatment. Compared with conventional high-dose radiation, low-dose radiation (LDR) causes less damage to normal tissues while potentially modulating immune responses and inhibiting tumor growth. LDR stimulates both innate and adaptive immunity, enhancing the activity of natural killer cells, dendritic cells, and T cells. However, the mechanisms underlying the effects of LDR on the immune system remain unclear. AIM To explore the history, research hotspots, and emerging trends in immune response to LDR literature over the past two decades. METHODS Publications on immune responses to LDR were retrieved from the Web of Science Core Collection. Bibliometric tools, including CiteSpace and HistCite, were used to identify historical features, active topics, and emerging trends in this field. RESULTS Analysis of 1244 publications over the past two decades revealed a significant surge in research on immune responses to LDR, particularly in the last decade. Key journals such as INR J Radiat Biol, Cancers, and Radiat Res published pivotal studies. Citation networks identified key studies by authors like Twyman-Saint Victor C (2015) and Vanpouille-Box C (2017). Keyword analysis revealed hotspots such as ipilimumab, stereotactic body RT, and targeted therapy, possibly identifying future research directions. Temporal variations in keyword clusters and alluvial flow maps illustrate the evolution of research themes over time. CONCLUSION This bibliometric analysis provides valuable insights into the evolution of studies on responses to LDR, highlights research trends, and identifies emerging areas for further investigation.
Collapse
Affiliation(s)
- Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia-Xing Wu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xian An
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi-Fan Ren
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiu-Feng Yu
- Department of General Medicine, Tuberculosis Hospital of Shaanxi Province, Xi’an 710105, Shaanxi Province, China
| | - Xiao-Dong Tian
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Wei
- Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Fernández-Aroca D, García-Flores N, Frost S, Jiménez-Suárez J, Rodríguez-González A, Fernández-Aroca P, Sabater S, Andrés I, Garnés-García C, Belandia B, Cimas F, Villar D, Ruiz-Hidalgo M, Sánchez-Prieto R. MAPK11 (p38β) is a major determinant of cellular radiosensitivity by controlling ionizing radiation-associated senescence: An in vitro study. Clin Transl Radiat Oncol 2023; 41:100649. [PMID: 37346275 PMCID: PMC10279794 DOI: 10.1016/j.ctro.2023.100649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Background and purpose MAPKs are among the most relevant signalling pathways involved in coordinating cell responses to different stimuli. This group includes p38MAPKs, constituted by 4 different proteins with a high sequence homology: MAPK14 (p38α), MAPK11 (p38β), MAPK12 (p38γ) and MAPK13 (p38δ). Despite their high similarity, each member shows unique expression patterns and even exclusive functions. Thus, analysing protein-specific functions of MAPK members is necessary to unequivocally uncover the roles of this signalling pathway. Here, we investigate the possible role of MAPK11 in the cell response to ionizing radiation (IR). Materials and methods We developed MAPK11/14 knockdown through shRNA and CRISPR interference gene perturbation approaches and analysed the downstream effects on cell responses to ionizing radiation in A549, HCT-116 and MCF-7 cancer cell lines. Specifically, we assessed IR toxicity by clonogenic assays; DNA damage response activity by immunocytochemistry; apoptosis and cell cycle by flow cytometry (Annexin V and propidium iodide, respectively); DNA repair by comet assay; and senescence induction by both X-Gal staining and gene expression of senescence-associated genes by RT-qPCR. Results Our findings demonstrate a critical role of MAPK11 in the cellular response to IR by controlling the associated senescent phenotype, and without observable effects on DNA damage response, apoptosis, cell cycle or DNA damage repair. Conclusion Our results highlight MAPK11 as a novel mediator of the cellular response to ionizing radiation through the control exerted onto IR-associated senescence.
Collapse
Affiliation(s)
- D.M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - N. García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - S. Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - J. Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - A. Rodríguez-González
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - P. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - S. Sabater
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - I. Andrés
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, Albacete, España
| | - C. Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
| | - B. Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM). Madrid, España. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, España
| | - F.J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España
| | - D. Villar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - M.J. Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España
| | - R. Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, España
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM). Madrid, España. Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, España
| |
Collapse
|
4
|
Shi H, Wang K, Tang S, Zhai S, Shi J, Su C, Liu L. Large Range Atomic Force Microscopy with High Aspect Ratio Micropipette Probe for Deep Trench Imaging. SMALL METHODS 2023; 7:e2201401. [PMID: 36811166 DOI: 10.1002/smtd.202201401] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Indexed: 05/06/2023]
Abstract
Atomic force microscopy (AFM) has been adopted in both industry and academia for high-fidelity, full-profile topographic characterization. Typically, the tiny tip of the cantilever and the limited traveling range of the scanner restrict AFM measurement to relatively flat samples (recommend 1 µm). The primary objective of this work is to address these limitations using a large-range AFM (measuring height >10 µm) system consisting of a novel repairable high aspect ratio probe (HARP) with a nested-proportional-integral-derivative (nested-PID) AFM system. The HARP is fabricated using a reliable, cost-efficient bench-top process. The tip is then fused by pulling the end of the micropipette cantilever with a length up to hundreds of micrometers and a tip diameter of 30 nm. The design, simulation, fabrication, and performance of the HARP are described herein. This instrument is then tested using polymer trenches which reveals superior image fidelity compared to standard silicon tips. Finally, a nested-PID system is developed and employed to facilitate 3D characterization of 50-µm-step samples. The results demonstrate the efficacy of the proposed bench-top technique for the fabrication of low-cost, simple HAR AFM probes that facilitate the imaging of samples with deep trenches.
Collapse
Affiliation(s)
- Huiyao Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Kaixuan Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Si Tang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shenghang Zhai
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jialin Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
| | - Chanmin Su
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, 110169, Shenyang, P. R. China
| |
Collapse
|
5
|
Yoo JY, Lee YJ, Kim YJ, Baik TK, Lee JH, Lee MJ, Woo RS. Multiple low-dose radiation-induced neuronal cysteine transporter expression and oxidative stress are rescued by N-acetylcysteine in neuronal SH-SY5Y cells. Neurotoxicology 2023; 95:205-217. [PMID: 36796651 DOI: 10.1016/j.neuro.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Recently, several studies have demonstrated that low-dose radiation (LDR) therapy has positively impacts on the treatment of Alzheimer's disease (AD). LDR suppresses the production of pro-neuroinflammation molecules and improves cognitive function in AD. However, it is unclear whether direct exposure to LDR causes beneficial effects and what mechanism is involved in neuronal cells. In this study, we first determined the effect of high-dose radiation (HDR) alone on C6 cells and SH-SY5Y cells. We found that SH-SY5Y cells were more vulnerable than C6 cells to HDR. Moreover, in neuronal SH-SY5Y cells exposed to single or multiple LDR, N-type cells showed decreased cell viability with increasing radiation exposure time and frequency, but S-type cells were unaffected. Multiple LDR increased proapoptotic molecules such as p53, Bax and cleaved caspase-3, and decreased anti-apoptotic molecule (Bcl2). Multiple LDR also generated free radicals in neuronal SH-SY5Y cells. We detected a change in the expression of the neuronal cysteine transporter EAAC1. Pretreatment with N-acetylcysteine (NAC) rescued the increased in EAAC1 expression and the generation of ROS in neuronal SH-SY5Y cells after multiple LDR. Furthermore, we verified whether the increased in EAAC1 expression induces cell defense or cell death promotion signaling. We showed that transient overexpression of EAAC1 reduced the multiple LDR-induced p53 overexpression in neuronal SH-SY5Y cells. Our results indicate that neuronal cells can be injured by increased production of ROS not only by HDR but also by multiple LDR, which suggests that combination treatment with anti-free radical agents such as NAC may be useful in multiple LDR therapy.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Ye-Ji Lee
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Yu-Jin Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon 34520, Republic of Korea
| | - Mi-Jo Lee
- Department of Radiation Oncology, Eulji University Hospital, Daejeon 35233, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea.
| |
Collapse
|
6
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
7
|
Pre-Administration of PLX-R18 Cells Protects Mice from Radiation-Induced Hematopoietic Failure and Lethality. Genes (Basel) 2022; 13:genes13101756. [PMID: 36292639 PMCID: PMC9601513 DOI: 10.3390/genes13101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Acute Radiation Syndrome (ARS) is a syndrome involving damage to multiple organs caused by exposure to a high dose of ionizing radiation over a short period of time; even low doses of radiation damage the radiosensitive hematopoietic system and causes H-ARS. PLacenta eXpanded (PLX)-R18 is a 3D-expanded placenta-derived stromal cell product designated for the treatment of hematological disorders. These cells have been shown in vitro to secrete hematopoietic proteins, to stimulate colony formation, and to induce bone marrow migration. Previous studies in mice showed that PLX-R18 cells responded to radiation-induced hematopoietic failure by transiently secreting hematopoiesis related proteins to enhance reconstitution of the hematopoietic system. We assessed the potential effect of prophylactic PLX-R18 treatment on H-ARS. PLX-R18 cells were administered intramuscularly to C57BL/6 mice, −1 and 3 days after (LD70/30) total body irradiation. PLX R18 treatment significantly increased survival after irradiation (p < 0.0005). In addition, peripheral blood and bone marrow (BM) cellularity were monitored at several time points up to 30 days. PLX-R18 treatment significantly increased the number of colony-forming hematopoietic progenitors in the femoral BM and significantly raised peripheral blood cellularity. PLX-R18 administration attenuated biomarkers of bone marrow aplasia (EPO, FLT3L), sepsis (SAA), and systemic inflammation (sP-selectin and E-selectin) and attenuated radiation-induced inflammatory cytokines/chemokines and growth factors, including G-CSF, MIP-1a, MIP-1b, IL-2, IL-6 and MCP-1, In addition, PLX-R18 also ameliorated radiation-induced upregulation of pAKT. Taken together, prophylactic PLX-R18 administration may serve as a protection measure, mitigating bone marrow failure symptoms and systemic inflammation in the H-ARS model.
Collapse
|
8
|
Ala M, Mohammad Jafari R, Ala M, Hejazi SM, Tavangar SM, Mahdavi SR, Dehpour AR. Sildenafil improves radiation-induced oral mucositis by attenuating oxidative stress, NF-κB, ERK and JNK signalling pathways. J Cell Mol Med 2022; 26:4556-4565. [PMID: 35810384 PMCID: PMC9357636 DOI: 10.1111/jcmm.17480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Radiation-induced oral mucositis is a common and dose-limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti-inflammatory and anti-cancer effects. In this study, we investigated the effect of sildenafil on radiation-induced mucositis in rats. Two doses of radiation (8 and 26 Gy X-ray) were used to induce low-grade and high-grade oral mucositis, separately. A control group and three groups of sildenafil citrate-treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF-κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1β, IL6 and TNF-α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF-κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high-dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high-dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation-induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Ala
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sedigheh Marjaneh Hejazi
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Advanced Medical Technologies and Equipment Institute Research Center for Molecular and Cellular in Imaging, Bio-optical Imaging Group, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Iran
| | - Seied Rabi Mahdavi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wang XC, Tian LL, Fan CX, Duo CH, Xu KM. The Adaptive Responses in Non-Small Cell Lung Cancer A549 Cell Lines Induced by Low-Dose Ionizing Radiation and the Variations of miRNA Expression. Dose Response 2021; 19:15593258211039931. [PMID: 34658683 PMCID: PMC8516394 DOI: 10.1177/15593258211039931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To study the effects of adaptive response in A549 cells induced by low-dose radiation and the miRNAs expression. Methods A549 cells were irradiated with 50 mGy and 200 mGy initial doses, respectively, and then irradiated with a challenge dose 20 Gy at 6 hours interval. The biological effects and miRNA expression were detected. Results The apoptosis rates of 50 mGy-20 Gy and 200 mGy-20 Gy groups were significantly lower than that of only 20 Gy irradiation group (P < .05). The percentage of G2/M phase cells of 50 mGy-20 Gy and 200 mGy-20 Gy groups was significantly decreased relative to the 20 Gy group (P < .05). One miRNA (mir-3662) was upregulated and 15 miRNAs (mir-185, mir-1908, mir-307, mir-182, mir-92a, mir-582, mi-r501, mir138-5p, mir-1260, mir-484, mir-378d, mir-193b, mir-127-3p, mir-1303, and mir-654-5p) were downregulated both in 50 mGy-20 Gy and 200 mGy-20 Gy groups than that of the 20 Gy group. Go and KEGG enrichment analysis showed that the target genes were significantly enriched in cell communication regulation, metabolic process, enzyme binding, and catalytic activity signaling pathways. Conclusion Low-dose X-ray of 50 mGy and 200 mGy radiation can induce adaptive apoptosis response prior to 20 Gy in A549 cells. Sixteen differently expressed miRNAs may play important roles in the adaptive effect of low-dose radiation.
Collapse
Affiliation(s)
- Xiao-Chun Wang
- ShiLong Hospital (Research Center for Pneumoconiosis Prevention and Treatment), National Center for Occupational Safety and Health, NHC, Beijing, China
| | - Li-Li Tian
- nstitute of Infectious and Endemic Disease Prevention, Beijing Centers for Disease Control and Prevention, Beijing, China
| | | | - Cai-Hong Duo
- ShiLong Hospital (Research Center for Pneumoconiosis Prevention and Treatment), National Center for Occupational Safety and Health, NHC, Beijing, China
| | - Ke-Ming Xu
- ShiLong Hospital (Research Center for Pneumoconiosis Prevention and Treatment), National Center for Occupational Safety and Health, NHC, Beijing, China
| |
Collapse
|
10
|
Wang Y, Guo Y, Zhang X, Zhao H, Zhang B, Wu Y, Zhang J. The role and mechanism of miR-557 in inhibiting the differentiation and maturation of megakaryocytes in immune thrombocytopenia. RNA Biol 2021; 18:1953-1968. [PMID: 33586614 DOI: 10.1080/15476286.2021.1884783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Specific miRNA in immune thrombocytopenia (ITP) was screened to explore its intervention effects and mechanisms in ITP. MTT assay and CFSE staining were used to detect the effects of gradient concentrations of thrombopoietin (TPO) on cell proliferation. Expressions of differentially expressed miRNAs were analysed via qRT-PCR in TPO-induced megakaryocytes and ITP plasma. Effects of miR-557 on cell physiological functions were examined by MTT and flow cytometry. Expressions of miR-557, apoptosis-associated genes and Akt/ERK pathways were detected by qRT-PCR and Western blot as needed. Multinucleation of TPO-induced megakaryocytes was determined by megakaryocyte colonies. The toe skin and intestinal bleeding of the ITP rat model were observed and evaluated. Effects of miR-557 on the numbers of platelets, megakaryocytes, and peripheral blood platelets and the expressions of CD4+ T cells, Treg cells, TGF-β, IL-6 and miR-557 in the ITP rats were detected by Giemsa staining, flow cytometry, ELISA and qRT-PCR. MiR-557 was identified as an specific miRNA associated with both ITP and TPO treatment. MiR-557 inhibitor enhanced the physiological functions of TPO-induced megakaryocytes, while miR-557 mimic had the opposite effect. At the molecular level, the expressions of miR-557, cleaved Caspase-3 and Bax were further silenced by inhibitor, on the contrary, the expressions of bcl-2, p-Akt and p-ERK were upregulated. Animal experiments showed that, miR-557 inhibitor increased the numbers of platelets and megakaryocytes, and improved the symptoms of ITP model rats. Our results indicated that miR-557 inhibitor improved ITP by regulating apoptosis-related genes and cellular immunity and activating the Akt/ERK pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Heibei, China
| | - Yujie Guo
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Heibei, China
| | - Xiaolei Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Heibei, China
| | - Hui Zhao
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Heibei, China
| | - Bingbing Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Heibei, China
| | - Yi Wu
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jingyu Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Heibei, China
| |
Collapse
|
11
|
Dong S, Lyu X, Yuan S, Wang S, Li W, Chen Z, Yu H, Li F, Jiang Q. Oxidative stress: A critical hint in ionizing radiation induced pyroptosis. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
12
|
Mansour SZ, Moawed FSM, Badawy MMM, Mohamed HE. Boswellic Acid Synergizes With Low-Level Ionizing Radiation to Modulate Bisphenol Induced-Lung Toxicity in Rats by Inhibiting JNK/ERK/c-Fos Pathway. Dose Response 2020; 18:1559325820969597. [PMID: 33192203 PMCID: PMC7607778 DOI: 10.1177/1559325820969597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) is a low molecular weight chemical compound that has a deleterious effect on the endocrine system. It was used in plastics manufacturing with injurious effects on different body systems. Occupational exposure to low-level ionizing radiation (<1 Gy) is shown to attenuate an established inflammatory process and therefore enhance cell protection. Therefore, the objective of this study was to investigate the protective effect of boswellic acid (BA) accompanied by whole-body low-dose gamma radiation (γ-R) against BPA-induced lung toxicity in male albino rats. BPA intoxication induced with 500 mg/kg BW. Rats received 50 mg BA/kg BW by gastric gavage concomitant with 0.5 Gy γ-R over 4 weeks. The immunoblotting and biochemical results revealed that BA and/or γ-R inhibited BPA-induced lung toxicity by reducing oxidative damage biomolecules; (MDA and NADPH oxidase gene expression), inflammatory indices (MPO, TNF-α, IL-6, and gene expression of CXCR-4). Moreover, BA and or/γ-R ameliorated the lung inflammation via regulation of the JNK/ERK/c-Fos and Nrf2/ HO-1 signaling pathways. Interestingly, our data demonstrated that BA in synergistic interaction with γ-R is efficacious control against BPA-induced lung injury via anti-oxidant mediated anti-inflammatory activities.
Collapse
Affiliation(s)
- Somya Z Mansour
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Fatma S M Moawed
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Monda M M Badawy
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Hebatallah E Mohamed
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| |
Collapse
|
13
|
Ionizing Radiation and Translation Control: A Link to Radiation Hormesis? Int J Mol Sci 2020; 21:ijms21186650. [PMID: 32932812 PMCID: PMC7555331 DOI: 10.3390/ijms21186650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Protein synthesis, or mRNA translation, is one of the most energy-consuming functions in cells. Translation of mRNA into proteins is thus highly regulated by and integrated with upstream and downstream signaling pathways, dependent on various transacting proteins and cis-acting elements within the substrate mRNAs. Under conditions of stress, such as exposure to ionizing radiation, regulatory mechanisms reprogram protein synthesis to translate mRNAs encoding proteins that ensure proper cellular responses. Interestingly, beneficial responses to low-dose radiation exposure, known as radiation hormesis, have been described in several models, but the molecular mechanisms behind this phenomenon are largely unknown. In this review, we explore how differences in cellular responses to high- vs. low-dose ionizing radiation are realized through the modulation of molecular pathways with a particular emphasis on the regulation of mRNA translation control.
Collapse
|
14
|
Lu Y, Liu B, Liu Y, Yu X, Cheng G. Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity. Oncol Lett 2020; 20:993-1000. [PMID: 32724338 PMCID: PMC7377092 DOI: 10.3892/ol.2020.11684] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation (IR) is an important cancer treatment approach. However, radioresistance eventually occurs, resulting in poor outcomes in patients with cancer. Radioresistance is associated with multiple signaling pathways, particularly pro-survival signaling pathways. The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is an important signaling pathway that initiates several cellular processes and is regulated by various stimuli, including IR. Although numerous studies have demonstrated the pro-survival effects of active ERK, activation of ERK has also been associated with cell death, indicating that radiosensitization may occur by ERK stimulation. In this context, the present review describes the associations between ERK signaling, cancer and IR, and discusses the association between ERK and its pro-survival function in cancer cells, including stimuli, molecular mechanisms, clinical use of inhibitors and underlying limitations. Additionally, the present review introduces the view that active ERK may induce cell death, and describes the potential factors associated with this process. This review describes the various outcomes induced by active ERK to prompt future studies to aim to enhance radiosensitivity in the treatment of cancer.
Collapse
Affiliation(s)
- Yinliang Lu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
15
|
Jin S, Jiang H, Cai L. New understanding of the low-dose radiation-induced hormesis. RADIATION MEDICINE AND PROTECTION 2020; 1:2-6. [DOI: 10.1016/j.radmp.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Abdel-Magied N, Elkady AA. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol 2019; 111:104299. [PMID: 31442446 DOI: 10.1016/j.yexmp.2019.104299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Curcumin (CUR) and silymarin (SLM) are powerful antioxidant and anti-inflammatory compounds with beneficial protective effects against renal diseases. The purpose of this study was to evaluate the efficacy of CUR and SLM alone or in combination on radiation (IR) induced kidney injury. The results showed that CUR and SLM alone or in combination attenuated the oxidative stress denoted by a reduction in the level of malondialdehyde (MDA), hydrogen peroxide (H2O2) and advanced oxidation protein products (AOPP) along with a marked increase of glutathione GSH content and total antioxidant capacity (TAC). Additionally, a significant decrease in the level of blood urea nitrogen (BUN), creatinine, Cystatin-C (CYT-C), neutrophil gelatinase-associated lipocalin (N-GAL) and Kidney Injury Molecule-1 (Kim-1) was recorded. Moreover, the treatment resulted in a remarkable decline in the serum levels of interleukin-18(IL-18), tumor necrosis factor- alpha (TNF-α), C reactive protein (CRP), BCL2 associated X protein (Bax), Factor-related Apoptosis (FAS) and the activity of Caspase-3 associated by an increase of B-cell CLL/lymphoma 2 (Bcl2) level. The results were confirmed with the histopathological examination. Kidney of irradiated showed glomerular atrophy, massive necrotic changes of expanded tubules with hyaline cast inside some tubules and apoptotic changes were recorded in some renal tubules. While irradiated rats treated with CUR and SLM exhibited marked preservation of the cellular structure of their kidney tissue. In conclusion, the combination of CUR and SLM could be more potent than a single agent on the biochemical and histological changes of the irradiated rat renal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|
18
|
Bryant J, Shields L, Hynes C, Howe O, McCleanc B, Lynga F. DNA Damage and Cytokine Production in Non-Target Irradiated Lymphocytes. Radiat Res 2019; 191:545-555. [DOI: 10.1667/rr15165.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jane Bryant
- Radiation and Environmental Science Centre, FOCAS Institute
| | - Laura Shields
- Medical Physics Department, St. Luke's Radiation Oncology Centre, Rathgar, Dublin, Ireland
| | | | - Orla Howe
- School of Biological Sciences, Technological University Dublin, Dublin 8, Ireland
| | - Brendan McCleanc
- Medical Physics Department, St. Luke's Radiation Oncology Centre, Rathgar, Dublin, Ireland
| | - Fiona Lynga
- Radiation and Environmental Science Centre, FOCAS Institute
| |
Collapse
|
19
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
20
|
Hwang S, Jeong H, Hong EH, Joo HM, Cho KS, Nam SY. Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer's disease models. Biol Open 2019; 8:bio.036657. [PMID: 30670376 PMCID: PMC6398453 DOI: 10.1242/bio.036657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is widely used in medicine and is valuable in both the diagnosis and treatment of many diseases. However, its health effects are ambiguous. Here, we report that low-dose ionizing radiation has beneficial effects in human amyloid-β42 (Aβ42)-expressing Drosophila Alzheimer's disease (AD) models. Ionizing radiation at a dose of 0.05 Gy suppressed AD-like phenotypes, including developmental defects and locomotive dysfunction, but did not alter the decreased survival rates and longevity of Aβ42-expressing flies. The same dose of γ-irradiation reduced Aβ42-induced cell death in Drosophila AD models through downregulation of head involution defective (hid), which encodes a protein that activates caspases. However, 4 Gy of γ-irradiation increased Aβ42-induced cell death without modulating pro-apoptotic genes grim, reaper and hid. The AKT signaling pathway, which was suppressed in Drosophila AD models, was activated by either 0.05 or 4 Gy γ-irradiation. Interestingly, p38 mitogen-activated protein-kinase (MAPK) activity was inhibited by exposure to 0.05 Gy γ-irradiation but enhanced by exposure to 4 Gy in Aβ42-expressing flies. In addition, overexpression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, or a null mutant of AKT strongly suppressed the beneficial effects of low-dose ionizing radiation in Aβ42-expressing flies. These results indicate that low-dose ionizing radiation suppresses Aβ42-induced cell death through regulation of the AKT and p38 MAPK signaling pathways, suggesting that low-dose ionizing radiation has hormetic effects on the pathogenesis of Aβ42-associated AD. Summary: Low-dose ionizing radiation can reduce cell death by regulating AKT/p38 signaling pathway and improve Aβ42-induced symptoms in Drosophila Alzheimer's disease, suggesting that low-dose ionizing radiation may be applicable for treatment.
Collapse
Affiliation(s)
- Soojin Hwang
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Haemin Jeong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Hae Mi Joo
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| |
Collapse
|
21
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
22
|
Lu X, Wan X, Li X, Pan K, Maimaitiaili W, Zhang Y. Expression of TLR4 gene is downregulated in acquired immune deficiency syndrome-associated Kaposi's sarcoma. Exp Ther Med 2018; 17:27-34. [PMID: 30651761 PMCID: PMC6307526 DOI: 10.3892/etm.2018.6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/12/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the expression of Toll-like receptor 4 (TLR4) and proteins involved in its associated signaling pathways in patients with classic Kaposi's sarcoma (KS) and acquired immune deficiency syndrome (AIDS)-associated KS (AIDS-KS) in Xinjiang Autonomous Region of China. A total of 35 patients with KS were enrolled in the present study between May 2011 and July 2013, including 26 cases of AIDS-KS and 9 cases of classic KS. Another 10 healthy subjects of the Uygur ethnic group were included in the normal control group. KS tissues were subjected to hematoxylin and eosin staining and immunohistochemical staining. To measure the expression of mRNA, reverse-transcription quantitative polymerase chain reaction was performed. To determine protein expression, western blot analysis was employed. AIDS-KS was mainly distributed in the face and limbs, while classic KS was mainly distributed in the limbs. The histopathological characteristics of AIDS-KS and classic KS tissues were different from those of normal tissues. TLR4 was mainly distributed in the dermis of KS tissues. The mRNA expression levels of TLR4 were reduced in classic KS and AIDS-KS. The protein expression levels of RAS, RAF, nuclear factor (NF)-κB P65 and P50 as well as inhibitor of NF-κB-α of the TLR4 signaling pathway in AIDS-KS and KS tissues were higher than those in normal tissues. In conclusion, the expression of TLR4 gene in KS tissues was decreased, while the expression of proteins of the TLR4 signaling pathway was upregulated in KS. Downregulation of TLR4 may be associated with the occurrence and development of AIDS-KS, while its restoration may represent a novel therapeutic approach for AIDS-KS.
Collapse
Affiliation(s)
- Xiaobo Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xuefeng Wan
- Department of Dermatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaoran Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Kejun Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wubuli Maimaitiaili
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yuexin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
23
|
Devic C, Ferlazzo ML, Foray N. Influence of Individual Radiosensitivity on the Adaptive Response Phenomenon: Toward a Mechanistic Explanation Based on the Nucleo-Shuttling of ATM Protein. Dose Response 2018; 16:1559325818789836. [PMID: 30093841 PMCID: PMC6081762 DOI: 10.1177/1559325818789836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023] Open
Abstract
The adaptive response (AR) phenomenon generally describes a protective effect caused by a "priming" low dose (dAR) delivered after a period of time (ΔtAR) before a higher "challenging" dose (DAR). The AR is currently observed in human cells if dAR, ΔtAR, and DAR belong to (0.001-0.5 Gy), (2-24 hours), (0.1-5 Gy), respectively. In order to investigate the molecular mechanisms specific to AR in human cells, we have systematically reviewed the experimental AR protocols, the cellular models, and the biological endpoints used from the 1980s. The AR appears to be preferentially observed in radiosensitive cells and is strongly dependent on individual radiosensitivity. To date, the model of the nucleo-shuttling of the ATM protein provides a relevant mechanistic explanation of the AR molecular and cellular events. Indeed, the priming dose dAR may result in the diffusion of a significant amount of active ATM monomers in the nucleus. These ATM monomers, added to those induced directly by the challenging dose DAR, may increase the efficiency of the response to DAR by a better ATM-dependent DNA damage recognition. Such mechanistic model would also explain why AR is not observed in radioresistant or hyperradiosensitive cells. Further investigations at low dose are needed to consolidate our hypotheses.
Collapse
Affiliation(s)
- Clément Devic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France.,Fibermetrix Company, Strasbourg, France
| | - Mélanie L Ferlazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| |
Collapse
|
24
|
Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, Liang X, Wen X, Li M, Cui J. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice. Cancer Med 2018; 7:1338-1348. [PMID: 29479834 PMCID: PMC5911597 DOI: 10.1002/cam4.1344] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022] Open
Abstract
Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice.
Collapse
MESH Headings
- Animals
- Biomarkers
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Immune System/radiation effects
- Immunohistochemistry
- Immunomodulation/radiation effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Radiation Dosage
- Radiation, Ionizing
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Burden/radiation effects
Collapse
Affiliation(s)
- Lei Zhou
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Xiaoying Zhang
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Hui Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Chao Niu
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Dehai Yu
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Guozi Yang
- Department of Radiation‐OncologyThe First Hospital of Jilin UniversityChangchun130021China
| | - Xinyue Liang
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Xue Wen
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Min Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Jiuwei Cui
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| |
Collapse
|
25
|
Chen W, Shin KH, Kim S, Shon WJ, Kim RH, Park NH, Kang MK. hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGF‑β signaling. Int J Mol Med 2018; 41:3211-3220. [PMID: 29568955 PMCID: PMC5881842 DOI: 10.3892/ijmm.2018.3566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
GV1001 is a 16‑amino acid peptide derived from the human telomerase reverse transcriptase (hTERT) protein (616‑626; EARPALLTSRLRFIPK), which lies within the reverse transcriptase domain. Originally developed as an anticancer vaccine, GV1001 demonstrates diverse cellular effects, including anti‑inflammatory, tumor suppressive and antiviral effects. In the present study, the radioprotective and antifibrotic effects of GV1001 were demonstrated through suppressing transforming growth factor‑β (TGF‑β) signaling. Proliferating human keratinocytes underwent premature senescence upon exposure to ionizing radiation (IR), however, treatment of cells with GV1001 allowed the cells to proliferate and showed a reduction in senescent phenotype. GV1001 treatment notably increased the levels of Grainyhead‑like 2 and phosphorylated (p‑)Akt (Ser473), and reduced the activation of p53 and the level of p21/WAF1 in irradiated keratinocytes. It also markedly suppressed the level of TGF‑β signaling molecules, including p‑small mothers against decapentaplegic (Smad)2/3 and Smad4, and TGF‑β target genes, including zinc finger E‑box binding homeobox 1, fibronectin, N‑cadharin and Snail, in irradiated keratinocytes. Furthermore, GV1001 suppressed TGF‑β signaling in primary human fibroblasts and inhibited myofibroblast differentiation. Chromatin immunoprecipitation revealed that GV1001 suppressed the binding of Smad2 on the promoter regions of collagen type III α1 chain (Col3a1) and Col1a1. In a dermal fibrosis model in vivo, GV1001 treatment notably reduced the thickness of fibrotic lesions and the synthesis of Col3a1. These data indicated that GV1001 ameliorated the IR‑induced senescence phenotype and tissue fibrosis by inhibiting TGF‑β signaling and may have therapeutic effects on radiation‑induced tissue damage.
Collapse
Affiliation(s)
- Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | - Won-Jun Shon
- School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Eom HS, Park HS, You GE, Kim JY, Nam SY. Identification of cellular responses to low-dose radiation by the profiling of phosphorylated proteins in human B-lymphoblast IM-9 cells. Int J Radiat Biol 2017; 93:1207-1216. [DOI: 10.1080/09553002.2017.1377362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hyeon Soo Eom
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. LTD, Seoul, Korea
| | - Hyung Sun Park
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. LTD, Seoul, Korea
| | - Ga Eun You
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. LTD, Seoul, Korea
| | - Ji Young Kim
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. LTD, Seoul, Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. LTD, Seoul, Korea
| |
Collapse
|
27
|
Zahran WE, Elsonbaty SM, Moawed FSM. Selenium nanoparticles with low-level ionizing radiation exposure ameliorate nicotine-induced inflammatory impairment in rat kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19980-19989. [PMID: 28691127 DOI: 10.1007/s11356-017-9558-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Occupational exposure to low-level ionizing radiation (<1 Gy) was shown to enhance cell protection via attenuating an established inflammatory process. Nicotine, a major toxic component of cigarette smoke, is responsible for smoking-mediated renal dysfunction. The present study was therefore aimed to investigate the protective impact of ginger Zingiber officinale selenium nanoparticles (SeNPs) with whole-body low-dose gamma radiation (γ-R) against nicotine-induced nephrotoxicity in male albino rats. Nicotine intoxication was induced with 0.5 mg/kg BW. Rats received 0.1 mg SeNPs/kg BW by gastric gavage concomitant with 0.5 Gy γ-R over 4 weeks. Characterization studies showed the formation of spherical SeNPs with a size ranged from 10 to 30 nm in diameter with a thin film encapsulating the nanoballs. Our data revealed that nicotine induced renal dysfunction manifested by significant abnormal levels of kidney function markers (creatinine, urea, sodium and potassium) accompanied by increased levels of malondialdehyde along with a reduction in glutathione level, glutathione peroxidase, and glutathione S-transferase activities. It is worthy to note that nicotine toxicity induced significant increments in serum inflammatory markers: tumor necrosis factor-α and vascular cell adhesion protein 1. Western blotting showed marked significant elevation in caspase-3 activities against nicotine. The mRNA gene expression of inducible cyclooxygenase-2 gene was highly increased with nicotine intoxication while that of cyclooxygenase-1 did not show any changes. Interestingly, our data demonstrated that SeNPs in synergistic interaction with γ-R are efficacious control against nicotine-induced nephrotoxicity via anti-oxidant-mediated anti-inflammatory activities. Thus, it is tempting to recommend dietary approaches with ginger SeNPs for smokers at workplaces exposed occupationally and regularly to low-level ionizing radiation.
Collapse
Affiliation(s)
- Walid E Zahran
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Sawsan M Elsonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
28
|
Yin P, Xu H, Wang Q, Wang J, Yin L, Xu M, Xie Z, Liu W, Cao X. Overexpression of βCaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the dentate gyrus. Neuropharmacology 2017; 116:270-287. [DOI: 10.1016/j.neuropharm.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/17/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
|
29
|
Ma JW, Zhang Y, Ye JC, Li R, Wen YL, Huang JX, Zhong XY. Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation. Biomol Ther (Seoul) 2017; 25:186-193. [PMID: 27829269 PMCID: PMC5340544 DOI: 10.4062/biomolther.2016.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/21/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.
Collapse
Affiliation(s)
- Ji-Wei Ma
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Yong Zhang
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Ji-Cheng Ye
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Ru Li
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Yu-Lin Wen
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Jian-Xian Huang
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| | - Xue-Yun Zhong
- Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Bannister LA, Mantha RR, Devantier Y, Petoukhov ES, Brideau CLA, Serran ML, Klokov DY. Dose and Radioadaptive Response Analysis of Micronucleus Induction in Mouse Bone Marrow. Int J Mol Sci 2016; 17:ijms17091548. [PMID: 27649149 PMCID: PMC5037821 DOI: 10.3390/ijms17091548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose-response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains.
Collapse
Affiliation(s)
- Laura A Bannister
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Rebecca R Mantha
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Yvonne Devantier
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Eugenia S Petoukhov
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Chantal L A Brideau
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Mandy L Serran
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Dmitry Y Klokov
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| |
Collapse
|
31
|
Li C, Zhang C, Wang T, Xuan J, Su C, Wang Y. Heme oxygenase 1 induction protects myocardiac cells against hypoxia/reoxygenation-induced apoptosis : The role of JNK/c-Jun/Caspase-3 inhibition and Akt signaling enhancement. Herz 2016; 41:715-724. [PMID: 27220977 DOI: 10.1007/s00059-016-4424-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although recent studies have found that heme oxygenase (HO)-1 plays an important role in myocardiac cell survival, the precise mechanisms occurring during hypoxia/reoxygenation (H/R) injury remain unclear. Therefore, the aim of this study was to investigate the cytoprotective mechanisms of HO-1 against H/R-induced myocardiac cell apoptosis and to explore whether the Akt signaling pathway contributed to the protection provided by HO-1. METHODS Cobalt protoporphyrin (CoPP, a pharmacologic inducer of HO-1) was employed to induce the over-expression of HO-1 before H/R in H9c2 cells. Hoechst staining and flow cytometry were used to examine the extent of apoptosis. Furthermore, the effect of HO-1 on Akt, JNK, and the expression of apoptosis-related proteins (c-JUN and Caspase-3) was determined by Western blotting. RESULTS The results showed that over-expressed HO-1 could significantly protect myocardiac cells against H/R-induced apoptosis in H9c2 cells. Furthermore, the protein expression of p‑Akt increased and of p‑JNK decreased in the H/R injury H9c2 cells when treated with CoPP. The apoptosis-related proteins c‑Jun and caspase-3 were both inhibited by over-expression of HO-1. At the same time, retreatment with zinc protoporphyrin (ZnPP, a specific inhibitor of HO-1 enzymatic activity) or LY294002 (an inhibitor of Akt1) reversed the HO-1-induced changes. CONCLUSION In summary, our results suggest that HO-1 can decrease H/R-induced myocardiac cell apoptosis; the mechanism may be related to the activation of the Akt signaling pathway and, furthermore, to the inhibition of the JNK/c-Jun/caspase-3 signaling pathway.
Collapse
Affiliation(s)
- C Li
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China.
| | - C Zhang
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - T Wang
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - J Xuan
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - C Su
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| | - Y Wang
- Department of Cardiovascular Medicine, The Zoucheng People's Hospital, 59 Qianquan Road, 273500, Jining, Shandong, P.R. China
| |
Collapse
|
32
|
Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev A. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol Life Sci 2004; 61:3100-3. [PMID: 15583871 PMCID: PMC11924515 DOI: 10.1007/s00018-004-4424-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fragments of mitochondrial DNA are released from mitochondria upon opening of the mitochondrial permeability transition pore. Cyclosporin A, an inhibitor of pore opening, completely prevented the release of mitochondrial fragments. Induction of mitochondrial permeability transition and subsequent release of the fragments of mitochondrial DNA could be one cause of genomic instability in the cell.
Collapse
Affiliation(s)
- M Patrushev
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | | | | | | | | | | |
Collapse
|