1
|
Patauner F, Gallo R, Durante-Mangoni E, Bertolino L. Internists at the frontline of epidemic viral illnesses: From tiredness to preparedness. Eur J Intern Med 2025; 133:121-122. [PMID: 39794227 DOI: 10.1016/j.ejim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Affiliation(s)
- Fabian Patauner
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy.
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', and Unit of Internal Medicine and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| |
Collapse
|
2
|
Manzo C, Isetta M, Castagna A. Infective agents and polymyalgia rheumatica: key discussion points emerging from a narrative review of published literature. Reumatologia 2024; 62:360-367. [PMID: 39677882 PMCID: PMC11635615 DOI: 10.5114/reum/194687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The aetiology of polymyalgia rheumatica (PMR) is unknown. Recently, reports on cases of PMR following the coronavirus disease 2019 (COVID-19) have revived the role of infection as an aetiological or triggering factor. It is estimated that patients with PMR have manifestations of giant cell arteritis (GCA) in < 20% of cases. To date, little is known on the potential role of infectious agents in facilitating this association. Given this background, we performed a review of published literature. Our first aim was to review and discuss the relationship between PMR and infective agents. Secondly, we compared data of PMR-only patients with PMR and overlapping GCA to seek any commonalities or differences regarding the type of infectious agent in these two subgroups. Material and methods We performed a non-systematic literature search on Embase and Medline (COVID interface) with the following search terms: "polymyalgia rheumatica" AND "infections" OR "infectious agents", both MESH headings and free-text (in each language they were written). Each paper's reference list was scanned for additional publications meeting this study's aim. When papers reported data partially presented in previous articles, we referred to the most recent published data. Abstracts submitted at conferences or from non-peer-reviewed sources were not included. Polymyalgia rheumatica following vaccinations was an additional exclusion criterion. Results Several infectious agents have been held responsible for PMR. However, no definite causal link has been identified so far. According to our review, the search for a specific infectious agent, however intriguing, appears to be stagnating. Genetic background and epigenetic regulation probably play a key role. However, topical studies are lacking. Polymyalgia rheumatica as an adverse event following immunization should be kept methodologically distinct from PMR following an acute infection, as the adjuvants in the vaccine can make a significant difference. Conclusions Finally, some infectious agents are able to replicate in human arteries or have an endothelium tropism. Whilst these can theoretically trigger GCA, their role in isolated PMR seems minimal.
Collapse
Affiliation(s)
- Ciro Manzo
- Department of Internal and Geriatric Medicine, Azienda Sanitaria Locale Napoli 3 sud, Rheumatologic Outpatient Clinic, Health District No. 59, Naples, Sant’Agnello, Italy
| | - Marco Isetta
- Central and North West London NHS Trust, England
| | - Alberto Castagna
- Department of Primary Care, Health District of Soverato, Azienda Sanitaria Provinciale Catanzaro, Italy
| |
Collapse
|
3
|
Panda K, Alagarasu K, Tagore R, Paingankar M, Kumar S, Jeengar MK, Cherian S, Parashar D. RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward? Viruses 2024; 16:1489. [PMID: 39339965 PMCID: PMC11437507 DOI: 10.3390/v16091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Rajarshee Tagore
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Mandar Paingankar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Satyendra Kumar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Manish Kumar Jeengar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Sarah Cherian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
4
|
Weber WC, Labriola CS, Kreklywich CN, Ray K, Haese NN, Andoh TF, Denton M, Medica S, Streblow MM, Smith PP, Mizuno N, Frias N, Fisher MB, Barber-Axthelm AM, Chun K, Uttke S, Whitcomb D, DeFilippis V, Rakshe S, Fei SS, Axthelm MK, Smedley JV, Streblow DN. Mayaro virus pathogenesis and immunity in rhesus macaques. PLoS Negl Trop Dis 2023; 17:e0011742. [PMID: 37983245 PMCID: PMC10695392 DOI: 10.1371/journal.pntd.0011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/04/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nina Frias
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Miranda B. Fisher
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kimberly Chun
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Samantha Uttke
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Danika Whitcomb
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
5
|
Cai L, Hu X, Liu S, Wang L, Lu H, Tu H, Huang X, Tong Y. The research progress of Chikungunya fever. Front Public Health 2023; 10:1095549. [PMID: 36699921 PMCID: PMC9870324 DOI: 10.3389/fpubh.2022.1095549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Chikungunya fever, an acute infectious disease caused by Chikungunya virus (CHIKV), is transmitted by Aedes aegypti mosquitoes, with fever, rash, and joint pain as the main features. 1952, the first outbreak of Chikungunya fever was in Tanzania, Africa, and the virus was isolated in 1953. The epidemic has expanded from Africa to South Asia, the Indian Ocean islands and the Americas, and is now present in more than 100 countries and territories worldwide, causing approximately 1 million infections worldwide each year. In addition, fatal cases have been reported, making CHIKV a relevant public health disease. The evolution of the virus, globalization, and climate change may have contributed to the spread of CHIKV. 2005-2006 saw the most severe outbreak on Reunion Island, affecting nearly 35% of the population. Since 2005, cases of Chikungunya fever have spread mainly in tropical and subtropical regions, eventually reaching the Americas through the Caribbean island. Today, CHIKV is widely spread worldwide and is a global public health problem. In addition, the lack of a preventive vaccine and approved antiviral treatment makes CHIKV a major global health threat. In this review, we discuss the current knowledge on the pathogenesis of CHIKV, focusing on the atypical disease manifestations. We also provide an updated review of the current development of CHIKV vaccines. Overall, these aspects represent some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development of CHIKV and potential CHIKV vaccines for current development and clinical trials.
Collapse
Affiliation(s)
- Li Cai
- Department of Infectious Disease Control and Prevention, Wuhan Center for Disease Control and Prevention, Wuhan, China,School of Public Health, Wuhan University, Wuhan, China
| | - Xinyi Hu
- Global Study Institute, University of Geneva, Geneva, Switzerland
| | - Shuang Liu
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Lei Wang
- Department of Economic Management, China University of Geosciences, Wuhan, China
| | - Hao Lu
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Hua Tu
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Xibao Huang
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China,Xibao Huang ✉
| | - Yeqing Tong
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China,*Correspondence: Yeqing Tong ✉
| |
Collapse
|
6
|
Costa DMDN, Gouveia PADC, Silva GEDB, Neves PDMDM, Vajgel G, Cavalcante MAGDM, Oliveira CBLD, Valente LM, Silveira VMD. The relationship between chikungunya virus and the kidneys: A scoping review. Rev Med Virol 2023; 33:e2357. [PMID: 35521644 DOI: 10.1002/rmv.2357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 01/28/2023]
Abstract
Several atypical forms of chikungunya fever (CHIK) have been described, including neurological, cardiac and renal involvement. These forms may be related to high morbidity and mortality rates. This scoping review based on the PubMed, Scopus, and WOS databases aims to identify and summarise all the available evidence regarding the clinical and histopathological presentations and risk factors associated with kidney injury related to CHIK, as well as the clinical impact. Thus, a total of 54 papers were selected from 1606 initial references after applying the defined inclusion criteria. Data on the association between kidney injury and CHIK are scarce, with studies only conducted in the acute phase of the disease, lacking further characterisation. Kidney injury incidence in hospitalised patients using the Kidney Disease Improving Global Outcomes criteria varies from 21% to 45%, being higher among patients with atypical and severe manifestations. Although acute kidney injury does not seem to be related to viraemia, it may be related to higher mortality. Few studies have described the renal histopathological changes in the acute phase of CHIK, with prevalent findings of acute interstitial nephritis with mononuclear infiltrate, glomerular congestion and nephrosclerosis. Only one study assessed the kidney function of patients in the subacute and chronic phases of CHIK. Additionally, individuals with comorbidities, including chronic kidney disease, may be among those with a greater risk of presenting worse outcomes when affected by CHIK. The results described herein may contribute to better understand the relationship between the kidneys and chikungunya virus.
Collapse
Affiliation(s)
| | | | | | - Precil Diego Miranda de Menezes Neves
- Nephrology Division, University of São Paulo School of Medicine, São Paulo, Brazil
- Nephrology and Dialysis Center, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | - Gisele Vajgel
- Nephrology Division, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | |
Collapse
|
7
|
Maia PCR, La Corte R, Pires LB, Banfield L, Logan JG, Lima-Camara TN. Increased Repellent Effect of DEET on Aedes aegypti (Diptera: Culicidae) Field Population. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1368-1375. [PMID: 35686335 DOI: 10.1093/jme/tjac068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 06/15/2023]
Abstract
Insecticides and repellents are routinely used in Brazil because of the high rates of arbovirus transmission and the nuisance caused by mosquitoes. However, few studies have assessed the effectiveness of repellents against mosquito populations that have been under exposure to xenobiotics, mainly insecticides and repellents. This study investigated the sensitivity of a field population of Aedes aegypti (Linnaeus, 1762) from a dengue-endemic area under high insecticide pressure to N,N-diethylmethylbenzamide (DEET), the active ingredient in common repellent products. The field (Laranjeiras, Sergipe, Brazil) and laboratory (Rockefeller) populations were characterized for the presence of the Val1016Ile kdr mutation, associated with pyrethroid resistance, and locomotor activity. Repellency bioassays were performed to assess the response of the mosquitoes to human odor by exposing them to 10% DEET applied to the skin in ethanol. Samples from the field population showed higher frequency of the kdr mutation, 21.9% homozygous and 21.9% heterozygous, greater locomotor activity and greater sensitivity to DEET than the laboratory population. These results suggest increased sensitivity to DEET in field populations and a possible interaction between insecticide exposure and sensitivity to DEET.
Collapse
Affiliation(s)
- Pollyana Conceição Romão Maia
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo, 715-Cerqueira César, São Paulo-SP, 01246-904, Brazil
| | - Roseli La Corte
- Departamento de Morfologia, Universidade Federal de Sergipe. Av. Mal Rondon s/n São Cristóvão-SE, 49100-000, Brazil
| | - Liandra Brasil Pires
- Departamento de Morfologia, Universidade Federal de Sergipe. Av. Mal Rondon s/n São Cristóvão-SE, 49100-000, Brazil
| | - Lydia Banfield
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Tamara Nunes Lima-Camara
- Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo, 715-Cerqueira César, São Paulo-SP, 01246-904, Brazil
| |
Collapse
|
8
|
Was It Chikungunya? Laboratorial and Clinical Investigations of Cases Occurred during a Triple Arboviruses’ Outbreak in Rio de Janeiro, Brazil. Pathogens 2022; 11:pathogens11020245. [PMID: 35215188 PMCID: PMC8879879 DOI: 10.3390/pathogens11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The co-circulation of chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV) in Rio de Janeiro (RJ), Brazil, caused a challenging triple epidemic, as they share similar clinical signs and symptoms and geographical distribution. Here, we aimed to investigate the clinical and laboratorial aspects of chikungunya suspected cases assisted in RJ during the 2018 outbreak, focusing on the differential diagnosis with dengue and zika. All suspected cases were submitted to molecular and/or serological differential diagnostic approaches to arboviruses. A total of 242 cases suspected of arbovirus infection were investigated and 73.6% (178/242) were molecular and/or serologically confirmed as chikungunya. In RT-qPCR confirmed cases, cycle threshold (Ct) values ranged from 15.46 to 35.13, with acute cases presenting lower values. Chikungunya cases were mainly in females (64%) and the most frequently affected age group was adults between 46 to 59 years old (27%). Polyarthralgia affected 89% of patients, especially in hands and feet. No dengue virus (DENV) and Zika virus (ZIKV) infections were confirmed by molecular diagnosis, but 9.5% (23/242) had serological evidence of DENV exposure by the detection of specific anti-DENV IgM or NS1, and 42.7% (76/178) of chikungunya positive cases also presented recent DENV exposure reflected by a positive anti-DENV IgM or NS1 result. A significantly higher frequency of arthritis (p = 0.023) and limb edema (p < 0.001) was found on patients with CHIKV monoinfection compared to dengue patients and patients exposed to both viruses. Lastly, phylogenetic analysis showed that the chikungunya cases were caused by the ECSA genotype. Despite the triple arboviruses’ epidemic in the state of RJ, most patients with fever and arthralgia investigated here were diagnosed as chikungunya cases, and the incidence of CHIKV/DENV co-detection was higher than that reported in other studies.
Collapse
|
9
|
Prophylactic strategies to control chikungunya virus infection. Virus Genes 2021; 57:133-150. [PMID: 33590406 PMCID: PMC7883954 DOI: 10.1007/s11262-020-01820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.
Collapse
|
10
|
Panato CS, Figueredo ED, Bassi D, Felipe IMA, Firmo WDCA, Rêgo AS, Silva FDMAM. Evaluation of functional disability after Chikungunya infection. Rev Soc Bras Med Trop 2019; 52:e20190112. [PMID: 31778420 DOI: 10.1590/0037-8682-0112-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Chikungunya (CHIK) is caused by the Chikungunya virus, which is an Alphavirus of the Family Togaviridae transmitted to humans through female mosquitoes of the genus Aedes. METHODS A cross-sectional study was conducted involving the administration of a questionnaire addressing sociodemographic and health variables and the Roland-Morris Disability Questionnaire on general pain to patients with CHIK in the City of Imperatriz, Brazil, between January and December 2017. RESULTS Data of a total of 130 patients were evaluated. The mean age was 52 years (standard deviation=13.3); majority of the patients were female (n=120) with a prevalence of 38.0% for functional disability. Statistical differences were noted for marital status (p=0.037), presence/absence of comorbidities (p=0.050), and the use of medications prior to the diagnosis of CHIK (p=0.050), use of methotrexate (p=0.030), use of nonsteroidal anti-inflammatory drugs (p≤0.035), and use of nonhormonal anti-inflammatory drugs (p=0.001). CONCLUSIONS Patients in the chronic phase of CHIK present functional disability, thus alerting healthcare professionals to the importance of implementing actions aimed at an adequate treatment in all phases of the disease, mainly related to pain treatment and motor rehabilitation.
Collapse
Affiliation(s)
- Cristiane Silvia Panato
- Universidade CEUMA, Programa de Pós-Graduação em Gestão de Programas e Serviços de Saúde, São Luís, MA, Brasil
| | - Eduardo Durans Figueredo
- Universidade CEUMA, Programa de Pós-Graduação em Gestão de Programas e Serviços de Saúde, São Luís, MA, Brasil
| | - Daniela Bassi
- Universidade CEUMA, Programa de Pós-Graduação em Gestão de Programas e Serviços de Saúde, São Luís, MA, Brasil
| | - Ilana Mírian Almeida Felipe
- Universidade CEUMA, Programa de Pós-Graduação em Gestão de Programas e Serviços de Saúde, São Luís, MA, Brasil
| | | | - Adriana Sousa Rêgo
- Universidade CEUMA, Programa de Pós-Graduação em Gestão de Programas e Serviços de Saúde, São Luís, MA, Brasil
| | | |
Collapse
|
11
|
Ferreira RM, Duarte JL, Cruz RA, Oliveira AE, Araújo RS, Carvalho JC, Mourão RH, Souto RN, Fernandes CP. A herbal oil in water nano-emulsion prepared through an ecofriendly approach affects two tropical disease vectors. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Lin SC, Chen MC, Li S, Lin CC, Wang TT. Antiviral activity of nobiletin against chikungunya virus in vitro. Antivir Ther 2019; 22:689-697. [PMID: 28406093 DOI: 10.3851/imp3167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV), a highly contagious re-emerging virus, is transmitted by infected mosquitoes. CHIKV is prevalent in tropical countries and is continuing to creep farther north into temperate areas. CHIKV is responsible for induction of chikungunya fever (CF) and severe joint stiffness with the capability of developing into bilateral and systemic arthralgia or even encephalitis. Despite the high morbidity rate, no approved antiviral drug is available. Therefore, an anti-CHIKV therapy is necessary to control this disease. In this study, we screened four flavonoids for anti-CHIKV activities: nobiletin, phlorizin, resveratrol and oxyresveratrol. METHODS We performed MTT, Viral ToxGloTM and lactate dehydrogenase (LDH) assays to assess the viability of CHIKV-infected host cells. Plaque assay and immunofluorescent assay were utilized to evaluate the levels of viral production in quantification and qualification, respectively. RESULTS We first confirmed that nobiletin can maintain the cellular survival of infected cells without inducing significant toxicity to host cells. Nobiletin suppressed virus-induced cell death and viral production. Also, the antiviral efficacy of nobiletin can last for at least 48 h during infection. More importantly, nobiletin inhibited CHIKV infection during the translation/replication stages and viral entry, making nobiletin a potential clinical antiviral agent in prophylaxis and post-exposure treatment. CONCLUSIONS In this study, our results provided a strategy to develop anti-chikungunya agents by utilizing natural compounds. Also, we believe that nobiletin can be a potential antiviral agent against CHIKV infection worthy of being further investigated as a remedial candidate in vivo.
Collapse
Affiliation(s)
- Shih-Chao Lin
- PhD Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan.,National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | - Mei-Chun Chen
- Center for Infectious Diseases, Discovery Biology, SRI International, Harrisonburg, VA, USA
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Huanggang, China
| | - Chi-Chen Lin
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Huanggang, China.,Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tony T Wang
- Center for Infectious Diseases, Discovery Biology, SRI International, Harrisonburg, VA, USA.,Central Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
13
|
Abstract
Chikungunya and Zika virus infections are emerging diseases in the Americas, and dengue continues to be the most prevalent arthropod-borne virus in the world. These arbovirus diseases may spread by endemic transmission or as travel-related infections and have rapidly expanded their geographic distribution secondary to vector spread. All 3 share a similar clinical picture that includes a maculopapular rash. Zika is characterized by pruritic rash, low-grade fever, and arthralgia. Congenital nervous system malformations are a growing public-health concern. Chikungunya distinctive dermatologic manifestations include facial melanosis and bullous eruption. Dengue bleeding complications may be life-threatening and require inpatient management.
Collapse
Affiliation(s)
- Jose Dario Martinez
- Department of Internal Medicine, University Hospital "Dr. José E. González", UANL, Mitras Centro, Avenida Gonzalitos y Madero S/N, Monterrey 64460, Mexico.
| | - Jesus Alberto Cardenas-de la Garza
- Department of Dermatology, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Mitras Centro, Avenida Gonzalitos y Madero S/N, Monterrey 64460, Mexico
| | - Adrian Cuellar-Barboza
- Department of Dermatology, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Mitras Centro, Avenida Gonzalitos y Madero S/N, Monterrey 64460, Mexico
| |
Collapse
|
14
|
de Souza TMA, Ribeiro ED, Corrêa VCE, Damasco PV, Santos CC, de Bruycker-Nogueira F, Chouin-Carneiro T, Faria NRDC, Nunes PCG, Heringer M, Lima MDRQ, Badolato-Corrêa J, Cipitelli MDC, Azeredo ELD, Nogueira RMR, Dos Santos FB. Following in the Footsteps of the Chikungunya Virus in Brazil: The First Autochthonous Cases in Amapá in 2014 and Its Emergence in Rio de Janeiro during 2016. Viruses 2018; 10:v10110623. [PMID: 30424530 PMCID: PMC6266966 DOI: 10.3390/v10110623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022] Open
Abstract
Currently, Brazil lives a triple arboviruses epidemic (DENV, ZIKV and CHIKV) making the differential diagnosis difficult for health professionals. Here, we aimed to investigate chikungunya cases and the possible occurrence of co-infections during the epidemic in Amapá (AP) that started in 2014 when the first autochthonous cases were reported and in Rio de Janeiro (RJ) in 2016. We further performed molecular characterization and genotyping of representative strains. In AP, 51.4% of the suspected cases were confirmed for CHIKV, 71.0% (76/107). Of those, 24 co-infections by CHIKV/DENV, two by CHIKV/DENV-1, and two by CHIKV/DENV-4 were observed. In RJ, 76.9% of the suspected cases were confirmed for CHIKV and co-infections by CHIKV/DENV (n = 8) and by CHIKV/ZIKV (n = 17) were observed. Overall, fever, arthralgia, myalgia, prostration, edema, exanthema, conjunctival hyperemia, lower back pain, dizziness, nausea, retroorbital pain, and anorexia were the predominating chikungunya clinical symptoms described. All strains analyzed from AP belonged to the Asian genotype and no amino acid changes were observed. In RJ, the East-Central-South-African genotype (ECSA) circulation was demonstrated and no E1-A226V mutation was observed. Despite this, an E1-V156A substitution was characterized in two samples and for the first time, the E1-K211T mutation was reported in all samples analyzed.
Collapse
Affiliation(s)
| | | | | | - Paulo Vieira Damasco
- Rio-Laranjeiras Hospital, 22240-000 Rio de Janeiro, Brazil.
- Gaffrée Guinle University Hospital, Federal University of the State of Rio de Janeiro, 20270-003 Rio de Janeiro, Brazil.
- Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, 20551-030 Rio de Janeiro, Brazil.
| | | | | | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory, Oswaldo Cruz Institute, 21040-360 Rio de Janeiro, Brazil.
| | | | | | - Manoela Heringer
- Viral Immunology Laboratory, Oswaldo Cruz Institute, 21040-360 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rossi G, Karki S, Smith RL, Brown WM, Ruiz MO. The spread of mosquito-borne viruses in modern times: A spatio-temporal analysis of dengue and chikungunya. Spat Spatiotemporal Epidemiol 2018; 26:113-125. [PMID: 30390927 DOI: 10.1016/j.sste.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
Since the 1970s, mosquito-borne pathogens have spread to previously disease-free areas, as well as causing increased illness in endemic areas. In particular, dengue and chikungunya viruses, transmitted primarily by Aedes aegypti and secondarily by Aedes albopictus mosquitoes, represent a threat for up to a third of the world population, and are a growing public health concern. In this study, we assess the spatial and temporal factors related to the occurrences of historic dengue and chikungunya outbreaks in 76 nations focused geographically on the Indian Ocean, with outbreak data from 1959 to 2009. First, we describe the historical spatial and temporal patterns of outbreaks of dengue and chikungunya in the focal nations. Second, we use a boosted regression tree approach to assess the statistical relationships of nations' concurrent outbreak occurrences and annual occurrences with their spatial proximity to prior infections and climatic and socio-economic characteristics. We demonstrate that higher population density and shorter distances among nations with outbreaks are the dominant factors that characterize both dengue and chikungunya outbreaks. In conclusion, our analysis provides crucial insights, which can be applied to improve nations' surveillance and preparedness for future vector-borne disease epidemics.
Collapse
Affiliation(s)
- Gianluigi Rossi
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA.
| | - Surendra Karki
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA
| | - Rebecca Lee Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA
| | - William Marshall Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA
| | - Marilyn O'Hara Ruiz
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA
| |
Collapse
|
16
|
António VS, Muianga AF, Wieseler J, Pereira SA, Monteiro VO, Mula F, Chelene I, Chongo IS, Oludele JO, Kümmerer BM, Gudo ES. Seroepidemiology of Chikungunya Virus Among Febrile Patients in Eight Health Facilities in Central and Northern Mozambique, 2015–2016. Vector Borne Zoonotic Dis 2018; 18:311-316. [DOI: 10.1089/vbz.2017.2227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Janett Wieseler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Sádia A. Pereira
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | | | - Flora Mula
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Imelda Chelene
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | | | - John O. Oludele
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Beate M. Kümmerer
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Eduardo S. Gudo
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| |
Collapse
|
17
|
Escobar M, Nieto AJ, Loaiza-Osorio S, Barona JS, Rosso F. Pregnant Women Hospitalized with Chikungunya Virus Infection, Colombia, 2015. Emerg Infect Dis 2018; 23. [PMID: 29047427 PMCID: PMC5652420 DOI: 10.3201/eid2311.170480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Personnel in charge of obstetric populations should watch for cases of chikungunya virus‒induced sepsis with hypoperfusion and organ dysfunction. In 2015 in Colombia, 60 pregnant women were hospitalized with chikungunya virus infections confirmed by reverse transcription PCR. Nine of these women required admission to the intensive care unit because of sepsis with hypoperfusion and organ dysfunction; these women met the criteria for severe acute maternal morbidity. No deaths occurred. Fifteen women delivered during acute infection; some received tocolytics to delay delivery until after the febrile episode and prevent possible vertical transmission. As recommended by a pediatric neonatologist, 12 neonates were hospitalized to rule out vertical transmission; no clinical findings suggestive of neonatal chikungunya virus infection were observed. With 36 women (60%), follow-up was performed 1 year after acute viremia; 13 patients had arthralgia in >2 joints (a relapse of infection). Despite disease severity, pregnant women with chikungunya should be treated in high-complexity obstetric units to rule out adverse outcomes. These women should also be followed up to treat potential relapses.
Collapse
|
18
|
de Jong W, Rusli M, Bhoelan S, Rohde S, Rantam FA, Noeryoto PA, Hadi U, Gorp ECMV, Goeijenbier M. Endemic and emerging acute virus infections in Indonesia: an overview of the past decade and implications for the future. Crit Rev Microbiol 2018; 44:487-503. [PMID: 29451044 DOI: 10.1080/1040841x.2018.1438986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Being the largest archipelago country in the world, with a tropical climate and a unique flora and fauna, Indonesia habitats one of the most diverse biome in the world. These characteristics make Indonesia a popular travel destination, with tourism numbers increasing yearly. These characteristics also facilitate the transmission of zoonosis and provide ideal living and breading circumstances for arthropods, known vectors for viral diseases. A review of the past 10 years of literature, reports of the Ministry of Health, Republic of Indonesia and ProMED-mail shows a significant increase in dengue infection incidence. Furthermore, chikungunya, Japanese encephalitis and rabies are proven to be endemic in Indonesia. The combination of cohort studies, governmental data and ProMED-mail reveals an integrated overview for those working in travel medicine and public health, focusing on both endemic and emerging acute virus infections. This review summarizes the epidemiology of acute virus infections in Indonesia, including outbreak reports, as well as public health response measurements and their potential or efficacy. Knowledge about human behaviour, animal reservoirs, climate factors, environment and their role in emerging virus infection are discussed. We aim to support public health authorities and health care policy makers in a One Health approach.
Collapse
Affiliation(s)
- Wesley de Jong
- a Department of Viroscience , Erasmus MC , Rotterdam , the Netherlands
| | - Musofa Rusli
- b Department of Internal Medicine, Division of Tropical & Infectious Disease, Faculty of Medicine , Airlangga University , Surabaya , Indonesia
| | - Soerajja Bhoelan
- c Department of Internal medicine , Havenziekenhuis Institute for Tropical Medicine , Rotterdam , the Netherlands
| | - Sofie Rohde
- a Department of Viroscience , Erasmus MC , Rotterdam , the Netherlands
| | - Fedik A Rantam
- d Institute of Tropical Disease, Airlangga University , Surabaya , Indonesia
| | - Purwati A Noeryoto
- b Department of Internal Medicine, Division of Tropical & Infectious Disease, Faculty of Medicine , Airlangga University , Surabaya , Indonesia
| | - Usman Hadi
- b Department of Internal Medicine, Division of Tropical & Infectious Disease, Faculty of Medicine , Airlangga University , Surabaya , Indonesia
| | - Eric C M van Gorp
- a Department of Viroscience , Erasmus MC , Rotterdam , the Netherlands
| | - Marco Goeijenbier
- a Department of Viroscience , Erasmus MC , Rotterdam , the Netherlands.,c Department of Internal medicine , Havenziekenhuis Institute for Tropical Medicine , Rotterdam , the Netherlands
| |
Collapse
|
19
|
Ferreira-de-Lima VH, Lima-Camara TN. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasit Vectors 2018; 11:77. [PMID: 29391071 PMCID: PMC5793400 DOI: 10.1186/s13071-018-2643-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Dengue is of great concern in various parts of the world, especially in tropical and subtropical countries where the mosquito vectors Aedes aegypti and Aedes albopictus are present. The transmission of this virus to humans, by what is known as horizontal transmission, occurs through the bite of infected females of one or other of the two mosquito species. Furthermore, an infected female or male parent, by what is known as vertical transmission, can transfer this arbovirus to some part of their offspring. Considering that vertical transmission may represent an important strategy for maintaining the circulation of arboviruses in nature, the verification of this phenomenon worldwide is extremely important and necessary to better understand its dynamic. In the present study, we conducted a literature review of the presence of natural vertical transmission of dengue virus in Ae. aegypti and Ae. albopictus worldwide. Searches were conducted in MEDLINE, sciELO and Lilacs and all the studies published in Portuguese, English and Spanish were read, evaluated and organized by mosquito species, serotype and the location at which the samples were collected. Forty-two studies were included in accordance with the exclusion criteria and methodology. The presence of natural vertical transmission in Ae. aegypti and Ae. albopictus was most clearly evidenced by dengue virus in endemic countries, especially in those in South America and Asia. Despite several African countries being considered endemic for dengue, there is a lack of publications on this subject on that continent, which highlights the importance of conducting studies there. Furthermore, the finding of natural vertical transmission in Ae. albopictus in countries where this species is not yet incriminated as a vector is of great concern as it demonstrates the circulation of this virus in populations of Ae. albopictus and alerts to the possibility of some other mosquito species playing a role in the transmission dynamics of this arbovirus. Parallel to this, the small number of studies of natural vertical transmission of chikungunya and Zika virus in the world may be explained by the recent entry of these arboviruses into most of the countries concerned.
Collapse
Affiliation(s)
- Victor Henrique Ferreira-de-Lima
- Postgraduate Program at Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, Jardim America, São Paulo, SP 05403-000 Brazil
| | - Tamara Nunes Lima-Camara
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP 03178-200 Brazil
| |
Collapse
|
20
|
Delgado-Enciso I, Paz-Michel B, Melnikov V, Guzman-Esquivel J, Espinoza-Gomez F, Soriano-Hernandez AD, Rodriguez-Sanchez IP, Martinez-Fierro ML, Ceja-Espiritu G, Olmedo-Buenrostro BA, Galvan-Salazar HR, Delgado-Enciso OG, Delgado-Enciso J, Lopez-Lemus UA, Montes-Galindo DA. Smoking and female sex as key risk factors associated with severe arthralgia in acute and chronic phases of Chikungunya virus infection. Exp Ther Med 2017; 15:2634-2642. [PMID: 29467856 DOI: 10.3892/etm.2017.5668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023] Open
Abstract
Arthralgia is a potentially incapacitating condition and a persistent symptom in chronic or acute episodes of Chikungunya fever caused by infection with the Chikungunya virus (CHIKV). To the best of our knowledge, there are no reports on risk factors associated with the intensity of arthralgias in typical acute episodes of the disease. Although a number of studies have reported on risk factors associated with the development of the chronic stage of the disease, smoking habits have not been analyzed. Smoking is an interesting factor to consider since it is the main environmental risk factor for the development of rheumatoid arthritis (RA), a similar disease to CHIKV in many aspects. In the present study, 140 patients infected with CHIKV were assessed for risk factors associated with severe arthralgia intensity in the acute phase (pain of 9/10 on the visual analog scale of 0-10) and moderate to severe intensity (according to the Routine Assessment of Patient Index Data 3) 3.5 months after infection in patients that experienced the chronic phase of the disease. Women and smokers were 2- to 3-times more likely to experience severe pain in the acute and chronic stages. Likewise, the presence of severe arthralgia during the acute disease phase resulted in a 4-fold increased risk for entering the chronic phase. Smoking was a more important risk factor in males compared with females. Smoking resulted in a 20-fold increased risk for severe arthralgia during the acute phase in men, as well as a 10-fold increased risk for developing chronic disease with moderate-to-severe pain 3.5 months after the acute stage. The presence of rash, headache, muscular weakness or conjunctivitis in the acute phase, the presence of diabetes and age >40 years were considered significant risk factors due to their influence on illness progression. In conclusion, smoking and female sex were the main risk factors associated with development of severe joint pain in the acute and chronic phases of Chikungunya fever. These risk factors are similar to those associated with the development and severity of RA, possibly because the two diseases share pathophysiological mechanisms, including elevated interleukin-6 levels.
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- School of Medicine, University of Colima, Colima 28030, Mexico.,Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | | | - Valery Melnikov
- School of Medicine, University of Colima, Colima 28030, Mexico
| | - Jose Guzman-Esquivel
- Research Unit, IMSS Hospital General de Zona No. 1, Villa de Álvarez, Colima 28983, Mexico
| | | | - Alejandro D Soriano-Hernandez
- School of Medicine, University of Colima, Colima 28030, Mexico.,Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Iram P Rodriguez-Sanchez
- Department of Genetics, School of Medicine, Nuevo Leon Autonomous University, Monterrey, Nuevo Leon 64460, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Gabriel Ceja-Espiritu
- School of Medicine, University of Colima, Colima 28030, Mexico.,Research Unit, IMSS Hospital General de Zona No. 1, Villa de Álvarez, Colima 28983, Mexico
| | | | - Hector R Galvan-Salazar
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico.,Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Osiris G Delgado-Enciso
- Ethics Foundation, Study and Cancer Research of The State Institute of Cancerology of Colima, Colima 28000, Mexico
| | - Josuel Delgado-Enciso
- Ethics Foundation, Study and Cancer Research of The State Institute of Cancerology of Colima, Colima 28000, Mexico
| | - Uriel A Lopez-Lemus
- Department of Health Sciences, Biodefense and Global Infectious Diseases Center, Colima 28000, Mexico
| | | |
Collapse
|
21
|
Abstract
This chapter presents the most commonly used serological methods for the diagnosis of Chikungunya virus (CHIKV) infection in humans. CHIKV is a mosquito-borne Alphavirus widely distributed in the tropical and subtropical regions of Africa, Asia, and America. CHIKV infection in human causes acute febrile illness frequently accompanied by severe joint pain. Most of the infected patients may develop chronic arthralgia that may persist for several months or years. Laboratory diagnosis of CHIKV infection is mainly based on molecular and serological tests. The serological tests represent a valuable tool for diagnosis and epidemiological studies. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA) are simple, rapid, and sensitive techniques widely used for the diagnosis of CHIKV infection. However, these methods represent a screening tool and often require confirmation by a second-line assays. Serum virus neutralization assay is more specific than ELISA and IFA tests and is considered a confirmatory test. Neutralization assay is employed to determine the titer of virus neutralizing antibodies against CHIKV in patients' sera. The basis of microneutralization assay (MNA), results interpretation, and procedures will be illustrated in this chapter.
Collapse
|
22
|
da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, Aquino TM, Araújo-Júnior JX. The medicinal chemistry of Chikungunya virus. Bioorg Med Chem 2017; 25:4219-4244. [PMID: 28689975 PMCID: PMC7126832 DOI: 10.1016/j.bmc.2017.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.
Collapse
Affiliation(s)
- Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| | - Giovanni O Leoncini
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Érica E S Rodrigues
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Thiago M Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - João X Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| |
Collapse
|
23
|
Pereira LP, Villas-Bôas R, Scott SSDO, Nóbrega PR, Sobreira-Neto MA, Castro JDVD, Cavalcante B, Braga-Neto P. Encephalitis associated with the chikungunya epidemic outbreak in Brazil: report of 2 cases with neuroimaging findings. Rev Soc Bras Med Trop 2017; 50:413-416. [DOI: 10.1590/0037-8682-0449-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/25/2017] [Indexed: 11/22/2022] Open
|
24
|
Prado TMD, Cincotto FH, Machado SA. Spectroelectrochemical study of acetylsalicylic acid in neutral medium and its quantification in clinical and environmental samples. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Erguler K, Chandra NL, Proestos Y, Lelieveld J, Christophides GK, Parham PE. A large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology. PLoS One 2017; 12:e0174293. [PMID: 28362820 PMCID: PMC5375158 DOI: 10.1371/journal.pone.0174293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
Chikungunya is a viral disease transmitted to humans primarily via the bites of infected Aedes mosquitoes. The virus caused a major epidemic in the Indian Ocean in 2004, affecting millions of inhabitants, while cases have also been observed in Europe since 2007. We developed a stochastic spatiotemporal model of Aedes albopictus-borne chikungunya transmission based on our recently developed environmentally-driven vector population dynamics model. We designed an integrated modelling framework incorporating large-scale gridded climate datasets to investigate disease outbreaks on Reunion Island and in Italy. We performed Bayesian parameter inference on the surveillance data, and investigated the validity and applicability of the underlying biological assumptions. The model successfully represents the outbreak and measures of containment in Italy, suggesting wider applicability in Europe. In its current configuration, the model implies two different viral strains, thus two different outbreaks, for the two-stage Reunion Island epidemic. Characterisation of the posterior distributions indicates a possible relationship between the second larger outbreak on Reunion Island and the Italian outbreak. The model suggests that vector control measures, with different modes of operation, are most effective when applied in combination: adult vector intervention has a high impact but is short-lived, larval intervention has a low impact but is long-lasting, and quarantining infected territories, if applied strictly, is effective in preventing large epidemics. We present a novel approach in analysing chikungunya outbreaks globally using a single environmentally-driven mathematical model. Our study represents a significant step towards developing a globally applicable Ae. albopictus-borne chikungunya transmission model, and introduces a guideline for extending such models to other vector-borne diseases.
Collapse
Affiliation(s)
- Kamil Erguler
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
- * E-mail: (KE); (PEP)
| | - Nastassya L. Chandra
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Yiannis Proestos
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Jos Lelieveld
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, D-55128 Mainz, Germany
| | - George K. Christophides
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Paul E. Parham
- Department of Public Health and Policy, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GL, United Kingdom
- * E-mail: (KE); (PEP)
| |
Collapse
|
26
|
Lima-Camara TN. Emerging arboviruses and public health challenges in Brazil. Rev Saude Publica 2017; 50:S0034-89102016000100602. [PMID: 27355468 PMCID: PMC4936892 DOI: 10.1590/s1518-8787.2016050006791] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
Environmental modification by anthropogenic actions, disordered urban growth, globalization of international exchange and climate change are some factors that help the emergence and dissemination of human infectious diseases transmitted by vectors. This review discusses the recent entry of three arboviruses in Brazil: Chikungunya, West Nile, and Zika virus, focusing on the challenges for the Country's public health. The Brazilian population is exposed to infections caused by these three arboviruses widely distributed on the national territory and associated with humans. Without effective vaccine and specific treatment, the maintainance and integration of a continuos entomological and epidemiological surveillance are important so we can set methods to control and prevent these arboviruses in the Country. RESUMO A modificação do ambiente por ações antrópicas, o crescimento urbano desordenado, o processo de globalização do intercâmbio internacional e as mudanças climáticas são alguns fatores que vêm facilitando a emergência e disseminação de doenças infecciosas humanas transmitidas por vetores. Este comentário aborda a recente entrada de três arbovírus no Brasil, Chikungunya (CHIKV), West Nile (WNV) e Zika (ZIKV), com enfoque nos desafios para a Saúde Pública do País. Transmitidos por mosquitos vetores amplamente distribuídos no território nacional e associados ao homem, a população brasileira encontra-se exposta à infecção por esses três arbovírus. Na ausência de vacina eficaz e tratamento específico, são importantes a manutenção e integração de uma vigilância entomológica e epidemiológica contínua, a fim de direcionarmos métodos de controle e prevenção contra essas arboviroses no País.
Collapse
Affiliation(s)
- Tamara Nunes Lima-Camara
- Departamento de Epidemiologia. Faculdade de Saúde Pública. Universidade de São Paulo. São Paulo, SP, Brasil
| |
Collapse
|
27
|
Mota MTDO, Terzian AC, Silva MLCR, Estofolete C, Nogueira ML. Mosquito-transmitted viruses - the great Brazilian challenge. Braz J Microbiol 2016; 47 Suppl 1:38-50. [PMID: 27818091 PMCID: PMC5156505 DOI: 10.1016/j.bjm.2016.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
Arboviruses pose a serious threat to public health worldwide, overloading the healthcare system and causing economic losses. These viruses form a very diverse group, and in Brazil, arboviruses belonging to the families Flaviviridae and Togaviridae are predominant. Unfortunately, the number of arboviruses increases in proportion with factors such as deforestation, poor sanitation, climate changes, and introduction of new viruses like Chikungunya virus and Zika virus. In Brazil, dengue is endemic, along with the presence of other arboviruses. The situation is complicated by the scarcity of diagnostic infrastructure and the absence of approved vaccines for these diseases. Disease control, thus, relies solely on vector control. Therefore, enhanced clinical knowledge and improved general awareness about these arboviruses are indispensable to tackle diagnostic inadequacies.
Collapse
Affiliation(s)
| | - Ana Carolina Terzian
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | | - Cássia Estofolete
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
28
|
Khongwichit S, Wikan N, Abere B, Thepparit C, Kuadkitkan A, Ubol S, Smith DR. Cell-type specific variation in the induction of ER stress and downstream events in chikungunya virus infection. Microb Pathog 2016; 101:104-118. [PMID: 27863885 DOI: 10.1016/j.micpath.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 09/27/2016] [Accepted: 11/14/2016] [Indexed: 12/25/2022]
Abstract
Over the last decade infections with the mosquito transmitted chikungunya virus (CHIKV) have become a major worldwide concern, and considerable efforts have been made in understanding the interaction of this virus with the host cell machinery. Studies have documented the induction of the unfolded protein response (UPR), as well as the induction of apoptosis and autophagy in response to CHIKV infection. This study comparatively analysed these three processes in two cell lines, Hela and HepG2. Infection of Hela cells was characterized by activation of the PERK/eIF2α branch of the UPR, the induction of autophagy and early apoptosis, while infection of HepG2 cells was characterized by activation of the IRE/XBP1 branch of the UPR, limited or no activation of autophagy and comparatively later apoptosis. These results show that the specific cell context is an important mediator of the host cell response to CHIKV infection.
Collapse
Affiliation(s)
- Sarawut Khongwichit
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Nakhon Pathom, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Nakhon Pathom, Thailand
| | - Bizunesh Abere
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Nakhon Pathom, Thailand
| | - Chutima Thepparit
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Nakhon Pathom, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Nakhon Pathom, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Nakhon Pathom, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Nakhon Pathom, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Nakhon Pathom, Thailand.
| |
Collapse
|
29
|
Modification of the HIV-specific CD8+ T-cell response in an HIV elite controller after chikungunya virus infection. AIDS 2016; 30:1905-11. [PMID: 27124898 DOI: 10.1097/qad.0000000000001129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the impact of chikungunya virus (CHIKV) infection on the quality of the HIV-specific CD8 T-cell (CTL) response in an HIV elite controller. DESIGN Three blood samples were obtained from an elite controller at 27 days (EC-CHIKV, Sample 1, S1), 41 days (S2) and 1 year (S3) after CHIKV infection. Additionally, samples from another nine elite controllers and nine viremic chronics were obtained. METHODS CD4 T-cell counts, viral load and immune activation were recorded. Natural killer (NK) cells and HIV-specific CTL quality were evaluated. Data were analyzed using nonparametric statistics. RESULTS A male HIV elite controller was confirmed for CHIKV infection. At S1, he presented 211 cells/μl CD4 T-cell count, a HIV viral load blip (145 copies/ml) and high T-cell activation. NK cell percentage and activation were higher at S2. All parameters were recovered by S3. CTLs at S1 were exclusively monofunctional with a high proportion (>80%) of degranulating CTLs. By S3, CTL polyfunctionality was more similar to that of a typical elite controller. The distribution of CTL memory subsets also displayed altered profiles. CONCLUSION The results showed that the phenotype and function of HIV-specific CTLs were modified in temporal association with an HIV viral load blip that followed CHIKV infection. This might have helped to control the transient HIV rebound. Additionally, NK cells could have been involved in this control. These results provide useful information to help understand how elite controllers maintain their status, control HIV infection and alert about the negative impact to the immune function of HIV-infected individuals living in CHIKV endemic areas.
Collapse
|
30
|
de Greslan T, Billhot M, Rousseau C, Mac Nab C, Karkowski L, Cournac JM, Bordes J, Gagnon N, Dubrous P, Duron S, Moroge S, Quentin B, Koulibaly F, Bompaire F, Renard JL, Cellarier G. Ebola Virus-Related Encephalitis. Clin Infect Dis 2016; 63:1076-1078. [PMID: 27418576 DOI: 10.1093/cid/ciw469] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/03/2016] [Indexed: 01/23/2023] Open
Abstract
Ebola patients frequently exhibit behavioral modifications with ideation slowing and aggressiveness, sometimes contrasting with mild severity of Ebola disease. We performed lumbar punctures in 3 patients with this presentation and found Ebola virus in all cerebrospinal fluid samples. This discovery helps to discuss the concept of a specific Ebola virus encephalitis.
Collapse
Affiliation(s)
- Thierry de Greslan
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Percy, Clamart
| | - Magali Billhot
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Bégin, Saint Mandé
| | - Claire Rousseau
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Clermont Tonnerre, Brest
| | - Christine Mac Nab
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Percy, Clamart
| | - Ludovic Karkowski
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Legouest, Metz
| | - Jean-Marie Cournac
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Percy, Clamart
| | - Julien Bordes
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Sainte Anne, Toulon
| | - Nicolas Gagnon
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Legouest, Metz
| | - Philippe Dubrous
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Robert Picqué, Bordeaux
| | | | - Sophie Moroge
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Laveran, Marseille
| | - Benoit Quentin
- French Military Ebola Virus Disease Treatment Centre.,Direction Centrale du Service de Santé des Armées, Paris, France
| | - Fassou Koulibaly
- French Military Ebola Virus Disease Treatment Centre.,Guinean Military Teaching Hospital, Conakry, Guinea
| | | | | | - Gilles Cellarier
- French Military Ebola Virus Disease Treatment Centre.,Hôpital d'Instruction des Armées Sainte Anne, Toulon
| |
Collapse
|
31
|
Abstract
Chikungunya fever is an increasingly common viral infection transmitted to humans by species of the Aedes mosquitoes. Characterized by fevers, myalgias, arthralgias, headache, and rash, the infection is endemic to tropical areas. However, identification of disease vectors to Europe and the Americas has raised concern for possible spread of chikungunya to these areas. More recently, these concerns have become a reality; with more than 500,000 new cases in the Western hemisphere in the last 2 years, questions have arisen about the implications of infection during pregnancy and delivery. A literature review was performed using MEDLINE in order to gather information regarding the obstetric implications of this infection. It appears that although this virus can cross the placenta in the first and second trimester leading to fetal infection and miscarriage, this is a very rare occurrence. In contrast, active maternal infection within 4 days of delivery conveys a high risk of vertical transmission. Maternal infection during pregnancy does not appear to be more severe than infection on the nonpregnant female. Given the increasing incidence of chikungunya, obstetric providers should be aware of the disease and its implication for the gravid female.
Collapse
|
32
|
Abstract
In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South-America. Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is characterized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of the administration of analgesics, antipyretics, and anti-inflammatory agents. Recently several molecules with various viral or host targets have been identified as CHIKV inhibitors. In this chapter, we summarize the current status of the development of antiviral strategies against CHIKV infections.
Collapse
|
33
|
Abdelnabi R, Neyts J, Delang L. Towards antivirals against chikungunya virus. Antiviral Res 2015; 121:59-68. [PMID: 26119058 PMCID: PMC7113767 DOI: 10.1016/j.antiviral.2015.06.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
Abstract
Chikungunya virus (CHIKV) has re-emerged in recent decades, causing major outbreaks of chikungunya fever in many parts of Africa and Asia, and since the end of 2013 also in Central and South America. Infections are usually associated with a low mortality rate, but can proceed into a painful chronic stage, during which patients may suffer from polyarthralgia and joint stiffness for weeks and even several years. There are no vaccines or antiviral drugs available for the prevention or treatment of CHIKV infections. Current therapy therefore consists solely of the administration of analgesics, antipyretics and anti-inflammatory agents to relieve symptoms. We here review molecules that have been reported to inhibit CHIKV replication, either as direct-acting antivirals, host-targeting drugs or those that act via a yet unknown mechanism. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."
Collapse
Affiliation(s)
- Rana Abdelnabi
- Rega Institute for Medical Research, University of Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Belgium.
| | - Leen Delang
- Rega Institute for Medical Research, University of Leuven, Belgium
| |
Collapse
|
34
|
van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 2015; 96:2122-2132. [DOI: 10.1099/vir.0.000144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mareike K. S. van Duijl-Richter
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jelle S. Blijleven
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
35
|
Zuluaga-Gómez M, Vanegas-Isaza D. El virus Chikungunya en Colombia: aspectos clínicos y epidemiológicos y revisión de la literatura. IATREIA 2015. [DOI: 10.17533/udea.iatreia.v29n1a06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
36
|
Champion SR, Vitek CJ. Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA. ENVIRONMENTAL HEALTH INSIGHTS 2014; 8:35-42. [PMID: 25520559 PMCID: PMC4259515 DOI: 10.4137/ehi.s16004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region.
Collapse
|
37
|
Affiliation(s)
- Manish Garg
- Department of Emergency Medicine, Temple University Hospital, Philadelphia, PA
| | - Victor Alcalde
- Department of Emergency Medicine, Temple University Hospital, Philadelphia, PA
| |
Collapse
|
38
|
Puttamallesh VN, Sreenivasamurthy SK, Singh PK, Harsha HC, Ganjiwale A, Broor S, Pandey A, Narayana J, Prasad TSK. Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response. Clin Proteomics 2013; 10:14. [PMID: 24124767 PMCID: PMC3879382 DOI: 10.1186/1559-0275-10-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chikungunya is a highly debilitating febrile illness caused by Chikungunya virus, a single-stranded RNA virus, which is transmitted by Aedes aegypti or Aedes albopictus mosquito species. The pathogenesis and host responses in individuals infected with the chikungunya virus are not well understood at the molecular level. We carried out proteomic profiling of serum samples from chikungunya patients in order to identify molecules associated with the host response to infection by this virus. RESULTS Proteomic profiling of serum obtained from the infected individuals resulted in identification of 569 proteins. Of these, 63 proteins were found to be differentially expressed (≥ 2-fold) in patient as compared to control sera. These differentially expressed proteins were involved in various processes such as lipid metabolism, immune response, transport, signal transduction and apoptosis. CONCLUSIONS This is the first report providing a global proteomic profile of serum samples from individuals infected with the chikungunya virus. Our data provide an insight into the proteins that are involved as host response factors during an infection. These proteins include clusterin, apolipoproteins and S100A family of proteins.
Collapse
Affiliation(s)
- Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | | | - Pradeep Kumar Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Anjali Ganjiwale
- Microtest Innovations Pvt. Limited, International Technology Park, Bangalore 560 066, India
| | - Shobha Broor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
| | - Jayasuryan Narayana
- Microtest Innovations Pvt. Limited, International Technology Park, Bangalore 560 066, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| |
Collapse
|
39
|
Tomasello D, Schlagenhauf P. Chikungunya and dengue autochthonous cases in Europe, 2007-2012. Travel Med Infect Dis 2013; 11:274-84. [PMID: 23962447 DOI: 10.1016/j.tmaid.2013.07.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/25/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
A large number of autochthonous cases of dengue fever (2237) and chikungunya fever (231) occurred in Europe (Italy, France, Croatia, Madeira) during the period covered by our analysis (2007-2012). In all dengue outbreaks, the circulating strain, identified by means of molecular analysis, was the DENV-1 strain. Dengue and chikungunya are infectious diseases that often result in hospitalizations and are associated with high public health costs. The dengue epidemic on the island of Madeira resulted in 122 hospitalizations. Only one death (from chikungunya) occurred but long-term sequelae were described after the chikungunya outbreak in Emilia-Romagna, Italy. Vector control is key to reducing the impact of these diseases. During the chikungunya outbreak in Italy and the dengue outbreak in Madeira, appropriate measures for the control of mosquitoes (Aedes aegypti and Aedes albopictus) were effectively implemented. The effectiveness of these measures (reducing the number of breeding sites, application of pesticides and insecticides, public health education) was shown in the context of these real-life outbreaks. All the pre-requisites for autochthonous transmission of both dengue virus and chikungunya virus (vectors, viremic returned travellers, climatic conditions) are present in Europe. Constant surveillance is imperative.
Collapse
Affiliation(s)
- Danilo Tomasello
- University of Zürich, Centre for Travel Medicine, Zürich, Switzerland.
| | | |
Collapse
|
40
|
da Silva FC, de Barros FMC, Prophiro JS, da Silva OS, Pereira TN, de Loreto Bordignon SA, Eifler-Lima VL, von Poser GL. Larvicidal activity of lipophilic extract of Hypericum carinatum (Clusiaceae) against Aedes aegypti (Diptera: Culicidae) and benzophenones determination. Parasitol Res 2013; 112:2367-71. [DOI: 10.1007/s00436-013-3401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
|
41
|
Islam R, Sakib MS, Zaman A. A computational assay to design an epitope-based peptide vaccine against chikungunya virus. Future Virol 2012. [DOI: 10.2217/fvl.12.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Chikungunya virus, an arthropod-borne alphavirus, belongs to the Togavirus family. Despite severe epidemic outbreaks on several occasions, not much progress has been made with regard to epitope-based drug design for chikungunya virus. In this study we performed a proteome-wide search to look for a conserved region among the available viral proteins, one which has the capacity to trigger a significant immune response. Materials & methods: The conserved region was analyzed by performing an alignment of sequences collected from sources from varied geographic locations and time periods. Subsequently, the immune parameters for the peptide sequences were determined using several in silico tools and immune databases. Results: Both T-cell immunity and B-cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-based immunity. Our study reveals a stretch of conserved region in glycoprotein E2; yet this peptide sequence could interact with as many as seven HLAs and showed population coverage as high as 73.46%. The epitope was further tested for binding against the HLA structure using in silico docking techniques to validate the binding cleft epitope interaction in detail. Conclusion: Although the study requires further in vivo screening, keeping in mind the consistency and reproducibility of the immune system at selecting and reacting to peptide epitopes, this study allows us to claim a novel peptide antigen target in E2 protein with good confidence.
Collapse
Affiliation(s)
- Rezaul Islam
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - M Sadman Sakib
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Aubhishek Zaman
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|