1
|
Babu MA, Jyothi S R, Kaur I, Kumar S, Sharma N, Kumar MR, Rajput P, Ali H, Gupta G, Subramaniyan V, Wong LS, Kumarasamy V. The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine. Regen Ther 2025; 28:214-226. [PMID: 39811069 PMCID: PMC11731776 DOI: 10.1016/j.reth.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology. Originally identified as a key regulator of heart development and specification, GATA4 has since been connected to several aspects of cellular processes, including stem cell proliferation and differentiation. Accumulating evidence suggests that the involvement of GATA4-nuclear signalizing in the process of MSC senescence-related traits may contribute to age-induced alterations in MSC behavior. GATA4 emerged as the central player in MSC senescence, interacting with several signaling pathways. Studies have shown that GATA4 expression is reduced with age in MSCs, which is associated with increased expression levels of senescence markers and impaired regenerative potential. At the mechanistic level, GATA4 regulates the expression of genes involved in cell cycle regulation, DNA repair, and oxidative stress response, thereby influencing the senescence phenotype in MSCs. The findings underscore the critical function of GATA4 in MSC homeostasis and suggest a promising new target to restore stem cell function during aging and disease. A better understanding of the molecular mechanisms that underlie GATA4 mediated modulation of MSC senescence would provide an opportunity to develop new therapies to revitalize old MSCs to increase their regenerative function for therapeutic purposes in regenerative medicine.
Collapse
Affiliation(s)
- M. Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - M. Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Müller L, Hatzfeld M. Emerging functions of Plakophilin 4 in the control of cell contact dynamics. Cell Commun Signal 2025; 23:109. [PMID: 40001215 PMCID: PMC11863852 DOI: 10.1186/s12964-025-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for RNA biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathobiochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
3
|
Chen L, Hao J, Zhang J, Wu J, Ren Z. Rosiglitazone-induced white adipocyte browning is regulated by actin and Myh9. Life Sci 2024; 359:123217. [PMID: 39510170 DOI: 10.1016/j.lfs.2024.123217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
AIMS This study investigates the role of actin polymerization and Myh9 in mediating lipid droplet (LD) fission during rosiglitazone-induced browning of white adipocytes. The aim is to understand how LD splitting might contribute to the beige conversion of white adipose tissue, providing insights into adipocyte plasticity and metabolic regulation. MATERIALS AND METHODS C3H10 T1/2-differentiated adipocytes were used as a classical model to study white adipocyte browning. Rosiglitazone was applied to induce browning, and the interactions between LDs and actin, as well as the distribution of Myh9, were assessed using immunofluorescence and Western blotting. In vivo, we employed a microfilament inhibitor to block actin polymerization in cold-stimulated mice and evaluated changes in LD morphology and browning. Furthermore, dynamic live-cell imaging using confocal microscopy was conducted to observe the real-time behavior of LDs during the browning process and to determine whether they undergo fission. MAIN FINDINGS Our results demonstrate that rosiglitazone significantly induces LD size reduction, a process correlated with the increased contact of LDs with microfilaments. Inhibition of actin polymerization prevented both the reduction in LD size and the browning of white adipocytes, indicating that actin plays a critical role. Myh9 was enriched at the LD fission sites, forming a structure resembling a contractile ring. Overexpression of Myh9 promoted the shrinkage of LD, suggesting that it may be involved in LD fission. SIGNIFICANCE This study identifies actin and Myh9 as key regulators of LD fission in rosiglitazone-induced browning of white adipocytes, offering new insights into the cellular mechanisms of adipocyte plasticity. The findings propose a novel pathway by which LD dynamics contribute to the beige conversion of white fat, with potential implications for metabolic disease therapies targeting adipocyte function and energy expenditure.
Collapse
Affiliation(s)
- Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingjie Hao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junzhi Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Shah R, Panagiotou TC, Cole GB, Moraes TF, Lavoie BD, McCulloch CA, Wilde A. The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow. Nat Commun 2024; 15:5250. [PMID: 38897998 PMCID: PMC11187180 DOI: 10.1038/s41467-024-49427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct β- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that β- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that β-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.
Collapse
Affiliation(s)
- Riya Shah
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Brigitte D Lavoie
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | | | - Andrew Wilde
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
5
|
Sundby LJ, Southern WM, Sun J, Patrinostro X, Zhang W, Yong J, Ervasti JM. Deletion of exons 2 and 3 from Actb and cell immortalization lead to widespread, β-actin independent alterations in gene expression associated with cell cycle control. Eur J Cell Biol 2024; 103:151397. [PMID: 38387258 DOI: 10.1016/j.ejcb.2024.151397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
The cytoplasmic actin proteins, β- and γ-actin, are 99% identical but thought to perform non-redundant functions. The nucleotide coding regions of cytoplasmic actin genes, Actb and Actg1, are 89% identical. Knockout (KO) of Actb by Cre-mediated deletion of first coding exons 2 and 3 in mice is embryonic lethal and fibroblasts derived from KO embryos (MEFs) fail to proliferate. In contrast, Actg1 KO MEFs display with a much milder defect in cell proliferation and Actg1 KO mice are viable, but present with increased perinatal lethality. Recent studies have identified important protein-independent functions for both Actb and Actg1 and demonstrate that deletions within the Actb nucleotide sequence, and not loss of the β-actin protein, cause the most severe phenotypes in KO mice and cells. Here, we use a multi-omics approach to better understand what drives the phenotypes of Actb KO MEFs. RNA-sequencing and mass spectrometry reveal largescale changes to the transcriptome, proteome, and phosphoproteome in cells lacking Actb but not those only lacking β-actin protein. Pathway analysis of genes and proteins differentially expressed upon Actb KO suggest widespread dysregulation of genes involved in the cell cycle that may explain the severe defect in proliferation.
Collapse
Affiliation(s)
- Lauren J Sundby
- Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William M Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaobai Patrinostro
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Liu H, Zheng Y, Kan S, Hao M, Jiang H, Li S, Li R, Wang Y, Wang D, Liu W. Melatonin inhibits tongue squamous cell carcinoma: Interplay of ER stress-induced apoptosis and autophagy with cell migration. Heliyon 2024; 10:e29291. [PMID: 38644851 PMCID: PMC11033109 DOI: 10.1016/j.heliyon.2024.e29291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) occupies a high proportion of oral squamous cell carcinoma. TSCC features high lymph node metastasis rates and chemotherapy resistance with a poor prognosis. Therefore, an effective therapy strategy is needed to improve patient prognosis. Melatonin (MT) is a natural indole compound shown to have anti-tumor effects in several cancers. This study focused on the role and mechanism of MT in TSCC cells. The results of the study suggest that MT could inhibit cell proliferation in CRL-1623 cells. Western blot analysis showed the down-regulate of cyclin B1 and the up-regulate P21 protein by MT. MT was also shown to down-regulate the expression of Zeb1, Wnt5A/B, and β-catenin protein and up-regulate E-cadherin to inhibit the migration of CRL-1623 cells. MT also promoted the expression of ATF4, ATF6, Bip, BAP31 and CHOP in CRL-1623 cells leading to endoplasmic reticulum stress, and induced autophagy and apoptosis in CRL-1623 cells. Western blots showed that MT could promote the expression of Bax, LC3, and Beclin1 proteins and inhibit the expression of p62. We screened differentially expressed long non-coding RNAs (lncRNAs) in MT-treated cells and found that the expression of MALAT1 and H19 decreased. Moreover, MT inhibited tumor growth in nude mice inoculated with CRL-1623 cells. These results suggest that MT could induce autophagy, promote apoptosis, and provide a potential natural compound for the treatment of TSCC.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Department of Stomatology, Shunyi District Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Ye Zheng
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yinyu Wang
- Stomatology Hospital, Baicheng Medical College, Baicheng, 130300, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
7
|
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024; 13:571. [PMID: 38607010 PMCID: PMC11011151 DOI: 10.3390/cells13070571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Roberto Pallini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Di Pietro
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Patrizia Di Iorio
- Department of Medicine and Aging Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Giuliano Ascani
- UOSD Maxillofacial Surgery, Azienda Sanitaria Locale di Pescara, Via Renato Paolini 47, 65124 Pescara, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
8
|
Kast DJ, Jansen S. Purification of modified mammalian actin isoforms for in vitro reconstitution assays. Eur J Cell Biol 2023; 102:151363. [PMID: 37778219 PMCID: PMC10872616 DOI: 10.1016/j.ejcb.2023.151363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
In vitro reconstitution assays using purified actin have greatly improved our understanding of cytoskeletal dynamics and their regulation by actin-binding proteins. However, early purification methods consisted of harsh conditions to obtain pure actin and often did not include correct maturation and obligate modification of the isolated actin monomers. Novel insights into the folding requirements and N-terminal processing of actin as well as a better understanding of the interaction of actin with monomer sequestering proteins such as DNaseI, profilin and gelsolin, led to the development of more gentle approaches to obtain pure recombinant actin isoforms with known obligate modifications. This review summarizes the approaches that can be employed to isolate natively folded endogenous and recombinant actin from tissues and cells. We further emphasize the use and limitations of each method and describe how these methods can be implemented to study actin PTMs, disease-related actin mutations and novel actin-like proteins.
Collapse
Affiliation(s)
- David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| |
Collapse
|
9
|
Liu X, Gao J, Zhang P, Shi T, Yan B, Azra MN, Baloch WA, Wang P, Gao H. De novo transcriptional analysis of the response to starvation stress in the white ridgetail prawn, Exopalaemon carinicauda. Genomics 2023; 115:110746. [PMID: 37977333 DOI: 10.1016/j.ygeno.2023.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
To study the mechanism of the biomolecular response in Exopalaemon carinicauda to starvation stress, we subjected muscle tissue RNA samples from four stress points, including 0 d(control group), 10 d, 20 d, and 30 d, to starvation stress on white ridgetail prawn with a body weight of 1.41 + 0.42 g, aquaculture water temperature of 23-25 °C, salinity of 26, dissolved oxygen ≥5 mg/L, and pH 8-8.5, Then performed de novo transcriptome assembly and gene expression analysis using BGISEQ-500 with a tag-based digital gene expression (DGE) system. By de novo assembling at the four times, we obtained 28,167, 21,115, 24,497, and 27,080 reads, respectively. The results showed that the stress at 10 d led to no significant difference in the expressed genes, while the stress at 20 d and 30 d showed a significant increase (or decrease) in the expression of 97 (276) and 143 (410) genes, respectively, which were involved in 8 different metabolic pathways. In addition, we detected 2647 unigene transcription factors. Eleven upregulated and sixteen downregulated genes from the different starvation stress groups were choose to verify the reliability of the transcriptome data, and the results showed that the expression trends of these genes were consistent with the results shown by the transcriptome. The analysis of the experimental data and our discussion of the response mechanism of white ridgetail prawn under starvation stress provides a foundation for further screening of the key genes of starvation stress and may help to elucidate their functions.
Collapse
Affiliation(s)
- Xue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China
| | - Jiayi Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China
| | - Pei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China
| | - Tingting Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Wazir Ali Baloch
- Department of Freshwater Biology and Fisheries, University of Sindh, Jamshoro 76080, Pakistan.
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Jiangsu Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
10
|
Gautreau A, Lappalainen P, Rottner K. Editorial-A fresh look at an ancient protein: Actin in health and disease. Eur J Cell Biol 2023; 102:151306. [PMID: 37087386 DOI: 10.1016/j.ejcb.2023.151306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Affiliation(s)
- Alexis Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Pekka Lappalainen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|