1
|
Kühne M, Zepernick AL, Qualmann B, Kessels MM, Izadi-Seitz M. JMY powers dendritogenesis and is regulated by CaM revealing a general, critical principle in neuromorphogenesis. Commun Biol 2025; 8:784. [PMID: 40404909 PMCID: PMC12098658 DOI: 10.1038/s42003-025-08208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Local calcium signals and formation of actin filaments help to steer and power neuronal morphology development and plasticity. Yet, responsible actin nucleators and their linkage to calcium transients largely remained elusive. Here, we identify the WH2 domain-based actin nucleator JMY as target of the calcium sensor calmodulin, reveal that JMY is critical for dendritic arbor formation and unravel that JMY's molecular mechanisms employed in dendritic arborization are depended on Arp2/3 complex interaction, Arp2/3 complex activity and functionality of JMY's WH2 domains, i.e. on JMY's abilities to promote actin filament formation. We furthermore demonstrate that Ca2+/calmodulin association regulates the G-actin loading of JMY's first WH2 domain. Consistently, JMY's functions in neuromorphogenesis rely on proper Ca2+/calmodulin signaling and on the first WH2 domain. These findings establish Ca2+/calmodulin signaling as an important, more widely used, but multifaceted mechanism of tight control of actin nucleators powering dendritic branch formation-a key aspect in neuronal network development in the brain.
Collapse
Affiliation(s)
- Maja Kühne
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Anna-Lena Zepernick
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| | - Michael Manfred Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| | - Maryam Izadi-Seitz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Takito J, Nonaka N. Formation of Membrane Domains via Actin Waves: A Fundamental Principle in the Generation of Dynamic Structures in Phagocytes. Int J Mol Sci 2025; 26:4759. [PMID: 40429901 PMCID: PMC12111861 DOI: 10.3390/ijms26104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Phagocytes carry out their functions by organizing new subcellular structures. During phagocytosis, macrophages internalize and degrade pathogens and apoptotic cells by forming the phagocytic cup and phagosome. Osteoclasts resorb bone by forming the sealing zone and ruffled border at the ventral membrane. This review explores the organizational principles of these dynamic structures. In in vitro frustrated phagocytosis, specifically 2D phagocytosis by macrophages, the activation of the Fcγ receptor generates multiple self-organized waves containing F-actin, Arp2/3, and phosphoinositides. The propagation of these circular actin waves segregates the inside from the outside, leading to the compartmentalization of the ventral membrane. As the actin wave passes, cortical actin is disrupted, and membrane remodeling occurs within the wave, creating a new membrane domain with high exocytic activity. These processes mirror the formation of the constriction zone in the phagocytic cup and phagosome during 3D phagocytosis. A similar mechanism may also contribute to the formation of the sealing zone and ruffled border in osteoclasts. Based on these observations, we propose that dynamic structures formed from actin waves are organized through the fractal integration of self-organized, oscillatory substructures, with F-actin treadmilling fueling their formation and maintenance.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy, School of Dentistry, Showa Medical University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan;
| | | |
Collapse
|
3
|
Mukhi D, Kolligundla LP, Doke T, Silva MA, Liu H, Palmer M, Susztak K. The actin and microtubule network regulator WHAMM is identified as a key kidney disease risk gene. Cell Rep 2025; 44:115462. [PMID: 40138314 DOI: 10.1016/j.celrep.2025.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Nearly 850 million people suffer from kidney disease worldwide. Genome-wide association studies identify genetic variations at more than 800 loci associated with kidney dysfunction; however, the target genes, cell types, and mechanisms remain poorly understood. Here, we show that nucleotide variants on chromosome 15 are not only associated with kidney dysfunction but also regulate the expression of Wasp homolog associated with actin, membranes, and microtubules (WHAMM). WHAMM expression is higher in mice and patients with chronic and acute kidney disease. Mice with genetic deletion of Whamm appear healthy at baseline but develop less injury following cisplatin, folic acid, and unilateral ureteral obstruction. In vitro cell studies indicate that WHAMM controls cell death by regulating actin-mediated cytochrome c release from mitochondria and the formation of ASC speck. Pharmacological inhibition of actin dynamics mitigates kidney disease in experimental models. In summary, our study identifies a key role of WHAMM in the development of kidney disease.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Lakshmi Prasanna Kolligundla
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Nephrology, Nagoya University, Nagoya, Japan
| | - Magaiver Andrade- Silva
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Hongbo Liu
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. Human Papillomavirus Type 16 Stimulates WAVE1- and WAVE2-Dependent Actin Protrusions for Endocytic Entry. Viruses 2025; 17:542. [PMID: 40284985 PMCID: PMC12031361 DOI: 10.3390/v17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of actin protrusions that occur at the cellular surface upon HPV addition to cells, and that this stimulation is a key step prior to endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both internalize HPV16 at a significantly reduced rate. Microscopic analysis of fluorescently labeled cells revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface within a timeframe that precedes endocytosis. Within that same timeframe, we also found that HPV16-treated cells express cellular dorsal surface filopodia, which does not occur in cells lacking WAVE1 and WAVE2. Taken together, this study provides evidence that WAVE1 and WAVE2 mediate a key step prior to HPV entry into cells that involves actin reorganization in the form of cellular dorsal surface protrusions.
Collapse
Affiliation(s)
- Daniel J. Fernandez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Cheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Master K, El Khalki L, Bayachou M, Sossey‐Alaoui K. Role of WAVE3 as an actin binding protein in the pathology of triple negative breast cancer. Cytoskeleton (Hoboken) 2025; 82:130-144. [PMID: 39021344 PMCID: PMC11904861 DOI: 10.1002/cm.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Breast cancer, a prevalent global health concern, has sparked extensive research efforts, particularly focusing on triple negative breast cancer (TNBC), a subtype lacking estrogen receptor (ER), progesterone receptor, and epidermal growth factor receptor. TNBC's aggressive nature and resistance to hormone-based therapies heightens the risk of tumor progression and recurrence. Actin-binding proteins, specifically WAVE3 from the Wiskott-Aldrich syndrome protein (WASP) family, have emerged as major drivers in understanding TNBC biology. This review delves into the intricate molecular makeup of TNBC, shedding light on actin's fundamental role in cellular processes. Actin, a structural element in the cytoskeleton, regulates various cellular pathways essential for homeostasis. Its dynamic nature enables functions such as cell migration, motility, intracellular transport, cell division, and signal transduction. Actin-binding proteins, including WAVE3, play pivotal roles in these processes. WAVE3, a member of the WASP family, remains the focus of this review due to its potential involvement in TNBC progression. While actin-binding proteins are studied for their roles in healthy cellular cycles, their significance in TNBC remains underexplored. This review aims to discuss WAVE3's impact on TNBC, exploring its molecular makeup, functions, and significance in tumor progression. The intricate structure of WAVE3, featuring elements like the verprolin-cofilin-acidic domain and regulatory elements, plays a crucial role in regulating actin dynamics. Dysregulation of WAVE3 in TNBC has been linked to enhanced cell migration, invasion, extracellular matrix remodeling, epithelial-mesenchymal transition, tumor proliferation, and therapeutic resistance. Understanding the role of actin-binding proteins in cancer biology has potential clinical implications, making them potential prognostic biomarkers and promising therapeutic targets. The review emphasizes the need for further research into actin-binding proteins' clinical applications, diagnostic value, and therapeutic interventions. In conclusion, this comprehensive review explores the complex interplay between actin and actin-binding proteins, with special emphasis on WAVE3, in the context of TNBC. By unraveling the molecular intricacies, structural characteristics, and functional significance, the review paves the way for future research directions, clinical applications, and potential therapeutic strategies in the challenging landscape of TNBC.
Collapse
Affiliation(s)
- Kruyanshi Master
- Department of ChemistryCleveland State UniversityClevelandOhioUSA
| | - Lamyae El Khalki
- MetroHealth SystemClevelandOhioUSA
- Case Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Mekki Bayachou
- Department of ChemistryCleveland State UniversityClevelandOhioUSA
| | - Khalid Sossey‐Alaoui
- MetroHealth SystemClevelandOhioUSA
- Case Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| |
Collapse
|
6
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
7
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Tiwari P, Brooks D, Geisbrecht ER. Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils. Cytoskeleton (Hoboken) 2025. [PMID: 39876757 DOI: 10.1002/cm.21999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere. Drosophila muscles are similar to vertebrate muscles in composition and they share a similar mechanism of development. Drosophila NUAK (NUAK) is the homolog of NUAK1 and NUAK2 in vertebrates. NUAK belongs to the family of AMP-activated protein kinases (AMPKs), a group of proteins with broad and overlapping cellular targets. Here we confirm that NUAK dynamically modulates larval muscle sarcomere size as upregulation of NUAK produces longer sarcomeres, including increased thin filament lengths. Furthermore, NUAK overexpression results in aberrant myofibers above the nuclei plane, upregulation of Formin-like (Frl), and an increase in newly synthesized proteins at sites consistent with actin filament assembly. Expression of constitutively-active Frl also produces aberrant myofibers similar to NUAK overexpression. These results taken together strongly suggest a functional link between NUAK and Frl in myofibril formation in an in vivo setting.
Collapse
Affiliation(s)
- Prabhat Tiwari
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
9
|
Alexandrova A, Kontareva E, Pustovalova M, Leonov S, Merkher Y. Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration. Life (Basel) 2025; 15:127. [PMID: 39860067 PMCID: PMC11766853 DOI: 10.3390/life15010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility. The cytoskeletal mechanisms employed by metastatic cells during the migration process closely resemble the use of the actin cytoskeleton in endocytosis. In our previous work, we revealed that tumor cells exhibiting high metastatic potential (MP) are more adept at encapsulating 100-200 nm nanoparticles than those with lower MP. The objective of this study was to investigate whether nanoparticle encapsulation could effectively differentiate leader tumor cells during their CCM. To achieve our objectives, we employed a two-dimensional CCM model grounded in the wound-healing ("scratch") assay, utilizing two breast cancer cell lines, MCF7 and MDA-MB-231, which display low and high migratory potential, respectively. We conducted calibration experiments to identify the "optimal time" at which cells exhibit peak speed during wound closure. Furthermore, we carried out experiments to assess nanoparticle uptake, calculating the colocalization coefficient, and employed phalloidin staining to analyze the anisotropy and orientation of actin filaments. The highest activity for low-MP cells was achieved at 2.6 h during the calibration experiments, whereas high-MP cells were maximally active at 3.9 h, resulting in 8% and 11% reductions in wound area, respectively. We observed a significant difference in encapsulation efficiency between leader and peripheral cells for both high-MP (p < 0.013) and low-MP (p < 0.02) cells. Moreover, leader cells demonstrated a considerably higher anisotropy coefficient (p < 0.029), indicating a more organized, directional structure of actin filaments compared to peripheral cells. Thus, nanoparticle encapsulation offers a groundbreaking approach to identifying the most aggressive and invasive leader cells during the CCM process in breast cancer. Detecting these cells is crucial for developing targeted therapies that can effectively curb metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Anastasia Alexandrova
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
| | - Elizaveta Kontareva
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
| | - Margarita Pustovalova
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
| | - Sergey Leonov
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yulia Merkher
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
10
|
Gurholt TP, Elvsåshagen T, Bahrami S, Rahman Z, Shadrin A, Askeland-Gjerde DE, van der Meer D, Frei O, Kaufmann T, Sønderby IE, Halvorsen S, Westlye LT, Andreassen OA. Large-scale brainstem neuroimaging and genetic analyses provide new insights into the neuronal mechanisms of hypertension. HGG ADVANCES 2025; 6:100392. [PMID: 39663699 PMCID: PMC11731578 DOI: 10.1016/j.xhgg.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
While brainstem regions are central regulators of blood pressure, the neuronal mechanisms underlying their role in hypertension remain poorly understood. Here, we investigated the structural and genetic relationships between global and regional brainstem volumes and blood pressure. We used magnetic resonance imaging data from n = 32,666 UK Biobank participants, and assessed the association of volumes of the whole brainstem and its main regions with blood pressure. We applied powerful statistical genetic tools, including bivariate causal mixture modeling (MiXeR) and conjunctional false discovery rate (conjFDR), to non-overlapping genome-wide association studies of brainstem volumes (n = 27,034) and blood pressure (n = 321,843) in the UK Biobank cohort. We observed negative associations between the whole brainstem and medulla oblongata volumes and systolic blood and pulse pressure, and positive relationships between midbrain and pons volumes and blood pressure traits when adjusting for the whole brainstem volume (all partial correlation coefficients ∣r∣ effects between 0.03 and 0.05, p ≤ 0.0042). We observed the largest genetic overlap for the whole brainstem, sharing 77% of its trait-influencing variants with blood pressure. We identified 65 shared loci between brainstem volumes and blood pressure traits and mapped these to 71 genes, implicating molecular pathways linked to sympathetic nervous system development, metal ion transport, and vascular homeostasis. The present findings support a link between brainstem structures and blood pressure and provide insights into their shared genetic underpinnings. The overlapping genetic architectures and mapped genes offer mechanistic information about the roles of brainstem regions in hypertension.
Collapse
Affiliation(s)
- Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway.
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Shahram Bahrami
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Zillur Rahman
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Daniel E Askeland-Gjerde
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ullevål and University of Oslo, 0424 Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| |
Collapse
|
11
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. WAVE1 and WAVE2 facilitate human papillomavirus-driven actin polymerization during cellular entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620484. [PMID: 39553927 PMCID: PMC11565777 DOI: 10.1101/2024.10.28.620484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human PapillomavirusType 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of the actin polymerization that facilitates HPV endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both, internalize HPV16 at a significantly reduced rate. Analysis of fluorescently labeled cells exposed to HPV16 and acquired by confocal fluorescence microscopy revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface. We also found that HPV16 stimulates WAVE1 and WAVE2-mediated cellular dorsal surface filopodia formation during the viral endocytic process. Taken together, this study provides evidence that the HPV endocytic process needed for infection is controlled by actin reorganization into filopodial protrusions and that this process is mediated by WAVE1 and WAVE2.
Collapse
Affiliation(s)
- D J Fernandez
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Stephanie Cheng
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
13
|
Chaudhari K, Zhang K, Yam PT, Zang Y, Kramer DA, Gagnon S, Schlienger S, Calabretta S, Michaud JF, Collins M, Wang J, Srour M, Chen B, Charron F, Bashaw GJ. A human DCC variant causing mirror movement disorder reveals that the WAVE regulatory complex mediates axon guidance by netrin-1-DCC. Sci Signal 2024; 17:eadk2345. [PMID: 39353037 PMCID: PMC11568466 DOI: 10.1126/scisignal.adk2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.
Collapse
Affiliation(s)
- Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- These authors contributed equally
| | - Kaiyue Zhang
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- These authors contributed equally
| | - Patricia T. Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah Gagnon
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Sara Calabretta
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Meagan Collins
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, H4A 3J1, Canada
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Xu M, Rutkowski DM, Rebowski G, Boczkowska M, Pollard LW, Dominguez R, Vavylonis D, Ostap EM. Myosin-I synergizes with Arp2/3 complex to enhance the pushing forces of branched actin networks. SCIENCE ADVANCES 2024; 10:eado5788. [PMID: 39270022 PMCID: PMC11397503 DOI: 10.1126/sciadv.ado5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Class I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Myosin-I triggered symmetry breaking and comet tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations, suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Grzegorz Rebowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luther W. Pollard
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - E. Michael Ostap
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Kocher F, Applegate V, Reiners J, Port A, Spona D, Hänsch S, Mirzaiebadizi A, Ahmadian MR, Smits SHJ, Hegemann JH, Mölleken K. The Chlamydia pneumoniae effector SemD exploits its host's endocytic machinery by structural and functional mimicry. Nat Commun 2024; 15:7294. [PMID: 39181890 PMCID: PMC11344771 DOI: 10.1038/s41467-024-51681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
To enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell's plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous. While SemD binds N-WASP much more strongly than Cdc42 does, it does not bind the Cdc42 effector protein FMNL2, indicating effector protein specificity. Furthermore, by identifying flexible and structured domains, we show that SemD can simultaneously interact with the membrane, the endocytic protein SNX9, and N-WASP. Here, we show at the structural level how a single effector protein can hijack central components of the host's endocytic system for efficient internalization.
Collapse
Affiliation(s)
- Fabienne Kocher
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany
| | - Violetta Applegate
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
| | - Jens Reiners
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
| | - Astrid Port
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
| | - Dominik Spona
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany
| | - Sebastian Hänsch
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Advanced Imaging, Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Düsseldorf, Germany
| | - Johannes H Hegemann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany.
| | - Katja Mölleken
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany
| |
Collapse
|
16
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
17
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. Mol Biol Cell 2024; 35:ar80. [PMID: 38598293 PMCID: PMC11238085 DOI: 10.1091/mbc.e24-01-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M. Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | - Corey J. Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | | | - Kenneth G. Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Center on Aging, UConn Health, Farmington, CT 06030
| |
Collapse
|
18
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
19
|
Kuihon SVNP, Sevart BJ, Abbey CA, Bayless KJ, Chen B. The NADPH oxidase 2 subunit p47 phox binds to the WAVE regulatory complex and p22 phox in a mutually exclusive manner. J Biol Chem 2024; 300:107130. [PMID: 38432630 PMCID: PMC10979099 DOI: 10.1016/j.jbc.2024.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.
Collapse
Affiliation(s)
- Simon V N P Kuihon
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Brodrick J Sevart
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Colette A Abbey
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Kayla J Bayless
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
20
|
Theodore CJ, Wagner LH, Campellone KG. Autophagosome turnover requires Arp2/3 complex-mediated maintenance of lysosomal integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584718. [PMID: 38559247 PMCID: PMC10980047 DOI: 10.1101/2024.03.12.584718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Autophagy is an intracellular degradation process that maintains homeostasis, responds to stress, and plays key roles in the prevention of aging and disease. Autophagosome biogenesis, vesicle rocketing, and autolysosome tubulation are controlled by multiple actin nucleation factors, but the impact of actin assembly on completion of the autophagic pathway is not well understood. Here we studied autophagosome and lysosome remodeling in fibroblasts harboring an inducible knockout (iKO) of the Arp2/3 complex, an essential actin nucleator. Arp2/3 complex ablation resulted in increased basal levels of autophagy receptors and lipidated membrane proteins from the LC3 and GABARAP families. Under both steady-state and starvation conditions, Arp2/3 iKO cells accumulated abnormally high numbers of autolysosomes, suggesting a defect in autophagic flux. The inability of Arp2/3 complex-deficient cells to complete autolysosome degradation and turnover is explained by the presence of damaged, leaky lysosomes. In cells treated with an acute lysosomal membrane-damaging agent, the Arp2/3-activating protein WHAMM is recruited to lysosomes, where Arp2/3 complex-dependent actin assembly is crucial for restoring intact lysosomal structure. These results establish the Arp2/3 complex as a central player late in the canonical autophagy pathway and reveal a new role for the actin nucleation machinery in maintaining lysosomal integrity.
Collapse
Affiliation(s)
- Corey J. Theodore
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Lianna H. Wagner
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology; University of Connecticut, Storrs CT, USA
- Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging, UConn Health; University of Connecticut, Storrs CT, USA
| |
Collapse
|
21
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
22
|
Ji J, Zhou Z, Luo Q, Zhu Y, Wang R, Liu Y. TMEM16A enhances the activity of the Cdc42-NWASP signaling pathway to promote invasion and metastasis in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:161-171. [PMID: 38155002 DOI: 10.1016/j.oooo.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE We explored the relationship between TMEM16A and metastasis and development in oral squamous cell carcinoma (OSCC). STUDY DESIGN The University of Alabama at Birmingham and Gene Expression Profiling Interactive Analysis Databases were employed to analyze the relationship between the expression of TMEM16A and the survival of patients with OSCC. TMEM16A was knocked down and overexpressed in CAL27 and SCC-4 cells, respectively, and the malignant behavior and expression of key proteins were detected. The Cdc42-NWASP pathway was inhibited, and the effects of TMEM16A and the Cdc42-NWASP pathway on promoting the malignant behavior of cancer cells were verified. A xenograft tumor model was constructed, and tumor growth, cell proliferation index, apoptosis, and Cdc42-NWASP signal pathway activity were detected. RESULTS The expression of TMEM16A in oral cancer tissues was significantly higher than in adjacent tissues, and mice with high expression of TMEM16A had shorter survival. Overexpression of TMTM16A could significantly promote the occurrence of cancer and reduce the apoptosis of cancer cells, whereas the activity of the Cdc42 pathway was higher. Knocking down TMEM16A or inhibiting the Cdc42-NWASP pathway could reverse these results. CONCLUSION The activation of the Cdc42-NWASP pathway by high TMEM16A expression is closely related to OSCC and may become a new therapeutic target to prevent OSCC metastasis.
Collapse
Affiliation(s)
- Juanjuan Ji
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Zhi Zhou
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Qi Luo
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yaling Zhu
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Rui Wang
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
23
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576497. [PMID: 38328079 PMCID: PMC10849548 DOI: 10.1101/2024.01.22.576497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | - Corey J Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | | | - Kenneth G Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging; UConn Health, Farmington CT, USA
| |
Collapse
|
24
|
Wang T, Zheng AX, Li P, Tang T, Zhang LP, Hong Y, Hong X, Deng ZH. FAM21 interacts with Ku to promote the localization of WASH to DNA double strand break sites. DNA Repair (Amst) 2024; 133:103603. [PMID: 38029687 DOI: 10.1016/j.dnarep.2023.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Cytoplasmic FAM21 works as a guiding protein in Wiskott-Aldrich Syndrome Protein and SCAR Homolog (WASH) complex by linking WASH complex to endosomes through its interaction with retromer. Recently, we have reported that nuclear WASH localizes to DNA double strand break (DSB) sites to promote DNA repair through non-homologous end-joining (NHEJ). However, whether FAM21, the close partner of WASH, is involved in the nuclear WASH localization and DNA repair remains to be clarified. Here, we show that FAM21 interacts with Ku and the interaction between C-terminal FAM21 and Ku is essential for its recruitment to DSB sites. Moreover, FAM21 depletion led to decreases in WASH recruitment to damaged DNA and repair capacity upon DNA damage. Taken together, these results reveal that FAM21 promotes DNA repair by orchestrating the recruitment of WASH to DSB sites, providing a mechanistic insight into WASH-dependent DNA DSB repair.
Collapse
Affiliation(s)
- Tao Wang
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| | - Ai-Xue Zheng
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Ping Li
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tuo Tang
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Lu-Ping Zhang
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yu Hong
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xian Hong
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhi-Hui Deng
- Laboratory of Protein Structure and Function, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| |
Collapse
|
25
|
Gautreau A, Lappalainen P, Rottner K. Editorial-A fresh look at an ancient protein: Actin in health and disease. Eur J Cell Biol 2023; 102:151306. [PMID: 37087386 DOI: 10.1016/j.ejcb.2023.151306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Affiliation(s)
- Alexis Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Pekka Lappalainen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Kramer DA, Narvaez-Ortiz HY, Patel U, Shi R, Shen K, Nolen BJ, Roche J, Chen B. The intrinsically disordered cytoplasmic tail of a dendrite branching receptor uses two distinct mechanisms to regulate the actin cytoskeleton. eLife 2023; 12:e88492. [PMID: 37555826 PMCID: PMC10411975 DOI: 10.7554/elife.88492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 08/10/2023] Open
Abstract
Dendrite morphogenesis is essential for neural circuit formation, yet the molecular mechanisms underlying complex dendrite branching remain elusive. Previous studies on the highly branched Caenorhabditis elegans PVD sensory neuron identified a membrane co-receptor complex that links extracellular signals to intracellular actin remodeling machinery, promoting high-order dendrite branching. In this complex, the claudin-like transmembrane protein HPO-30 recruits the WAVE regulatory complex (WRC) to dendrite branching sites, stimulating the Arp2/3 complex to polymerize actin. We report here our biochemical and structural analysis of this interaction, revealing that the intracellular domain (ICD) of HPO-30 is intrinsically disordered and employs two distinct mechanisms to regulate the actin cytoskeleton. First, HPO-30 ICD binding to the WRC requires dimerization and involves the entire ICD sequence, rather than a short linear peptide motif. This interaction enhances WRC activation by the GTPase Rac1. Second, HPO-30 ICD directly binds to the sides and barbed end of actin filaments. Binding to the barbed end requires ICD dimerization and inhibits both actin polymerization and depolymerization, resembling the actin capping protein CapZ. These dual functions provide an intriguing model of how membrane proteins can integrate distinct mechanisms to fine-tune local actin dynamics.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Urval Patel
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Rebecca Shi
- Department of Biology, Stanford UniversityStanfordUnited States
- Neurosciences IDP, Stanford UniversityStanfordUnited States
| | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Julien Roche
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Baoyu Chen
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
27
|
He S, Qiu S, Pan M, Palavicini JP, Wang H, Li X, Bhattacharjee A, Barannikov S, Bieniek KF, Dupree JL, Han X. Central nervous system sulfatide deficiency as a causal factor for bladder disorder in Alzheimer's disease. Clin Transl Med 2023; 13:e1332. [PMID: 37478300 PMCID: PMC10361545 DOI: 10.1002/ctm2.1332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Despite being a brain disorder, Alzheimer's disease (AD) is often accompanied by peripheral organ dysregulations (e.g., loss of bladder control in late-stage AD), which highly rely on spinal cord coordination. However, the causal factor(s) for peripheral organ dysregulation in AD remain elusive. METHODS The central nervous system (CNS) is enriched in lipids. We applied quantitative shotgun lipidomics to determine lipid profiles of human AD spinal cord tissues. Additionally, a CNS sulfatide (ST)-deficient mouse model was used to study the lipidome, transcriptome and peripheral organ phenotypes of ST loss. RESULTS We observed marked myelin lipid reduction in the spinal cord of AD subjects versus cognitively normal individuals. Among which, levels of ST, a myelin-enriched lipid class, were strongly and negatively associated with the severity of AD. A CNS myelin-specific ST-deficient mouse model was used to further identify the causes and consequences of spinal cord lipidome changes. Interestingly, ST deficiency led to spinal cord lipidome and transcriptome profiles highly resembling those observed in AD, characterized by decline of multiple myelin-enriched lipid classes and enhanced inflammatory responses, respectively. These changes significantly disrupted spinal cord function and led to substantial enlargement of urinary bladder in ST-deficient mice. CONCLUSIONS Our study identified CNS ST deficiency as a causal factor for AD-like lipid dysregulation, inflammation response and ultimately the development of bladder disorders. Targeting to maintain ST levels may serve as a promising strategy for the prevention and treatment of AD-related peripheral disorders.
Collapse
Affiliation(s)
- Sijia He
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Shulan Qiu
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Juan P. Palavicini
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Hu Wang
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Xin Li
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Savannah Barannikov
- Department of PathologyGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Department of PathologyGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Research DivisionMcGuire Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
28
|
Nakamura M, Hui J, Stjepić V, Parkhurst SM. Scar/WAVE has Rac GTPase-independent functions during cell wound repair. Sci Rep 2023; 13:4763. [PMID: 36959278 PMCID: PMC10036328 DOI: 10.1038/s41598-023-31973-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Rho family GTPases regulate both linear and branched actin dynamics by activating downstream effectors to facilitate the assembly and function of complex cellular structures such as lamellipodia and contractile actomyosin rings. Wiskott-Aldrich Syndrome (WAS) family proteins are downstream effectors of Rho family GTPases that usually function in a one-to-one correspondence to regulate branched actin nucleation. In particular, the WAS protein Scar/WAVE has been shown to exhibit one-to-one correspondence with Rac GTPase. Here we show that Rac and SCAR are recruited to cell wounds in the Drosophila repair model and are required for the proper formation and maintenance of the dynamic actomyosin ring formed at the wound periphery. Interestingly, we find that SCAR is recruited to wounds earlier than Rac and is still recruited to the wound periphery in the presence of a potent Rac inhibitor. We also show that while Rac is important for actin recruitment to the actomyosin ring, SCAR serves to organize the actomyosin ring and facilitate its anchoring to the overlying plasma membrane. These differing spatiotemporal recruitment patterns and wound repair phenotypes highlight the Rac-independent functions of SCAR and provide an exciting new context in which to investigate these newly uncovered SCAR functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
29
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
30
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
31
|
Bieling P, Rottner K. From WRC to Arp2/3: Collective molecular mechanisms of branched actin network assembly. Curr Opin Cell Biol 2023; 80:102156. [PMID: 36868090 DOI: 10.1016/j.ceb.2023.102156] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Branched actin networks have emerged as major force-generating structures driving the protrusions in various distinct cell types and processes, ranging from lamellipodia operating in mesenchymal and epithelial cell migration or tails pushing intracellular pathogens and vesicles to developing spine heads on neurons. Many key molecular features are conserved among all those Arp2/3 complex-containing, branched actin networks. Here, we will review recent progress in our molecular understanding of the core biochemical machinery driving branched actin nucleation, from the generation of filament primers to Arp2/3 activator recruitment, regulation and turnover. Due to the wealth of information on distinct, Arp2/3 network-containing structures, we are largely focusing-in an exemplary fashion-on canonical lamellipodia of mesenchymal cells, which are regulated by Rac GTPases, their downstream effector WAVE Regulatory Complex and its target Arp2/3 complex. Novel insight additionally confirms that WAVE and Arp2/3 complexes regulate or are themselves tuned by additional prominent actin regulatory factors, including Ena/VASP family members and heterodimeric capping protein. Finally, we are considering recent insights into effects exerted by mechanical force, both at the branched network and individual actin regulator level.
Collapse
Affiliation(s)
- Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
32
|
Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. SCIENCE ADVANCES 2022; 8:eadd1412. [PMID: 36516255 PMCID: PMC9750158 DOI: 10.1126/sciadv.add1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 06/02/2023]
Abstract
Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.
Collapse
Affiliation(s)
- Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yubo Tang
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Abbigale J. Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR–Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|
33
|
Ding B, Yang S, Schaks M, Liu Y, Brown AJ, Rottner K, Chowdhury S, Chen B. Structures reveal a key mechanism of WAVE regulatory complex activation by Rac1 GTPase. Nat Commun 2022; 13:5444. [PMID: 36114192 PMCID: PMC9481577 DOI: 10.1038/s41467-022-33174-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The Rho-family GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization in many essential processes. Rac1 binds to WRC at two distinct sites-the A and D sites. Precisely how Rac1 binds and how the binding triggers WRC activation remain unknown. Here we report WRC structures by itself, and when bound to single or double Rac1 molecules, at ~3 Å resolutions by cryogenic-electron microscopy. The structures reveal that Rac1 binds to the two sites by distinct mechanisms, and binding to the A site, but not the D site, drives WRC activation. Activation involves a series of unique conformational changes leading to the release of sequestered WCA (WH2-central-acidic) polypeptide, which stimulates the Arp2/3 complex to polymerize actin. Together with biochemical and cellular analyses, the structures provide a novel mechanistic understanding of how the Rac1-WRC-Arp2/3-actin signaling axis is regulated in diverse biological processes and diseases.
Collapse
Affiliation(s)
- Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
- Target & Protein Sciences, Janssen R&D, Johnson & Johnson, 1400 McKean Rd, Spring house, PA, 19477, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Soilytix GmbH, Dammtorwall 7 A, 20354, Hamburg, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Abbigale J Brown
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106, Braunschweig, Germany
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA.
| |
Collapse
|