1
|
Chennappan S, Kontaridis MI. RASopathies in Cardiac Disease. Annu Rev Med 2025; 76:301-314. [PMID: 39576684 DOI: 10.1146/annurev-med-042823-013552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
RASopathies are a group of clinically overlapping autosomal dominant disorders caused primarily by mutations in genes that reside along the canonical Ras-mitogen-activated protein kinase signaling cascade. Though individually rare, collectively, these disorders constitute one of the largest families of congenital disorders worldwide, particularly for infantile hypertrophic cardiomyopathy. Significantly, despite almost five decades of RASopathy research, therapeutic options remain limited and focused primarily on treating symptoms rather than disease etiology. Targeting the genes causal to these disorders, and the nodal pathways critical for their regulation, however, has been challenging. In this review, we highlight these challenges, particularly with respect to congenital heart defects and cardiac diseases and discuss limitations and future directions for approaches to new therapeutic strategies.
Collapse
Affiliation(s)
- Saravanakkumar Chennappan
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA;
| | - Maria Irene Kontaridis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA;
| |
Collapse
|
2
|
Lowe VJ, Aubdool AA, Moyes AJ, Dignam JP, Perez-Ternero C, Baliga RS, Smart N, Hobbs AJ. Cardiomyocyte-derived C-type natriuretic peptide diminishes myocardial ischaemic injury by promoting revascularisation and limiting fibrotic burden. Pharmacol Res 2024; 209:107447. [PMID: 39374886 DOI: 10.1016/j.phrs.2024.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is a significant player in the maintenance of cardiac and vascular homeostasis regulating local blood flow, platelet and leukocyte activation, heart structure and function, angiogenesis and metabolic balance. Since such processes are perturbed in myocardial infarction (MI), we explored the role of cardiomyocyte-derived CNP, and pharmacological administration of the peptide, in offsetting the pathological consequences of MI. METHODS Wild type (WT) and cardiomyocyte-restricted CNP null (cmCNP-/-) mice were subjected to left anterior descending coronary artery (LADCA) ligation and acute effects on infarct size and longer-term outcomes of cardiac repair explored. Heart structure and function were assessed by combined echocardiographic and molecular analyses. Pharmacological administration of CNP (0.2 mg/kg/day; s.c.) was utilized to assess therapeutic potential. RESULTS Compared to WT littermates, cmCNP-/- mice had a modestly increased infarct size following LADCA ligation but without significant deterioration of cardiac structural and functional indices. However, cmCNP-/- animals exhibited overtly worse heart morphology and contractility 6 weeks following MI, with particularly deleterious reductions in left ventricular ejection fraction, dilatation, fibrosis and revascularization. This phenotype was largely recapitulated in animals with global deletion of natriuretic peptide receptor (NPR)-C (NPR-C-/-). Pharmacological administration of CNP rescued the deleterious pathology in WT and cmCNP-/-, but not NPR-C-/-, animals. CONCLUSIONS AND IMPLICATIONS Cardiomyocytes synthesize and release CNP as an intrinsic protective mechanism in response to MI that reduces cardiac structural and functional deficits; these salutary actions are primarily NPR-C-dependent. Pharmacological targeting of CNP may represent a new therapeutic option for MI.
Collapse
Affiliation(s)
- Vanessa J Lowe
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joshua P Dignam
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - C Perez-Ternero
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
3
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
4
|
Bao Q, Zhang B, Zhou L, Yang Q, Mu X, Liu X, Zhang S, Yuan M, Zhang Y, Che J, Wei W, Liu T, Li G, He J. CNP Ameliorates Macrophage Inflammatory Response and Atherosclerosis. Circ Res 2024; 134:e72-e91. [PMID: 38456298 DOI: 10.1161/circresaha.123.324086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND CNP (C-type natriuretic peptide), an endogenous short peptide in the natriuretic peptide family, has emerged as an important regulator to govern vascular homeostasis. However, its role in the development of atherosclerosis remains unclear. This study aimed to investigate the impact of CNP on the progression of atherosclerotic plaques and elucidate its underlying mechanisms. METHODS Plasma CNP levels were measured in patients with acute coronary syndrome. The potential atheroprotective role of CNP was evaluated in apolipoprotein E-deficient (ApoE-/-) mice through CNP supplementation via osmotic pumps, genetic overexpression, or LCZ696 administration. Various functional experiments involving CNP treatment were performed on primary macrophages derived from wild-type and CD36 (cluster of differentiation 36) knockout mice. Proteomics and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS We observed a negative correlation between plasma CNP concentration and the burden of coronary atherosclerosis in patients. In early atherosclerotic plaques, CNP predominantly accumulated in macrophages but significantly decreased in advanced plaques. Supplementing CNP via osmotic pumps or genetic overexpression ameliorated atherosclerotic plaque formation and enhanced plaque stability in ApoE-/- mice. CNP promoted an anti-inflammatory macrophage phenotype and efferocytosis and reduced foam cell formation and necroptosis. Mechanistically, we found that CNP could accelerate HIF-1α (hypoxia-inducible factor 1-alpha) degradation in macrophages by enhancing the interaction between PHD (prolyl hydroxylase domain-containing protein) 2 and HIF-1α. Furthermore, we observed that CD36 bound to CNP and mediated its endocytosis in macrophages. Moreover, we demonstrated that the administration of LCZ696, an orally bioavailable drug recently approved for treating chronic heart failure with reduced ejection fraction, could amplify the bioactivity of CNP and ameliorate atherosclerotic plaque formation. CONCLUSIONS Our study reveals that CNP enhanced plaque stability and alleviated macrophage inflammatory responses by promoting HIF-1α degradation, suggesting a novel atheroprotective role of CNP. Enhancing CNP bioactivity may offer a novel pharmacological strategy for treating related diseases.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Bangying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Lu Zhou
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Qian Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xiaofeng Mu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Shiying Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jingjin Che
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe (W.W.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, China (Q.B., B.Z., L.Z., Q.Y., X.M., X.L., S.Z., M.Y., Y.Z., J.C., T.L., G.L.)
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China (J.H.)
| |
Collapse
|
5
|
Della Corte V, Pacinella G, Todaro F, Pecoraro R, Tuttolomondo A. The Natriuretic Peptide System: A Single Entity, Pleiotropic Effects. Int J Mol Sci 2023; 24:ijms24119642. [PMID: 37298592 DOI: 10.3390/ijms24119642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In the modern scientific landscape, natriuretic peptides are a complex and interesting network of molecules playing pleiotropic effects on many organs and tissues, ensuring the maintenance of homeostasis mainly in the cardiovascular system and regulating the water-salt balance. The characterization of their receptors, the understanding of the molecular mechanisms through which they exert their action, and the discovery of new peptides in the last period have made it possible to increasingly feature the physiological and pathophysiological role of the members of this family, also allowing to hypothesize the possible settings for using these molecules for therapeutic purposes. This literature review traces the history of the discovery and characterization of the key players among the natriuretic peptides, the scientific trials performed to ascertain their physiological role, and the applications of this knowledge in the clinical field, leaving a glimpse of new and exciting possibilities for their use in the treatment of diseases.
Collapse
Affiliation(s)
- Vittoriano Della Corte
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Rosaria Pecoraro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Interaction between A-kinase anchoring protein 5 and protein kinase A mediates CaMKII/HDAC signaling to inhibit cardiomyocyte hypertrophy after hypoxic reoxygenation. Cell Signal 2023; 103:110569. [PMID: 36565899 DOI: 10.1016/j.cellsig.2022.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
We reported that A-kinase anchoring protein 5 (AKAP5) played a role in cardiomyocyte apoptosis after hypoxia-reoxygenation (H/R). The role of AKAP5 in cardiomyocyte hypertrophy has not been fully elucidated. Herein we investigated whether AKAP5 regulates cardiomyocyte hypertrophy through calcium/calmodulin-dependent protein kinase II (CaMKII). After H/R, deficiency of AKAP5 in H9C2 cardiomyocytes and neonatal rat cardiac myocytes activated CaMKII and stimulated cardiomyocyte hypertrophy. AKAP5 upregulation limited this. Low expression of AKAP5 increased CaMKII interaction with histone deacetylases 4/5 (HDAC4/5) and increased nuclear export of HDAC4/5. In addition, AKAP5 interactions with protein kinase A (PKA) and phospholamban (PLN) were diminished. Moreover, the phosphorylation of PLN was decreased, and intracellular calcium increased. Interference of this process with St-Ht31 increased CaMKII signaling, decreased PLN phosphorylation and promoted post-H/R cell hypertrophy. And PKA-anchoring deficient AKAP5ΔPKA could not attenuate hypoxia-reoxygenation-induced cardiomyocyte hypertrophy, but AKAP5 could. Altogether, AKAP5 downregulation exacerbated H/R-induced hypertrophy in cardiomyocytes. This was due to, in part, to less in AKAP5-PKA interaction and the accumulation of intracellular Ca2+ with a subsequent increase in CaMKII activity.
Collapse
|
8
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
9
|
Chetran A, Costache AD, Ciongradi CI, Duca ST, Mitu O, Sorodoc V, Cianga CM, Tuchilus C, Mitu I, Mitea RD, Badescu MC, Afrasanie I, Huzum B, Moisa SM, Prepeliuc CS, Roca M, Costache II. ECG and Biomarker Profile in Patients with Acute Heart Failure: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12123037. [PMID: 36553044 PMCID: PMC9776598 DOI: 10.3390/diagnostics12123037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Biomarkers, electrocardiogram (ECG) and Holter ECG are basic, accessible and feasible cardiac investigations. The combination of their results may lead to a more complex predictive model that may improve the clinical approach in acute heart failure (AHF). The main objective was to investigate which ECG parameters are correlated with the usual cardiac biomarkers (prohormone N-terminal proBNP, high-sensitive cardiac troponin I) in patients with acute heart failure, in a population from Romania. The relationship between certain ECG parameters and cardiac biomarkers may support future research on their combined prognostic value. Methods: In this prospective case-control study were included 49 patients with acute heart failure and 31 participants in the control group. For all patients we measured levels of prohormone N-terminal proBNP (NT-proBNP), high-sensitive cardiac troponin I (hs-cTnI) and MB isoenzyme of creatine phosphokinase (CK-MB) and evaluated the 12-lead ECG and 24 h Holter monitoring. Complete clinical and paraclinical evaluation was performed. Results: NT-proBNP level was significantly higher in patients with AHF (p < 0.001). In patients with AHF, NT-proBNP correlated with cQTi (p = 0.027), pathological Q wave (p = 0.029), complex premature ventricular contractions (PVCs) (p = 0.034) and ventricular tachycardia (p = 0.048). Hs-cTnI and CK-MB were correlated with ST-segment modification (p = 0.038; p = 0.018) and hs-cTnI alone with complex PVCs (p = 0.031). Conclusions: The statistical relationships found between cardiac biomarkers and ECG patterns support the added value of ECG in the diagnosis of AHF. We emphasize the importance of proper ECG analysis of more subtle parameters that can easily be missed. As a non-invasive technique, ECG can be used in the outpatient setting as a warning signal, announcing the acute decompensation of HF. In addition, the information provided by the ECG complements the biomarker results, supporting the diagnosis of AHF in cases of dyspnea of uncertain etiology. Further studies are needed to confirm long-term prognosis in a multi-marker approach.
Collapse
Affiliation(s)
- Adriana Chetran
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Cardiology Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery—Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Pediatric and Orthopaedic Surgery Clinic, “Sfânta Maria” Emergency Children Hospital, 700309 Iași, Romania
| | - Stefania Teodora Duca
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Cardiology Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
- Correspondence: ; Tel.: +40-751-533-554
| | - Ovidiu Mitu
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Cardiology Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Victorita Sorodoc
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- II Internal Medicine Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Corina Maria Cianga
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Immunology Laboratory, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Cristina Tuchilus
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Microbiology Laboratory, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Ivona Mitu
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
| | - Raluca Daria Mitea
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy “Lucian Blaga, 550169 Sibiu, Romania
- Cardiology Clinic, Clinical Emergency Hospital Sibiu, 550245 Sibiu, Romania
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- III Internal Medicine Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Irina Afrasanie
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Cardiology Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| | - Bogdan Huzum
- Department of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Orthopaedics and Traumatology, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Stefana Maria Moisa
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Sorin Prepeliuc
- “Saint Parascheva”, Infectious Diseases Clinical Universitary Hospital Iasi, 700116 Iasi, Romania
| | - Mihai Roca
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina Iuliana Costache
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Cardiology Clinic, Clinical Emergency Hospital “Sfantul Spiridon”, 700111 Iasi, Romania
| |
Collapse
|
10
|
CNP, the Third Natriuretic Peptide: Its Biology and Significance to the Cardiovascular System. BIOLOGY 2022; 11:biology11070986. [PMID: 36101368 PMCID: PMC9312265 DOI: 10.3390/biology11070986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary CNP is the third natriuretic peptide to be isolated and is widely expressed in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by the other two natriuretic peptides, ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. Research into the actions of CNP has shown that CNP attenuates cardiac remodeling in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. Studies examining CNP/GC-B signaling showed that it contributes to the prevention of cardiac stiffness. Endogenous CNP, perhaps acting in part through CNP/NPR-C signaling, contributes to the regulation of vascular function and blood pressure. CNP regulates vascular remodeling and angiogenesis via CNP/GC-B/CGK signaling. CNP attenuates interstitial fibrosis and fibrosis-related gene expression in pressure overload and myocardial infarction models. The clinical application of CNP as a therapeutic agent for cardiovascular diseases is anticipated. Abstract The natriuretic peptide family consists of three biologically active peptides: ANP, BNP, and CNP. CNP is more widely expressed than the other two peptides, with significant levels in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. CNP knockout leads to severe dwarfism, and there has been important research into the role of CNP in the osteochondral system. As a result, a CNP analog is now available for clinical use in patients with achondroplasia. In the cardiovascular system, CNP and its downstream signaling are involved in the regulatory mechanisms underlying myocardial remodeling, cardiac function, vascular tone, angiogenesis, and fibrosis, among others. This review focuses on the roles of CNP in the cardiovascular system and considers its potential for clinical application in the treatment of cardiovascular diseases.
Collapse
|
11
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
12
|
|
13
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
14
|
Prognostic Value of Urinary and Plasma C-Type Natriuretic Peptide in Acute Decompensated Heart Failure. JACC-HEART FAILURE 2021; 9:613-623. [PMID: 34246604 DOI: 10.1016/j.jchf.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study sought to characterize urinary and plasma C-type natriuretic peptide (CNP) in acute decompensated heart failure (ADHF) to define their relationship with clinical variables and to determine whether urinary and plasma CNP together add prognostic value. BACKGROUND CNP is a protective hormone that is synthesized in the kidney and endothelium and possesses antiremodeling properties. Urinary and plasma CNP levels are elevated in pathophysiological conditions; however, their regulation and prognostic value in heart failure (HF) is unclear. METHODS Urinary and plasma CNP were measured in 109 healthy subjects and 208 patients with ADHF; the 95th percentile of CNP values from healthy subjects established the normal contemporary cutoffs. Patients with ADHF were stratified based on urinary and plasma CNP levels for clinical characterization and the assessment of risk for adverse outcomes. RESULTS There was no significant correlation between urinary and plasma CNP in both cohorts. Urinary and plasma CNP were significantly elevated in patients with ADHF, and both increased with disease severity and were positively correlated with plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP). Of the patients with ADHF, 23% had elevations in both urinary and plasma CNP, whereas 24% had normal CNP levels. During a median follow-up of 3 years, patients with elevated urinary and plasma CNP had a significantly higher risk of rehospitalization and/or death (HR: 1.79; P = 0.03) and rehospitalization (HR: 2.16; P = 0.01) after adjusting for age, sex, left ventricular ejection fraction, renal function, and plasma NT-proBNP. The C-statistic and integrated discrimination analyses further supported that the addition of urinary and plasma CNP to established risk models improved the prediction of adverse outcomes in patients with ADHF. CONCLUSIONS Urinary and plasma CNP are differentially regulated in ADHF, and elevations in both provided independent prognostic value for predicting adverse outcomes.
Collapse
|
15
|
Cardiac morphological and functional changes induced by C-type natriuretic peptide are different in normotensive and spontaneously hypertensive rats. J Hypertens 2021; 38:2305-2317. [PMID: 32649642 DOI: 10.1097/hjh.0000000000002570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inflammation and fibrosis are key mechanisms in cardiovascular remodeling. C-type natriuretic peptide (CNP) is an endothelium-derived factor with a cardiovascular protective role, although its in-vivo effect on cardiac remodeling linked to hypertension has not been investigated. The aim of this study was to determine the effects of chronic administration of CNP on inflammatory and fibrotic cardiac mechanisms in normotensive Wistar rats and spontaneously hypertensive rats (SHR). METHODS Twelve-week-old male SHR and normotensive rats were infused with CNP (0.75 μg/h/100 g) or isotonic saline (NaCl 0.9%) for 14 days (subcutaneous micro-osmotic pumps). Echocardiograms and electrocardiograms were performed, and SBP was measured. After treatment, transforming growth factor-beta 1, Smad proteins, tumor necrosis factor-alpha, interleukin-1 and interleukin-6, nitric oxide (NO) system and 2-thiobarbituric acid-reactive substances were evaluated in left ventricle. Histological studies were also performed. RESULTS SHR showed lower cardiac output with signs of fibrosis and hypertrophy in left ventricle, higher NO-system activity and more oxidative damage, as well as higher pro-inflammatory and pro-fibrotic markers than normotensive rats. Chronic CNP treatment-attenuated hypertension and ventricular hypertrophy in SHR, with no changes in normotensive rats. In left ventricle, CNP induced an anti-inflammatory and antifibrotic response, decreasing both pro-fibrotic and pro-inflammatory cytokines in SHR. In addition, CNP reduced oxidative damage as well as collagen content, and upregulated the NO system in both groups. CONCLUSION Chronic CNP treatment appears to attenuate hypertension and associated end-organ damage in the heart by reducing inflammation and fibrosis.
Collapse
|
16
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther 2021; 227:107863. [PMID: 33894277 DOI: 10.1016/j.pharmthera.2021.107863] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides, which are activated in heart failure, play an important cardioprotective role. The most notable of the cardioprotective natriuretic peptides are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are abundantly expressed and secreted in the atrium and ventricles, respectively, and C-type natriuretic peptide (CNP), which is expressed mainly in the vasculature, central nervous system, and bone. ANP and BNP exhibit antagonistic effects against angiotensin II via diuretic/natriuretic actions, vasodilatory actions, and inhibition of aldosterone secretion, whereas CNP is involved in the regulation of vascular tone and blood pressure, among other roles. ANP and BNP are of particular interest with respect to heart failure, as their levels, most notably BNP and N-terminal proBNP-a cleavage product produced when proBNP is processed to mature BNP-are increased in patients with heart failure. Furthermore, the identification of natriuretic peptides as sensitive markers of cardiac load has driven significant research into their physiological roles in cardiovascular homeostasis and disease, as well as their potential use as both biomarkers and therapeutics. In this review, I discuss the physiological functions of the natriuretic peptide family, with a particular focus on the basic research that has led to our current understanding of its roles in maintaining cardiovascular homeostasis, and the pathophysiological implications for the onset and progression of heart failure. The clinical significance and potential of natriuretic peptides as diagnostic and/or therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
18
|
Michel K, Herwig M, Werner F, Špiranec Spes K, Abeßer M, Schuh K, Dabral S, Mügge A, Baba HA, Skryabin BV, Hamdani N, Kuhn M. C-type natriuretic peptide moderates titin-based cardiomyocyte stiffness. JCI Insight 2020; 5:139910. [PMID: 33055420 PMCID: PMC7710274 DOI: 10.1172/jci.insight.139910] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure is often accompanied by titin-dependent myocardial stiffness. Phosphorylation of titin by cGMP-dependent protein kinase I (PKGI) increases cardiomyocyte distensibility. The upstream pathways stimulating PKGI-mediated titin phosphorylation are unclear. We studied whether C-type natriuretic peptide (CNP), via its guanylyl cyclase-B (GC-B) receptor and cGMP/PKGI signaling, modulates titin-based ventricular compliance. To dissect GC-B–mediated effects of endogenous CNP in cardiomyocytes, we generated mice with cardiomyocyte-restricted GC-B deletion (CM GC-B–KO mice). The impact on heart morphology and function, myocyte passive tension, and titin isoform expression and phosphorylation was studied at baseline and after increased afterload induced by transverse aortic constriction (TAC). Pressure overload increased left ventricular endothelial CNP expression, with an early peak after 3 days. Concomitantly, titin phosphorylation at Ser4080, the site phosphorylated by PKGI, was augmented. Notably, in CM GC-B–KO mice this titin response was abolished. TAC-induced hypertrophy and fibrosis were not different between genotypes. However, the KO mice presented mild systolic and diastolic dysfunction together with myocyte stiffness, which were not observed in control littermates. In vitro, recombinant PKGI rescued reduced titin-Ser4080 phosphorylation and reverted passive stiffness of GC-B–deficient cardiomyocytes. CNP-induced activation of GC-B/cGMP/PKGI signaling in cardiomyocytes provides a protecting regulatory circuit preventing titin-based myocyte stiffening during early phases of pressure overload. C-type natriuretic peptide via GC-B/cGMP/PKGI signalling in cardiomyocytes attenuates titin-based cardiomyocyte stiffening during early phases of pressure-overload.
Collapse
Affiliation(s)
- Konstanze Michel
- Institute of Physiology, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Melissa Herwig
- Institute of Physiology and.,Department of Cardiology, St-Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | - Marco Abeßer
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Kai Schuh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Andreas Mügge
- Department of Cardiology, St-Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Boris V Skryabin
- Medical Faculty, Core Facility TRAnsgenic animal and genetic engineering Models (TRAM), University of Münster, Münster, Germany
| | - Nazha Hamdani
- Institute of Physiology and.,Department of Cardiology, St-Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
20
|
Lerner Y, Hanout W, Ben-Uliel SF, Gani S, Leshem MP, Qvit N. Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases. Curr Top Med Chem 2020; 20:2904-2921. [PMID: 33050863 DOI: 10.2174/1568026620666201013154326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, accounting for more than 17.6 million deaths per year in 2016, a number that is expected to grow to more than 23.6 million by 2030. While many technologies are currently under investigation to improve the therapeutic outcome of CVD complications, only a few medications have been approved. Therefore, new approaches to treat CVD are urgently required. Peptides regulate numerous physiological processes, mainly by binding to specific receptors and inducing a series of signals, neurotransmissions or the release of growth factors. Importantly, peptides have also been shown to play an important role in the circulatory system both in physiological and pathological conditions. Peptides, such as angiotensin II, endothelin, urotensin-II, urocortins, adrenomedullin and natriuretic peptides have been implicated in the control of vascular tone and blood pressure as well as in CVDs such as congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Hence it is not surprising that peptides are becoming important therapeutic leads in CVDs. This article will review the current knowledge on peptides and their role in the circulatory system, focusing on the physiological roles of natriuretic peptides in the cardiovascular system and their implications in CVDs.
Collapse
Affiliation(s)
- Yana Lerner
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Wessal Hanout
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Shulamit Fluss Ben-Uliel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Samar Gani
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Michal Pellach Leshem
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| |
Collapse
|
21
|
Prickett TC, A Espiner E. Circulating products of C-type natriuretic peptide and links with organ function in health and disease. Peptides 2020; 132:170363. [PMID: 32634451 DOI: 10.1016/j.peptides.2020.170363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Paracrine actions of CNP and rapid degradation at source severely limit study of CNP's many roles in vivo. However provided sensitive and validated assays are used, there is increasing evidence that low concentrations of bioactive CNP in plasma, and the readily detectable concentrations of the bio-inactive processed product of proCNP (aminoterminal proCNP), can be used to advance understanding of the hormone's role in pathophysiology. Provided renal function is normal, concordant changes in both CNP and NTproCNP reflect change in tissue production of proCNP whereas change in CNP alone results from altered rates of bioactive CNP degradation and are reflected in the ratio of NTproCNP to CNP. As already shown in juveniles, where plasma concentration of CNP products are higher and are associated with concurrent endochondral bone growth, measurements of plasma CNP products in mature adults have potential to clarify organ response to stress and injury. Excepting the role of CNP in fetal-maternal welfare, this review examines evidence linking plasma CNP products with function of a wide range of tissues in adults, including the impact of extraneous factors such as nutrients, hormone therapy and exercise.
Collapse
Affiliation(s)
- Timothy Cr Prickett
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand
| |
Collapse
|
22
|
Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. ACTA ACUST UNITED AC 2020; 5:949-960. [PMID: 33015416 PMCID: PMC7524786 DOI: 10.1016/j.jacbts.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The heart plays a central role in the circulatory system and provides essential oxygen, nutrients, and growth factors to the whole organism. The heart can synthesize and secrete endocrine signals to communicate with distant target organs. Studies of long-known and recently discovered heart-derived hormones highlight a shared theme and reveal a unified mechanism of heart-derived hormones in coordinating cardiac function and target organ biology. This paper reviews the biochemistry, signaling, function, regulation, and clinical significance of representative heart-derived hormones, with a focus on the cardiovascular system. This review also discusses important and exciting questions that will advance the field of cardiac endocrinology.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ActR, activin receptor
- BNP, brain natriuretic peptide
- CNP, C-type natriuretic peptide
- FGF, fibroblast growth factor
- FSTL, follistatin-like
- GDF, growth differentiation factor
- GDF15
- GFRAL, GDNF family receptor α-like
- NPR, natriuretic peptide receptors
- PCSK, proprotein convertase subtilisin/kexin type
- ST2, suppression of tumorigenesis-2
- TGF, transforming growth factor
- cardiac endocrinology
- heart
- heart-derived hormones
Collapse
Affiliation(s)
- Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN. The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 2020; 26:131-148. [PMID: 32840121 DOI: 10.1177/1074248420952243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3β. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-β1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.
Collapse
Affiliation(s)
- Andrey V Krylatov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Alla A Boshchenko
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Victor E Goldberg
- Cancer Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Amteshwar S Jaggi
- 429174Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reinhold G Erben
- Department of Biomedical Research, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Leonid N Maslov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
24
|
Caprnda M, Zulli A, Shiwani HA, Kubatka P, Filipova S, Valentova V, Gazdikova K, Mozos I, Berukstis A, Laucevicius A, Rihacek I, Dragasek J, Prosecky R, Egom EE, Staffa R, Kruzliak P, Krasnik V. The therapeutic effect of B-type natriuretic peptides in acute decompensated heart failure. Clin Exp Pharmacol Physiol 2020; 47:1120-1133. [PMID: 32083749 DOI: 10.1111/1440-1681.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
B-type natriuretic peptide (BNP) exhibits roles in natriuresis and diuresis, making it an ideal drug that may aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these have demonstrated beneficial outcomes. The current challenge for BNP research in acute HF lies in addressing a failure of concept and a reluctance to abandon an ineffective research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP, as well as better integration of basic and clinical science.
Collapse
Affiliation(s)
- Martin Caprnda
- First Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Haaris A Shiwani
- Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Department of Experimental Carcinogenesis, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases and Slovak Medical University, Bratislava, Slovakia
| | - Vanda Valentova
- Division of Oncology, Department of Experimental Carcinogenesis, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Independent Researcher, Mosjøen, Norway
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrius Berukstis
- Clinic of Heart and Vessel Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevicius
- Clinic of Heart and Vessel Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ivan Rihacek
- Second Department of Internal Medicine, Faculty of Medicine, Masaryk University and St, Anne´s University Hospital, Brno, Czech Republic
| | - Jozef Dragasek
- First Department of Psychiatry, Faculty of Medicine, Luis Pasteur University Hospital, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Robert Prosecky
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Dartmouth, NS, Canada
- Jewish General Hospital and Lady Davis Research Institute, Montreal, QC, Canada
| | - Robert Staffa
- Second Department of Surgery, Faculty of Medicine, St. Anne´s University Hospital, Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic
- Second Department of Surgery, Faculty of Medicine, St. Anne´s University Hospital, Masaryk University, Brno, Czech Republic
| | - Vladimir Krasnik
- Department of Ophthalmology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| |
Collapse
|
25
|
Moyes AJ, Chu SM, Aubdool AA, Dukinfield MS, Margulies KB, Bedi KC, Hodivala-Dilke K, Baliga RS, Hobbs AJ. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur Heart J 2020; 41:1006-1020. [PMID: 30903134 PMCID: PMC7068173 DOI: 10.1093/eurheartj/ehz093] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. METHODS AND RESULTS Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP-/-), endothelium (ecCNP-/-), and fibroblast (fbCNP-/-)-specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B-/-, and NPR-C-/- animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C-/- mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP-/- and NPR-C-/-, but not ecCNP-/-, vs. WT. The cardiac phenotype of cmCNP-/-, fbCNP-/-, and NPR-C-/- (but not ecCNP-/- or NPR-B-/-) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C-/-, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. CONCLUSION C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sandy M Chu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew S Dukinfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kenneth B Margulies
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
26
|
Parsanathan R, Jain SK. Novel Invasive and Noninvasive Cardiac-Specific Biomarkers in Obesity and Cardiovascular Diseases. Metab Syndr Relat Disord 2020; 18:10-30. [PMID: 31618136 PMCID: PMC7041332 DOI: 10.1089/met.2019.0073] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of fatality and disability worldwide regardless of gender. Obesity has reached epidemic proportions in population across different regions. According to epidemiological studies, CVD risk markers in childhood obesity are one of the significant risk factors for adulthood CVD, but have received disproportionally little attention. This review has examined the evidence for the presence of traditional cardiac biomarkers (nonspecific; lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, creatine kinase, myoglobulin, glycogen phosphorylase isoenzyme BB, myosin light chains, ST2, and ischemia-modified albumin) and novel emerging cardiac-specific biomarkers (cardiac troponins, natriuretic peptides, heart-type fatty acid-binding protein, and miRNAs). Besides, noninvasive anatomical and electrophysiological markers (carotid intima-media thickness, coronary artery calcification, and heart rate variability) in CVDs and obesity are also discussed. Modifiable and nonmodifiable risk factors associated with metabolic syndrome in the progression of CVD, such as obesity, diabetes, hypertension, dyslipidemia, oxidative stress, inflammation, and adipocytokines are also outlined. These underlying prognostic risk factors predict the onset of future microvascular and macrovascular complications. The understanding of invasive and noninvasive cardiac-specific biomarkers and the risk factors may yield valuable insights into the pathophysiology and prevention of CVD in a high-risk obese population at an early stage.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sushil K. Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
27
|
Ding DZ, Jia YN, Zhang B, Guan CM, Zhou S, Li X, Cui X. C‑type natriuretic peptide prevents angiotensin II‑induced atrial connexin 40 and 43 dysregulation by activating AMP‑activated kinase signaling. Mol Med Rep 2019; 20:5091-5099. [PMID: 31638216 PMCID: PMC6854524 DOI: 10.3892/mmr.2019.10744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
C‑type natriuretic peptide (CNP), from the family of natriuretic peptides (NPs), has been shown to induce antihypertrophic and antifibrotic effects in cardiomyocytes. However, the roles of CNP in the atrial dysregulation of connexin (Cx)40 and Cx43 remain to be elucidated. The present study aimed to investigate the effects of CNP on angiotensin (Ang) II‑induced Cx40 and Cx43 dysregulation in isolated perfused beating rat left atria. A rat isolated perfused beating atrial model was used and the protein levels were determined via western blotting. Ang II significantly upregulated NF‑κB, activator protein‑1, transforming growth factor‑β1 (TGF‑β1), collagen I and matrix metalloproteinase 2, leading to atrial fibrosis, and downregulated expression of Cx40 and Cx43. The changes in Cx40 and Cx43 induced by Ang II were abolished by CNP through upregulation of phosphorylated AMP‑activated kinase a1 (AMPK) and downregulation of TGF‑β1. The effects of CNP on AMPK and TGF‑β1 levels were inhibited by KT5823 and pertussis toxin, inhibitors of protein kinase G (PKG) and NP receptor type C (NPR‑C), respectively. Thus, CNP can prevent Ang II‑induced dysregulation of Cx40 and Cx43 through activation of AMPK via the CNP‑PKG and CNP‑NPR‑C pathways in isolated beating rat atria. The present findings suggested that CNP may be therapeutically useful for clinical conditions involving cardiac dysregulation of Cx expression‑related diseases.
Collapse
Affiliation(s)
- Da-Zhi Ding
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Ya-Nan Jia
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Bo Zhang
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Cheng-Ming Guan
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Shuai Zhou
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xiang Li
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xun Cui
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
- Key Laboratory of Organism Functional Factors of The Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
- Cellular Function Research Center, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
28
|
Tuscany Sangiovese grape juice imparts cardioprotection by regulating gene expression of cardioprotective C-type natriuretic peptide. Eur J Nutr 2019; 59:2953-2968. [PMID: 31707544 DOI: 10.1007/s00394-019-02134-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE A regular intake of red grape juice has cardioprotective properties, but its role on the modulation of natriuretic peptides (NPs), in particular of C-type NP (CNP), has not yet been proven. The aims were to evaluate: (1) in vivo the effects of long-term intake of Tuscany Sangiovese grape juice (SGJ) on the NPs system in a mouse model of myocardial infarction (MI); (2) in vitro the response to SGJ small RNAs of murine MCEC-1 under physiological and ischemic condition; (3) the activation of CNP/NPR-B/NPR-C in healthy human subjects after 7 days' SGJ regular intake. METHODS (1) C57BL/6J male and female mice (n = 33) were randomly subdivided into: SHAM (n = 7), MI (n = 15) and MI fed for 4 weeks with a normal chow supplemented with Tuscany SGJ (25% vol/vol, 200 µl/per day) (MI + SGJ, n = 11). Echocardiography and histological analyses were performed. Myocardial NPs transcriptional profile was investigated by Real-Time PCR. (2) MCEC-1 were treated for 24 h with a pool of SGJ small RNAs and cell viability under 24 h exposure to H2O2 was evaluated by MTT assay. (3) Human blood samples were collected from seven subjects before and after the 7 days' intake of Tuscany SGJ. NPs and miRNA transcriptional profile were investigated by Real-Time PCR in MCEC-1 and human blood. RESULTS Our experimental data, obtained in a multimodal pipeline, suggest that the long-term intake of SGJ promotes an adaptive response of the myocardium to the ischemic microenvironment through the modulation of the cardiac CNP/NPR-B/NPR-C system. CONCLUSIONS Our results open new avenue in the development of functional foods aimed at enhancing cardioprotection of infarcted hearts through action on the myocardial epigenome.
Collapse
|
29
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
30
|
Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S. Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int J Mol Sci 2019; 20:3874. [PMID: 31398927 PMCID: PMC6719167 DOI: 10.3390/ijms20163874] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water-salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.
Collapse
Affiliation(s)
| | | | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Giacomo Frati
- IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS NEUROMED, 86077 Pozzilli, Italy.
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
31
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
32
|
Liu C, Sun W, Zhuo G, Zhang Z. Impacts of macrophage colony-stimulating factor (M-CSF) on the expression of natriuretic peptide precursor type C (NPPC) and regulation of meiotic resumption. Gynecol Endocrinol 2019; 35:320-323. [PMID: 30767584 DOI: 10.1080/09513590.2018.1532989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In mammalian follicles, oocytes are arrested at the diplotene stage of prophase I until meiotic resumption following the LH surge. C-type natriuretic peptide (CNP), encoded by natriuretic peptide precursor type C (NPPC), was found to be reduced by the LH surge in the follicle, and then lead to meiotic resumption by decreasing the level of cAMP in the oocyte. As a wide-spread cytokine, macrophage colony-stimulating factor (M-CSF) takes part in the oocyte development to maturation and ovulation. Our study describes the expression curve of M-CSF and its receptor and investigates the impact on the levels of CNP/NPPC to explore the possible mechanism for meiotic resumption in both vivo and vitro. The result shows after the LH/HCG surge, the expressions of M-CSF and its receptors decline significantly inside ovarian follicles, thus leading to transduction of a range of signals. Consequently, the expression of CNP reaches the peak at 2 h and immediately declines to a relatively low level.
Collapse
Affiliation(s)
- Chang Liu
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
| | - Wenchao Sun
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
- b Department of Gynecological Endocrinology, Obstetrics and Gynecology Hospital in Hangzhou , Hangzhou , China
| | - Guangchao Zhuo
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
| | - Zhifen Zhang
- a Department of Gynecology, Hangzhou First People's Hospital , Nanjing Medical University , Hangzhou , China
| |
Collapse
|
33
|
Matsuo A, Nagai-Okatani C, Nishigori M, Kangawa K, Minamino N. Natriuretic peptides in human heart: Novel insight into their molecular forms, functions, and diagnostic use. Peptides 2019; 111:3-17. [PMID: 30120963 DOI: 10.1016/j.peptides.2018.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023]
Abstract
Among the three natriuretic peptides, atrial/A-type natriuretic peptide (ANP) and brain/B-type natriuretic peptide (BNP) are primarily produced by, and secreted from, heart tissue. They maintain cardiovascular homeostasis by binding to natriuretic peptide receptor-A. Since plasma ANP and BNP concentrations, as well as expression, are elevated in response to increased body fluid volume and pressure load on the heart wall, these peptides are widely utilized as diagnostic biomarkers for evaluating heart failure. Regardless of their high utility, differences in their molecular forms between healthy and diseased subjects and how these relate to pathophysiology have not well been examined. Recent studies have shown that the circulating molecular forms of ANP and BNP are not uniform; bioactive α-ANP is the major ANP form, whereas the weakly active proBNP is the major BNP form. The relative ratios of the different molecular forms are altered under different pathophysiological conditions. These facts indicate that detailed measurements of each form may provide useful information on the pathophysiological state of heart tissue. Here, we revisit the relationship between the molecular forms of, and pathophysiological alterations in, human ANP and BNP and discuss the possible utility of the measurement of each of the molecular forms. The third peptide, C-type natriuretic peptide, activates natriuretic peptide receptor-B, but little is known about its production and function in the heart because of its extremely low levels. However, through recent studies, its role in the heart is gradually becoming clear. Here, we summarize its molecular forms, assay systems, and functions in the heart.
Collapse
Affiliation(s)
- Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Mitsuhiro Nishigori
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
34
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
35
|
Öztop M, Cinar K, Turk S. Immunolocalization of natriuretic peptides and their receptors in goat (Capra hircus) heart. Biotech Histochem 2018; 93:389-404. [PMID: 30124338 DOI: 10.1080/10520295.2018.1425911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.
Collapse
Affiliation(s)
- M Öztop
- a Department of Biology , Mehmet Akif Ersoy University , Burdur
| | - K Cinar
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| | - S Turk
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| |
Collapse
|
36
|
Hofmann F. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol 2018; 113:31. [PMID: 29934662 DOI: 10.1007/s00395-018-0690-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, Munich, Germany.
| |
Collapse
|
37
|
Miyazaki T, Otani K, Chiba A, Nishimura H, Tokudome T, Takano-Watanabe H, Matsuo A, Ishikawa H, Shimamoto K, Fukui H, Kanai Y, Yasoda A, Ogata S, Nishimura K, Minamino N, Mochizuki N. A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction. Circ Res 2018; 122:742-751. [PMID: 29326144 DOI: 10.1161/circresaha.117.312624] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 01/06/2023]
Abstract
RATIONALE An increase of severe ischemic heart diseases results in an increase of the patients with congestive heart failure (CHF). Therefore, new therapies are expected in addition to recanalization of coronary arteries. Previous clinical trials using natriuretic peptides (NPs) prove the improvement of CHF by NPs. OBJECTIVE We aimed at investigating whether OSTN (osteocrin) peptide potentially functioning as an NPR (NP clearance receptor) 3-blocking peptide can be used as a new therapeutic peptide for treating CHF after myocardial infarction (MI) using animal models. METHODS AND RESULTS We examined the effect of OSTN on circulation using 2 mouse models; the continuous intravenous infusion of OSTN after MI and the OSTN-transgenic (Tg) mice with MI. In vitro studies revealed that OSTN competitively bound to NPR3 with atrial NP. In both OSTN-continuous intravenous infusion model and OSTN-Tg model, acute inflammation within the first week after MI was reduced. Moreover, both models showed the improvement of prognosis at 28 days after MI by OSTN. Consistent with the in vitro study binding of OSTN to NPR3, the OSTN-Tg exhibited an increased plasma atrial NP and C-type NP, which might result in the improvement of CHF after MI as indicated by the reduced weight of hearts and lungs and by the reduced fibrosis. CONCLUSIONS OSTN might suppress the worsening of CHF after MI by inhibiting clearance of NP family peptides.
Collapse
Affiliation(s)
- Takahiro Miyazaki
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Kentaro Otani
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Ayano Chiba
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Hirohito Nishimura
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Takeshi Tokudome
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Haruko Takano-Watanabe
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Ayaka Matsuo
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Hiroyuki Ishikawa
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Keiko Shimamoto
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Hajime Fukui
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Yugo Kanai
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Akihiro Yasoda
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Soshiro Ogata
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Kunihiro Nishimura
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Naoto Minamino
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Naoki Mochizuki
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki).
| |
Collapse
|
38
|
Wu LH, Zhang Q, Zhang S, Meng LY, Wang YC, Sheng CJ. Effects of gene knockdown of CNP on ventricular remodeling after myocardial ischemia-reperfusion injury through NPRB/Cgmp signaling pathway in rats. J Cell Biochem 2017; 119:1804-1818. [PMID: 28796407 DOI: 10.1002/jcb.26341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 01/27/2023]
Abstract
This study aimed to explore effects of CNP on ventricular remodeling following myocardial ischemia-reperfusion (I/R) injury through the NPRB/cGMP signaling pathway. Rat cardiomyocytes were assigned into: control, I/R, I/R + CNP, and I/R + 8-Br-cGMP groups. ELISA, qRT-PCR, and Western blotting were used to detect cGMP content and expression, respectively. After model establishment of I/R rats, normal control, CNP-/- control, I/R, and CNP-/- groups were set. Indexes of heart were detected using echocardiography and hemodynamics. ELISA was used to measure serum CNP, cGMP, LDH, cTn I, CK-MB, TNF-α, and IL-6 levels. Myocardial infarct was identified by TTC staining, and apoptosis conditions by TUNEL staining. QRT-PCR and Western blotting were adopted to detect expressions of CNP, NPRB, cGMP, and apoptosis-related genes. Compared with control group, cGMP contents and expression in the I/R, I/R + CNP and I/R + 8-Br-cGMP groups were decreased. Levels of LVEDV, LVESV, LVDS, LVDD, IVSD, LVM, LVEDP, and LVSP were higher in the I/R, CNP-/- control, and CNP-/- groups than normal control group while LVEF, SV, CO, and ±dp/dtmax were lower. Compared with the normal control group, LDH, cTn I, CK-MB, TNF-α, and IL-6 were higher in the I/R, CNP-/- control and CNP-/- groups; pathological changes and myocardial infarction were observed in the I/R, CNP-/- control, and CNP-/- groups; expressions of apoptosis-related genes in those groups were higher; while CNP, NPRB, cGMP, and Bcl-2 expressions were decreased. We came to the conclusion that gene knockdown of CNP blocks the NPRB/cGMP signaling pathway, thereby aggravating myocardial I/R injury and causing ventricular remodeling in rats.
Collapse
Affiliation(s)
- Lian-He Wu
- Department of Cardiac Surgery, Jining No.1 People's Hospital, Jining, China
| | - Qi Zhang
- Department of Cardiology, Dongying City People's Hospital, Dongying, China
| | - Shen Zhang
- Department of Cardiac Surgery, Jining No.1 People's Hospital, Jining, China
| | - Lu-Yu Meng
- Department of Cardiac Surgery, Jining No.1 People's Hospital, Jining, China
| | - Yan-Chi Wang
- Department of Cardiac Surgery, Jining No.1 People's Hospital, Jining, China
| | - Cun-Jian Sheng
- Department of Cardiac Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
39
|
Lu J, Pan SS. Elevated C-type natriuretic peptide elicits exercise preconditioning-induced cardioprotection against myocardial injury probably via the up-regulation of NPR-B. J Physiol Sci 2017; 67:475-487. [PMID: 27557795 PMCID: PMC10717239 DOI: 10.1007/s12576-016-0477-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/08/2016] [Indexed: 02/02/2023]
Abstract
To evaluate exercise preconditioning (EP)-induced cardioprotective effects against exercise-induced acute myocardial injury and investigate the alterations of C-type natriuretic peptide (CNP) and its specific receptor, natriuretic peptide receptor B (NPR-B), during EP-induced cardioprotection. Rats were subjected to treadmill exercise as an EP model (4 periods of 10 min each at 30 m/min with intervening periods of rest lasting 10 min). High-intensity exercise was performed 0.5 and 24 h after the EP. EP attenuated high-intensity exercise-induced myocardial injury in both the early and late phases. After EP and high-intensity exercise, CNP and NPR-B levels increased robustly, but no alterations in the plasma CNP were observed. The enhanced NPR-B, plasma and tissue CNP, and its mRNA levels after high-intensity exercise were significantly elevated by EP. These results suggest that cardiac CNP and NPR-B play an important role in EP-mediated cardioprotection against high-intensity exercise-induced myocardial injury in rats.
Collapse
Affiliation(s)
- Jiao Lu
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Shan-Shan Pan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
40
|
Rignault-Clerc S, Bielmann C, Liaudet L, Waeber B, Feihl F, Rosenblatt-Velin N. Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1. Sci Rep 2017; 7:41936. [PMID: 28181511 PMCID: PMC5299447 DOI: 10.1038/srep41936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Brain Natriuretic Peptide (BNP) injections in adult “healthy” or infarcted mice led to increased number of non-myocyte cells (NMCs) expressing the nuclear transcription factor Nkx2.5. The aim of this study was to identify the nature of the cells able to respond to BNP as well as the signaling pathway involved. BNP treatment of neonatal mouse NMCs stimulated Sca-1+ cell proliferation. The Sca-1+ cells were characterized as being a mixed cell population involving fibroblasts and multipotent precursor cells. Thus, BNP treatment led also to increased number of Sca-1+ cells expressing Nkx2.5, in Sca-1+ cell cultures in vitro and in vivo, in the hearts of neonatal and adult infarcted mice. Whereas BNP induced Sca-1+ cell proliferation via NPR-B receptor and protein kinase G activation, CNP stimulated Sca-1+ cell proliferation via NPR-B and a PKG-independent mechanism. We highlighted here a new role for the natriuretic peptide receptor B which was identified as a target able to modulate the proliferation of the Sca-1+ cells. The involvement of NPR-B signaling in heart regeneration has, however, to be further investigated.
Collapse
Affiliation(s)
- Stéphanie Rignault-Clerc
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Christelle Bielmann
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Lucas Liaudet
- Service de Médecine Intensive Adulte, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | - Bernard Waeber
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - François Feihl
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Unité de Physiopathologie Clinique Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005 Lausanne, Switzerland
| |
Collapse
|
41
|
Buttgereit J, Shanks J, Li D, Hao G, Athwal A, Langenickel TH, Wright H, da Costa Goncalves AC, Monti J, Plehm R, Popova E, Qadri F, Lapidus I, Ryan B, Özcelik C, Paterson DJ, Bader M, Herring N. C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovasc Res 2016; 112:637-644. [PMID: 27496871 PMCID: PMC5157132 DOI: 10.1093/cvr/cvw184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/26/2023] Open
Abstract
Aims B-type natriuretic peptide (BNP)–natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. Methods and results Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1–7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 μM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 µg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). Conclusion C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP–NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.
Collapse
Affiliation(s)
- Jens Buttgereit
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Guoliang Hao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Arvinder Athwal
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Thomas H Langenickel
- Translational Medicine, Clinical Pharmacology and Profiling, Novartis Pharma AG, Basel, Switzerland
| | - Hannah Wright
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | | | - Jan Monti
- Helios Clinic Bad Saarow, Pieskower Strasse 33, Bad Saarow, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Fatimunnisa Qadri
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Irina Lapidus
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Brent Ryan
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Cemil Özcelik
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| |
Collapse
|
42
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Roloff K, Werner F, Abeßer M, Völker K, Baba HA, Schuh K, Kuhn M. C-type natriuretic peptide prevents angiotensin II-induced cardiac remodelling and dysfunction. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565488 DOI: 10.1186/2050-6511-16-s1-a78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
45
|
Binoun-A-Egom C, Andreas A, Klimas J, Valentova V, Kruzliak P, Egom EE. B-type natriuretic peptide and heart failure: what can we learn from clinical trials? Clin Exp Pharmacol Physiol 2015; 42:881-887. [PMID: 25969125 DOI: 10.1111/1440-1681.12418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
The B-type natriuretic peptide (BNP) may favour natriuresis and diuresis, making it an ideal drug to aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these has resulted in a better outcome. The current challenge for BNP research in acute HF lies in a failure of concept and reluctance to abandon a demonstrably ineffectual research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP as well as a better integration of basic and clinical science.
Collapse
Affiliation(s)
| | - Angelo Andreas
- University of Toronto Scarborough Campus, Toronto, ON, Canada
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Medical Faculty in Martin, Comenius University, Martin, Slovak Republic
| | - Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Emmanuel E Egom
- EGOM Clinical and Translational Research Services (ECTRS) Ltd, Halifax, NS, Canada
| |
Collapse
|
46
|
Argun M, Üzüm K, Sönmez MF, Özyurt A, Derya K, Çilenk KT, Unalmış S, Pamukcu Ö, Baykan A, Narin F, Elmalı F, Narin N. Cardioprotective effect of metformin against doxorubicin cardiotoxicity in rats. Anatol J Cardiol 2015; 16:234-41. [PMID: 26642465 PMCID: PMC5368431 DOI: 10.5152/akd.2015.6185] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: The clinical use of doxorubicin, which is a strong antineoplastic agent, is limited due to its cardiotoxic side effects. Metformin is a drug with antihyperglycemic effects, and it has been shown to have a cardioprotective effect on left ventricular function in experimental animal models of myocardial ischemia. The present study investigated the cardioprotective effect of metformin in rats with doxorubicin cardiotoxicity. Methods: Wistar albino rats were used in the study. Forty male, 10-week-old Wistar albino rats were randomly divided four groups. The control group rats were intraperitoneally administered saline solution twice a week, four doses in total. The doxorubicin group rats received doxorubicin (4 mg/kg, twice a week, cumulative dose: 16 mg/kg) intraperitoneally. The metformin group rats received metformin (250 mg/kg/day, every day for 14 days) via gavage. The doxorubicin + metformin group rats received doxorubicin and metformin at the same dose. Left ventricular functions were evaluated by using M-mode echocardiography one day after the last dose of doxorubicin. Heart tissue samples were histopathologically examined. Cardiomyocyte apoptosis was detected using in situ terminal deoxynucleotide transferase assay (TUNEL). Serum brain natriuretic peptide and C-type natriuretic peptide levels were measured. Catalase, superoxide dismutase, glutathione peroxidase, and tumor necrosis factor alpha levels were analyzed in the heart tissue. The assumptions of equality of variances and normal distribution were checked for all variables (Shapiro-Wilk test and Q-Q graphics). To identify intergroup differences, one-way variant analysis or the Kruskal-Wallis test was used. A p<0.05 value was accepted as statistically significant. Results: Our results showed that doxorubicin treatment caused significant deterioration in left ventricular functions by echocardiography, histological heart tissue damage, and increase in cardiomyocyte apoptosis. Doxorubicin + metformin group showed protection in left ventricular function, elimination of histopathologic change, and reduced of cardiomyocyte apoptosis. Conclusion: The present study provided evidence that metformin has cardioprotective effects against doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Mustafa Argun
- Department of Pediatric Cardiology, Faculty of Medicine, Erciyes University; Kayseri-Turkey
| | - Kazım Üzüm
- Department of Pediatric Cardiology, Faculty of Medicine, Erciyes University; Kayseri-Turkey
| | - Mehmet Fatih Sönmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University; Kayseri-Turkey
| | - Abdullah Özyurt
- Department of Pediatric Cardiology, Faculty of Medicine, Erciyes University; Kayseri-Turkey
| | - Karabulut Derya
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University; Kayseri-Turkey
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Egom EE. BNP and Heart Failure: Preclinical and Clinical Trial Data. J Cardiovasc Transl Res 2015; 8:149-57. [PMID: 25771949 DOI: 10.1007/s12265-015-9619-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022]
Abstract
The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, has emerged as an important diagnostic, prognostic, and therapeutic tool in patients with heart failure (HF). The rapid incorporation into clinical practice of bioassays to BNP concentrations and pharmacological agents that augment the biological actions of this peptide such as nesiritide or vasopeptidase inhibitors has shown the potential for translational research to improve patient care. Despite the indirect evidence in support of a potential benefit from raising BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily confer cardiovascular benefits in patient with HF. Moreover, in experimental HF, the response to treatments targeting specific natriuretic peptide receptors (NPRs) signaling seems to be attenuated. A better understanding of the NPRs signaling in HF would be clinically relevant and thus required, in order to devise strategies to develop novel agents and technologies that directly target this signaling pathway.
Collapse
Affiliation(s)
- Emmanuel E Egom
- EGOM Clinical and Translational Research Services (ECTRS) Ltd, 5991 Spring garden Road, Halifax, Nova Scotia, Canada, B3H 4R7,
| |
Collapse
|
48
|
Li ZQ, Liu YL, Li G, Li B, Liu Y, Li XF, Liu AJ. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1. Mol Med Rep 2014; 11:159-65. [PMID: 25352084 PMCID: PMC4237089 DOI: 10.3892/mmr.2014.2763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/28/2014] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to investigate the effect of C-type natriuretic peptide (CNP) on the function of cardiac fibroblasts (CFs). Western blotting was used to investigate the expression of myofibroblast marker proteins: α-smooth muscle actin (α-SMA), extra domain-A fibronectin, collagen I and collagen III, and the activity of extracellular signal-regulated kinase 1/2 (ERK1/2). Immunofluorescence was used to examine the morphological changes; a transwell assay was used to analyze migration, and reverse transcription-quantitative polymerase chain reaction and ELISA were employed to determine the mRNA expression and protein secretion of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). The results demonstrated that CNP significantly reduced the protein expression of α-SMA, fibronectin, collagen I and collagen III, and suppressed the migratory ability of CFs. Additionally, the mRNA and protein expression of MCP-1 and PAI-1 was inhibited under the CNP treatment; and this effect was mediated by the inhibition of the ERK1/2 activity. In conclusion, CNP inhibited cardiac fibroblast differentiation and migration, and reduced the secretion of MCP-1 and PAI-1, which demonstrates novel mechanisms to explain the antifibrotic effect of CNP.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ying-Long Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Gang Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Bin Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yang Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xiao-Feng Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ai-Jun Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
49
|
Abstract
In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role in lifestyle-related metabolic and cardiovascular disorders.
Collapse
|
50
|
Natriuretic peptide receptors and heart failure: to B or not to B blocked? Naunyn Schmiedebergs Arch Pharmacol 2013; 387:1-4. [DOI: 10.1007/s00210-013-0946-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|