1
|
Prakash G, Parmar B, Bhatia D. Structurally programmable, functionally tuneable dendrimers in biomedical applications. Biomater Sci 2025; 13:875-895. [PMID: 39804192 DOI: 10.1039/d4bm01475h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration. They are the fourth important architectural group of polymers after the three well-known types (branched, cross-linked, and linear polymers). These tiny macromolecules generate nanometer-size structures consisting of branching, with identical units assembled around a central core. By regulating dendrimer synthesis, it is possible to manipulate both their molecular weight and chemical content carefully, permitting predictable tailoring of their biocompatibility and pharmacokinetics, making them a promising candidate for biomedical uses. In contrast to their more easily obtainable synthetic techniques and comparable functions in hyperbranched polymers, dendrimers have demonstrated efficacy in biological applications, exhibiting remarkable sample purity and synthesizing reproducibility. Dendrimers are appealing as basic materials for manufacturing nanomaterials for uses in many different disciplines because of their highly specified chemical structure and globular form. Thus, much effort has been made to create functional materials with dendrimers. Especially looking at dendrimer-based nanomaterials meant for use in the biomedical domain, this review discusses the design, types, properties, and function of bionanomaterials employing several techniques, including surface modification, assembly, and hybrid development, and their uses.
Collapse
Affiliation(s)
- Geethu Prakash
- Department of Biological Sciences and Engineering Indian Institute of Technology, Palaj, Gandhinagar 382355, India.
| | - Bhagyesh Parmar
- Department of Biological Sciences and Engineering Indian Institute of Technology, Palaj, Gandhinagar 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering Indian Institute of Technology, Palaj, Gandhinagar 382355, India.
| |
Collapse
|
2
|
Sorroza-Martínez K, González-Sánchez I, Villamil-Ramos R, Cerbón M, Guerrero-Álvarez JA, Coronel-Cruz C, Rivera E, González-Méndez I. Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment. Pharmaceutics 2024; 16:1509. [PMID: 39771488 PMCID: PMC11728618 DOI: 10.3390/pharmaceutics16121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane-hydrazone-doxorubicin (Ad-h-Dox) prodrug. Methods: The formation of inclusion complexes (ICs) between the prodrug and all the βCD cavities present on the surface of the PAMAM-βCD dendrimer was followed by 1H-NMR titration and corroborated by 2D NOESY experiments. A full characterization of the supramolecular assembly was performed in the solid state by thermal analysis (DSC/TGA) and scanning electron microscopy (SEM) and in solution by the DOSY NMR technique in D2O. Furthermore, the Dox release profiles from the PAMAM-βCD/Ad-h-Dox assembly at different pH values was studied by comparing the efficiency against a native βCD/Ad-h-Dox IC. Additionally, in vitro cytotoxic activity assays were performed for the nanocarrier alone and the two supramolecular assemblies in different carcinogenic cell lines. Results: The PAMAM-βCD/Ad-h-Dox assembly was adequately characterized, and the cytotoxic activity results demonstrate that the nanocarrier alone and its hydrolysis product are innocuous compared to the PAMAM-βCD/Ad-h-Dox nanocarrier that showed cytotoxicity equivalent to free Dox in the tested cancer cell lines. The in vitro drug release assays for the PAMAM-βCD/Ad-h-Dox system showed an acidic pH-dependent behavior and a prolonged profile of up to more than 72 h. Conclusions: The design of PAMAM-βCD/Ad-h-Dox consists of a new controlled and prolonged Dox release system for potential use in cancer treatment.
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Departamento de Sistemas Biológicos, Unidad Xochimilco, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Col. Villa Quietud, Mexico City CP 04960, Mexico;
| | - Ignacio González-Sánchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico; (I.G.-S.); (M.C.)
| | - Raúl Villamil-Ramos
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico; (R.V.-R.); (J.A.G.-Á.)
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico; (I.G.-S.); (M.C.)
| | - Jorge Antonio Guerrero-Álvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico; (R.V.-R.); (J.A.G.-Á.)
| | - Cristina Coronel-Cruz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico;
| | - Ernesto Rivera
- Departamento de Reología, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Israel González-Méndez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico; (R.V.-R.); (J.A.G.-Á.)
| |
Collapse
|
3
|
Opriș O, Mormile C, Lung I, Stegarescu A, Soran ML, Soran A. An Overview of Biopolymers for Drug Delivery Applications. APPLIED SCIENCES 2024; 14:1383. [DOI: 10.3390/app14041383] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nowadays, drug delivery has an important role in medical therapy. The use of biopolymers in developing drug delivery systems (DDSs) is increasingly attracting attention due to their remarkable and numerous advantages, in contrast to conventional polymers. Biopolymers have many advantages (biodegradability, biocompatibility, renewability, affordability, and availability), which are extremely important for developing materials with applications in the biomedical field. Additionally, biopolymers are appropriate when they improve functioning and have a number of positive effects on human life. Therefore, this review presents the most used biopolymers for biomedical applications, especially in drug delivery. In addition, by combining different biopolymers DDSs with tailored functional properties (e.g., physical properties, biodegradability) can be developed. This review summarizes and provides data on the progress of research on biopolymers (chitosan, alginate, starch, cellulose, albumin, silk fibroin, collagen, and gelatin) used in DDSs, their preparation, and mechanism of action.
Collapse
Affiliation(s)
- Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Faculty of Chemistry, University of Rome La Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Bezrodnyi VV, Mikhtaniuk SE, Shavykin OV, Sheveleva NN, Markelov DA, Neelov IM. A Molecular Dynamics Simulation of Complexes of Fullerenes and Lysine-Based Peptide Dendrimers with and without Glycine Spacers. Int J Mol Sci 2024; 25:691. [PMID: 38255765 PMCID: PMC10815860 DOI: 10.3390/ijms25020691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules. The goal of this work is to perform the first molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2, and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes with them. The density and hydrophobicity inside the complex are greater than in dendrimers without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions of complexes less accessible to water and counterions and increases electrostatic and zeta potential compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly dendrimer could be used as nanocontainers for the delivery of fullerenes.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Sofia E. Mikhtaniuk
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Oleg V. Shavykin
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Department of Mathematics, Tver State University, Sadoviy Per., 35, 170102 Tver, Russia
| | - Nadezhda N. Sheveleva
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Denis A. Markelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Igor M. Neelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Institute of Macromolecular Compounds RAS, Bolshoi Prospect 31, 199004 St. Petersburg, Russia
| |
Collapse
|
5
|
Zhai X, Peng S, Zhai C, Wang S, Xie M, Guo S, Bai J. Design of Nanodrug Delivery Systems for Tumor Bone Metastasis. Curr Pharm Des 2024; 30:1136-1148. [PMID: 38551047 DOI: 10.2174/0113816128296883240320040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
Tumor metastasis is a complex process that is controlled at the molecular level by numerous cytokines. Primary breast and prostate tumors most commonly metastasize to bone, and the development of increasingly accurate targeted nanocarrier systems has become a research focus for more effective anti-bone metastasis therapy. This review summarizes the molecular mechanisms of bone metastasis and the principles and methods for designing bone-targeted nanocarriers and then provides an in-depth review of bone-targeted nanocarriers for the treatment of bone metastasis in the context of chemotherapy, photothermal therapy, gene therapy, and combination therapy. Furthermore, this review also discusses the treatment of metastatic and primary bone tumors, providing directions for the design of nanodelivery systems and future research.
Collapse
Affiliation(s)
- Xiaoqing Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Chunyuan Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shuai Wang
- People's Hospital of Gaoqing County, Zibo 256399, China
| | - Meina Xie
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
6
|
Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS APPLIED NANO MATERIALS 2023; 6:5042-5074. [DOI: 10.1021/acsanm.3c00941] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alok Tripathi
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Rajpur 382715, Gujarat India
| | - José Bonilla-Cruz
- Advanced Functional Materials and Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Avenida Alianza Norte Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León, México C.P. 66628
| |
Collapse
|
7
|
Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021; 13:pharmaceutics13122166. [PMID: 34959445 PMCID: PMC8703898 DOI: 10.3390/pharmaceutics13122166] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting millions of people worldwide. Currently, clinical nonsurgical treatments of OA are only limited to pain relief, anti-inflammation, and viscosupplementation. Developing disease-modifying OA drugs (DMOADs) is highly demanded for the efficient treatment of OA. As OA is a local disease, intra-articular (IA) injection directly delivers drugs to synovial joints, resulting in high-concentration drugs in the joint and reduced side effects, accompanied with traditional oral or topical administrations. However, the injected drugs are rapidly cleaved. By properly designing the drug delivery systems, prolonged retention time and targeting could be obtained. In this review, we summarize the drugs investigated for OA treatment and recent advances in the IA drug delivery systems, including micro- and nano-particles, liposomes, and hydrogels, hoping to provide some information for designing the IA injected formulations.
Collapse
|
8
|
Abd-El-Aziz AS, Benaaisha MR, Abdelghani AA, Bissessur R, Abdel-Rahman LH, Fayez AM, El-ezz DA. Aspirin-Based Organoiron Dendrimers as Promising Anti-Inflammatory, Anticancer, and Antimicrobial Drugs. Biomolecules 2021; 11:1568. [PMID: 34827566 PMCID: PMC8615929 DOI: 10.3390/biom11111568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Designing nanocarriers with actions directed at a specific organ or tissue is a very promising strategy since it can significantly reduce the toxicity of a bioactive drug. In this study, an organometallic dendrimer was used to synthesize a biocompatible drug delivery system by attaching aspirin to the periphery of the dendrimer. Our goal is to enhance the bioavailability and anticancer activity of aspirin and reduce its toxicity through successive generations of organoiron dendrimers. The biological activity of aspirin-based dendrimer complexes was evaluated. The result of antimicrobial activity of the synthesized dendrimers also demonstrated an increase in their antimicrobial activity with increased generation of the dendrimers for most types of microorganisms. This study reveals for the first time that organoiron dendrimers linked with aspirin exhibit an excellent Gram-negative activity comparable to the reference drug Gentamicin. All synthesized dendrimers were tested for their anticancer activity against breast cancer cell lines (MCF-7), hepatocellular cell lines (Hep-G2), and a non-cancer cell line, Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, Doxorubicin. Compounds G3-D9-Asp and G4-D12-Asp exhibited noticeable activity against both cell lines, both of which were more effective than aspirin itself. In addition, the in vivo anti-inflammatory activity and histopathology of swollen paws showed that the designed aspirin-based dendrimers displayed significant anti-inflammatory activity; however, G2-D6-Asp showed the best anti-inflammatory activity, which was more potent than the reference drug aspirin during the same period. Moreover, the coupling of aspirin to the periphery of organoiron dendrimers showed a significant reduction in the toxicity of aspirin on the stomach.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Maysun R. Benaaisha
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Amani A. Abdelghani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | | | - Ahmed M. Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Doaa Abou El-ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza 8655, Egypt;
| |
Collapse
|
9
|
Mignani S, Shi X, Karpus A, Lentini G, Majoral JP. Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. Pharmaceutics 2021; 13:1513. [PMID: 34575589 PMCID: PMC8466088 DOI: 10.3390/pharmaceutics13091513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
The novel human coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has caused a pandemic. There are currently several marketed vaccines and many in clinical trials targeting SARS-CoV-2. Another strategy is to repurpose approved drugs to decrease the burden of the COVID-19 (official name for the coronavirus disease) pandemic. as the FDA (U.S. Food and Drug Administration) approved antiviral drugs and anti-inflammatory drugs to arrest the cytokine storm, inducing the production of pro-inflammatory cytokines. Another view to solve these unprecedented challenges is to analyze the diverse nanotechnological approaches which are able to improve the COVID-19 pandemic. In this original minireview, as promising candidates we analyze the opportunity to develop biocompatible dendrimers as drugs themselves or as nanocarriers against COVID-19 disease. From the standpoint of COVID-19, we suggest developing dendrimers as shields against COVID-19 infection based on their capacity to be incorporated in several environments outside the patients and as important means to stop transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 75006 Paris, France
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France;
- Université Toulouse 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy;
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France;
- Université Toulouse 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| |
Collapse
|
10
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021; 219:113456. [PMID: 33878563 DOI: 10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Research to develop active dendrimers by themselves or as nanocarriers represents a promising approach to discover new biologically active entities that can be used to tackle unmet medical needs including difficult diseases. These developments are possible due to the exceptional physicochemical properties of dendrimers, including their biocompatibility, as well as their therapeutic activity as nanocarriers and drugs themselves. Despite a large number of academic studies, very few dendrimers have crossed the 'valley of death' between. Only a few number of pharmaceutical companies have succeeded in this way. In fact, only Starpharma (Australia) and Orpheris, Inc. (USA), an Ashvattha Therapeutics subsidiary, can fill all the clinic requirements to have in the market dendrimers based drugs/nancocarriers. After evaluating the main physicochemical properties related to the respective biological activity of dendrimers classified as first-in-class or best-in-class in nanomedicine, this original review analyzes the advantages and disavantages of these two strategies as well the concerns to step in clinical phases. Various solutions are proposed to advance the use of dendrimers in human health.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, CNRS UMR 860, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse, 118 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
11
|
Amreddy N, Munshi A, Ramesh R. Multifunctional dendrimers for theranostic applications. DENDRIMER-BASED NANOTHERAPEUTICS 2021:385-397. [DOI: 10.1016/b978-0-12-821250-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2020; 265:120404. [PMID: 32987273 DOI: 10.1016/j.biomaterials.2020.120404] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
A variety of targeted nanoparticles were developed for the diagnosis and therapy of orthotopic and metastatic bone tumors during the past decade. This critical review will focus on principles and methods in the design of these bone-targeted nanoparticles. Ligands including bisphosphonates, aspartic acid-rich peptides and synthetic polymers were grafted on nanoparticles such as PLGA nanoparticles, liposomes, dendrimers and inorganic nanoparticles for bone targeting. Besides, other ligands such as monoclonal antibodies, peptides and aptamers targeting biomarkers on tumor/bone cells were identified for targeted diagnosis and therapy. Examples of targeted nanoparticles for the early detection of bone metastatic tumors and the ablation of cancer via chemotherapy, photothermal therapy, gene therapy and combination therapy will be intensively reviewed. The development of multifunctional nanoparticles to break down the "vicious" cycle between tumor cell proliferation and bone resorption, and the challenges and perspectives in this area will be discussed.
Collapse
Affiliation(s)
- Xin Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Lin Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Xiaopan Cai
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Quan Huang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Yiyun Cheng
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https:/doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
14
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020; 31:2060-2071. [PMID: 32786368 DOI: 10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
15
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https://doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
17
|
Almuqbil RM, Heyder RS, Bielski ER, Durymanov M, Reineke JJ, da Rocha SRP. Dendrimer Conjugation Enhances Tumor Penetration and Efficacy of Doxorubicin in Extracellular Matrix-Expressing 3D Lung Cancer Models. Mol Pharm 2020; 17:1648-1662. [PMID: 32227969 DOI: 10.1021/acs.molpharmaceut.0c00083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent broadly used in the treatment of a range of solid tumors. In spite of its high potency, as is the case for many other chemotherapeutic drugs, there are many challenges associated with the use of DOX in clinical oncology. This is particularly true for DOX in the treatment of lung cancer, where in vitro potency is shown to be very high, but low lung distribution and off-target toxicity (particularly cardiotoxicity) restrict its use. Nanocarrier-based drug delivery systems (nanoDDS) have been shown to help alter biodistribution and alleviate off-target toxicity associated with DOX. While significant understanding exists regarding the design parameters to achieve those clinical benefits, much less is known regarding the design of nanoDDS capable of enhancing tumor penetration of DOX (and other drugs), which is another major factor leading to DOX's reduced efficacy. The purpose of this study was to design a dendrimer-based nanoDDS capable of enhancing the penetration of DOX as measured in an in vitro 3D lung tumor model and to correlate those results with its efficacy. Spheroids formed with the A549 human lung adenocarcinoma cells/murine fibroblast cell line (NIH/3T3 cell line) are shown to produce the essential components of the extracellular matrix (ECM), which is known as a physical barrier that hinders the transport of DOX. DOX was conjugated to generation 4 succinamic acid-terminated poly(amido-amine) (PAMAM) dendrimers (G4SA) through an enzyme-liable tetrapeptide (G4SA-GFLG-DOX), resulting in a nanoDDS with ∼5.5 DOX, -17 mV surface (ζ) potential, and a 10 nm hydrodynamic diameter (HD). The penetration of DOX to the core of the spheroid in terms of DOX fluorescence was determined to be 3.1-fold greater compared to free DOX, which positively correlated with enhanced efficacy as measured by the Caspase 3/7 assay. This improved penetration happens as the interactions between the G4SA-GFLG-DOX and the highly negatively charged ECM are minimized by shielding the protonatable amine of DOX upon conjugation, and the HD of the conjugate is kept smaller than the estimated mesh size of the ECM. Interestingly, the conjugate provided more specificity for DOX to tumor cells compared to fibroblasts, while free DOX is equally distributed in both tumor and fibroblasts as assessed in the coculture spheroids. Growth inhibition studies show that the released DOX maintains its activity and leads to tumor reduction to the same extent as free DOX. The results obtained here are of relevance for the design of dendrimer-based nanoDDS and for the treatment of solid tumors as they provide critical information regarding desirable surface characteristics and sizes for efficient tumor penetration.
Collapse
Affiliation(s)
| | | | | | - Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Joshua J Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| | | |
Collapse
|
18
|
Quantum chemical studies of chitosan nanoparticles as effective drug delivery systems for 5-fluorouracil anticancer drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud OE, Giarolla J. Dendrimers in the context of nanomedicine. Int J Pharm 2019; 573:118814. [PMID: 31759101 DOI: 10.1016/j.ijpharm.2019.118814] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/23/2023]
Abstract
Dendrimers are globular structures, presenting an initiator core, repetitive layers starting radially from the core and terminal groups on the surface, resembling tree architecture. These structures have been studied in many biological applications, as drug, DNA, RNA and proteins delivery, as well as imaging and radiocontrast agents. With reference to that, this review focused in providing examples of dendrimers used in nanomedicine. Although most studies emphasize cancer, there are others which reveal action in the neurosystem, reducing either neuroinflammation or protein aggregation. Dendrimers can carry bioactive compounds by covalent bond (dendrimer prodrug), or by ionic interaction or adsortion in the internal space of the nanostructure. Additionally, dendrimers can be associated with other polymers, as PEG (polyethylene glycol), and with targeting structures as aptamers, antibodies, folic acid and carbohydrates. Their products in preclinical/clinical trial and those in the market are also discussed, with a total of six derivatives in clinical trials and seven products available in the market.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - João Vitor da Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Omar El Seoud
- Department of Organic Chemistry, Institute of Chemistry, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil.
| |
Collapse
|
20
|
Zhang ZT, Huang-Fu MY, Xu WH, Han M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm 2019; 137:122-130. [PMID: 30776412 DOI: 10.1016/j.ejpb.2019.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is the cellular environment that is also described as the "soil" for supporting tumor growth, proliferation, invasion and metastasis, as well as protecting tumor cells from immunological recognition. Notably, tumor cells can grow much faster than other normal organs and invade surrounding tissues more easily, which results in abnormal expression of enzymes in the tumor microenvironment, including matrix metalloproteinases, cathepsins, phospholipases, oxidoreductases, etc. In opposite, due to the high selectivity and catalytic activity, these enzymes can promote nanoparticles to recognize tumor tissues more accurately, and the more accumulation of drugs at primal tumor sites will enhance therapeutic efficacy with lower systemic toxicity. Therefore, one promising antitumor strategy is to design stimulus-responsive nanoscale delivery systems triggered by the enzymes with the support of various nanocarriers, such as liposomes, micelles and inorganic nanoparticles, etc. In this review, numerous facts were cited to summarize and discuss the typical types of enzyme-stimulus responsive nanoscale delivery systems. More importantly, we also focused on their recent advancements in antitumor therapy, and offered the direction for further studies.
Collapse
Affiliation(s)
- Zhen-Tao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yi Huang-Fu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou 310058 China.
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Cytotoxicity and in vivo plasma kinetic behavior of surface-functionalized PAMAM dendrimers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2227-2234. [DOI: 10.1016/j.nano.2018.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
|
22
|
Castro RI, Forero-Doria O, Guzmán L. Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy. AN ACAD BRAS CIENC 2018; 90:2331-2346. [PMID: 30066746 DOI: 10.1590/0001-3765201820170387] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 01/05/2023] Open
Abstract
Currently, cancer is the second most common cause of death in the United States, exceeded only by heart disease. Chemotherapy traditionally suffers from a non-specific distribution, with only a small fraction of the drug reaching the tumor, in this sense, the use of dendrimers incorporating drugs non-covalently encapsulated inside the dendrimer or covalently conjugated have proven to be effectives against different cancer cell lines. However, at present the dendrimers used as drug-carriers still do not meet the necessary characteristic to be considered as an ideal dendrimer for drug delivery; high toxicity, bio-degradability, low toxicity, biodistribution characteristics, and favorable retention with appropriate specificity and bioavailability have not been fully covered by the current available dendrimers. However, the development and study of new dendrimers drug-carriers continues to be an important tool in the cancer therapy as they can be functionalized with varied ligands to reach the tumor tissue through the different body barriers in the body with minimal loss of activity in the bloodstream, have the ability to selectively kill tumor cells without affecting the normal cells and most important with a release mechanism controlling actively. Given the continuous efforts and research in this area of interest, we presented in this review the work done with a special emphasis on the development of dendrimers as a major tool in the combination with drugs, as a potential adjunctive agent in anticancer therapy.
Collapse
Affiliation(s)
- Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, 5 Poniente, 1670, Talca, Chile.,Escuela de Obstetricia y Puericultura, Facultad de Ciencias Biomedicas, Universidad Autónoma de Chile, 5 Poniente, 1670, Talca, Chile
| | - Oscar Forero-Doria
- Instituto de Química de Recursos Naturales, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e InmunoHematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca, Chile
| |
Collapse
|
23
|
Ebrahimian M, Taghavi S, Ghoreishi M, Sedghi S, Amel Farzad S, Ramezani M, Hashemi M. Evaluation of Efficiency of Modified Polypropylenimine (PPI) with Alkyl Chains as Non-viral Vectors Used in Co-delivery of Doxorubicin and TRAIL Plasmid. AAPS PharmSciTech 2018; 19:1029-1036. [PMID: 29116619 DOI: 10.1208/s12249-017-0913-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022] Open
Abstract
In this study, co-delivery system was achieved via plasmid encoding TNF related apoptosis inducing ligand (pTRAIL) and doxorubicin (DOX) using carrier based on polypropylenimine (PPI) modified with 10-bromodecanoic acid. Incorporation of alkylcarboxylate chain to PPIs (G4 and G5) could improve transfection efficiency via overcoming the plasma membrane barrier of the cells and decrease cytotoxicity of PPI. Characterization of fabricated NPs revealed that PPI G5 in which 30% of primary amines were substituted by alkyl carboxylate chain (PPI G5-Alkyl 30%) has higher drug loading as compared to the other formulations. PPI G5-Alkyl 30% indicated a decreased drug release may be due to alkyl chains on the surface of PPI, which serve as an additional hindrance for drug diffusion. In vitro cytotoxicity experiments demonstrated that co-delivery system induced apoptosis of tumor cells more efficiently than each of delivery system alone. Furthermore, these results revealed that our combined delivery platform of pTRAIL and DOX using Alkyl-modified PPI G5 can significantly improve the anti-tumor activity and this strategy might develop a new therapeutic window for cancer treatment.
Collapse
|
24
|
Manzur A, Oluwasanmi A, Moss D, Curtis A, Hoskins C. Nanotechnologies in Pancreatic Cancer Therapy. Pharmaceutics 2017; 9:E39. [PMID: 28946666 PMCID: PMC5750645 DOI: 10.3390/pharmaceutics9040039] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer has been classified as a cancer of unmet need. After diagnosis the patient prognosis is dismal with few surviving over 5 years. Treatment regimes are highly patient variable and often the patients are too sick to undergo surgical resection or chemotherapy. These chemotherapies are not effective often because patients are diagnosed at late stages and tumour metastasis has occurred. Nanotechnology can be used in order to formulate potent anticancer agents to improve their physicochemical properties such as poor aqueous solubility or prolong circulation times after administration resulting in improved efficacy. Studies have reported the use of nanotechnologies to improve the efficacy of gemcitabine (the current first line treatment) as well as investigating the potential of using other drug molecules which have previously shown promise but were unable to be utilised due to the inability to administer through appropriate routes-often related to solubility. Of the nanotechnologies reported, many can offer site specific targeting to the site of action as well as a plethora of other multifunctional properties such as image guidance and controlled release. This review focuses on the use of the major nanotechnologies both under pre-clinical development and those which have recently been approved for use in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ayesha Manzur
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Adeolu Oluwasanmi
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Darren Moss
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Anthony Curtis
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Clare Hoskins
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| |
Collapse
|
25
|
Ganda IS, Zhong Q, Hali M, Albuquerque RLC, Padilha FF, da Rocha SRP, Whittum-Hudson JA. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int J Pharm 2017; 527:79-91. [PMID: 28546072 PMCID: PMC5522616 DOI: 10.1016/j.ijpharm.2017.05.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/07/2017] [Accepted: 05/21/2017] [Indexed: 12/12/2022]
Abstract
Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance.
Collapse
Affiliation(s)
- Ingrid S Ganda
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil; Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Qian Zhong
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Mirabela Hali
- Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Ricardo L C Albuquerque
- Laboratory of Morphology and Structural Biology, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil.
| | - Francine F Padilha
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil.
| | - Sandro R P da Rocha
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil; Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Judith A Whittum-Hudson
- Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Lancelot A, Clavería-Gimeno R, Velázquez-Campoy A, Abian O, Serrano JL, Sierra T. Nanostructures based on ammonium-terminated amphiphilic Janus dendrimers as camptothecin carriers with antiviral activity. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Rokach S, Ottaviani MF, Shames AI, Aserin A, Garti N. Behavior of PPI-G2 Dendrimer in a Microemulsion. J Phys Chem B 2017; 121:2339-2349. [DOI: 10.1021/acs.jpcb.6b10237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shifra Rokach
- The
Ratner Chair of Chemistry, Casali Institute of Applied Chemistry,
The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- Judea Regional Research & Development Center, Carmel 9040400, Israel
| | - Maria Francesca Ottaviani
- Department
of Earth, Life and Environment Sciences, University of Urbino, Loc. Crocicchia, Urbino 61029, Italy
| | - Alexander I. Shames
- Department
of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Be’er-Sheva 84105, Israel
| | - Abraham Aserin
- The
Ratner Chair of Chemistry, Casali Institute of Applied Chemistry,
The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Nissim Garti
- The
Ratner Chair of Chemistry, Casali Institute of Applied Chemistry,
The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
28
|
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2017; 4:375-90. [PMID: 26806314 DOI: 10.1039/c5bm00532a] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China. and Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
29
|
Comparison of Dialysis- and Solvatofluorochromism-Based Methods to Determine Drug Release Rates from Polymer Nanoassemblies. Pharm Res 2016; 34:394-407. [DOI: 10.1007/s11095-016-2070-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
|
30
|
Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to Poly(amidoamine) Dendrimers and Pulmonary Delivery Reduce Cardiac Accumulation and Enhance Antitumor Activity of Doxorubicin in Lung Metastasis. Mol Pharm 2016; 13:2363-75. [PMID: 27253493 PMCID: PMC6886243 DOI: 10.1021/acs.molpharmaceut.6b00126] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lung is one of the most common sites to which almost all other primary tumors metastasize. The major challenges in the chemotherapy of lung metastases include the low drug concentration found in the tumors and high systemic toxicity upon systemic administration. In this study, we combine local lung delivery and the use of nanocarrier-based systems for improving pharmacokinetics and biodistribution of the therapeutics to fight lung metastases. We investigate the impact of the conjugation of doxorubicin (DOX) to carboxyl-terminated poly(amidoamine) dendrimers (PAMAM) through a bond that allows for intracellular-triggered release, and the effect of pulmonary delivery of the dendrimer-DOX conjugate in decreasing tumor burden in a lung metastasis model. The results show a dramatic increase in efficacy of DOX treatment of the melanoma (B16-F10) lung metastasis mouse model upon pulmonary administration of the drug, as indicated by decreased tumor burden (lung weight) and increased survival rates of the animals (male C57BL/6) when compared to iv delivery. Conjugation of DOX further increased the therapeutic efficacy upon lung delivery as indicated by the smaller number of nodules observed in the lungs when compared to free DOX. These results are in agreement with the biodistribution characteristics of the DOX upon pulmonary delivery, which showed a longer lung accumulation/retention compared to iv administration. The distribution of DOX to the heart tissue is also significantly decreased upon pulmonary administration, and further decreased upon conjugation. The results show, therefore, that pulmonary administration of DOX combined to conjugation to PAMAM dendrimer through an intracellular labile bond is a potential strategy to enhance the therapeutic efficacy and decrease systemic toxicity of DOX.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Elizabeth R. Bielski
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Leonan S. Rodrigues
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Matthew R. Brown
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Joshua J. Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Sandro R. P. da Rocha
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
- Department of Pharmaceutics, College of Pharmacy, and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
31
|
Zhong Q, Merkel OM, Reineke JJ, da Rocha SRP. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution. Mol Pharm 2016; 13:1866-78. [PMID: 27148629 DOI: 10.1021/acs.molpharmaceut.6b00036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs -3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer chemistry combined can be used to passively target tissues and cell populations of great interest, and can thus be used as guiding principles in the development of dendrimer-based drug delivery strategies in the treatment of medically relevant diseases including lung ailments as well as systemic disorders.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , Detroit, Michigan 48202, United States
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München , 81377 München, Germany
| | - Joshua J Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Sandro R P da Rocha
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
32
|
Zhong Q, da Rocha SRP. Poly(amidoamine) Dendrimer-Doxorubicin Conjugates: In Vitro Characteristics and Pseudosolution Formulation in Pressurized Metered-Dose Inhalers. Mol Pharm 2016; 13:1058-72. [PMID: 26832992 DOI: 10.1021/acs.molpharmaceut.5b00876] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lung cancers are the leading cause of cancer death for both men and women. A series of PEGylated poly(amidoamine) dendrimer-based doxorubicin (DOX) nanocarriers (G3NH2-mPEG-nDOX) were synthesized and their chemistry tailored for the development of novel pseudosolution formulations in propellant-based metered-dose inhalers (pMDIs) with enhanced aerosol characteristics. A pH-labile bond was used to conjugate DOX to dendrimer for controlled intracellular release. We employed a two-step PEGylation strategy to cover a range of DOX loading and PEGylation density. We investigated the impact of pH, PEGylation density, and DOX payload on the release of DOX from the conjugate. We also determined the cellular internalization of the conjugate, the intracellular release kinetics of DOX from the conjugate, and their ability to kill human alveolar carcinoma cells (A549). The acid-labile conjugates sustained the release of DOX in acidic medium, and also intracellularly, as determined by nuclear colocalization studies with confocal microscopy. Meanwhile, DOX was retained in the conjugate at extracellular physiological conditions, indicating their potential to achieve spatial and temporal controlled release profiles. We also observed that the kinetics of cellular entry of the conjugates with DOX increased significantly compared to free DOX. Due to controlled release, the G3NH2-mPEG-nDOX conjugates showed time-dependent cell kill, but their cell kill ability was comparable to free DOX, which suggests their potential in vivo as compared to free DOX. The conjugates were formulated in pMDIs as pseudosolution formulations, with the help of a minimum amount of cosolvent (ethanol; <0.4%; v/v). The physical stability and aerosol characteristics of the conjugates were controlled by the PEGylation density of the carriers: the higher the PEG density, the better the dispersibility and the better the deep lung deposition of the conjugates (fine particle fraction up to ca. 80%).
Collapse
Affiliation(s)
- Qian Zhong
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Sandro R P da Rocha
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States.,Pharmaceutics and Chemical and Life Science Engineering, Virginia Commonwealth University , 410 N 12th Street, Richmond, Virginia 23298-0533, United States
| |
Collapse
|
33
|
Ion transfer and adsorption behavior of ionizable drugs affected by PAMAM dendrimers at the water|1,2- dichloroethane interface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Szulc A, Signorelli M, Schiraldi A, Appelhans D, Voit B, Bryszewska M, Klajnert-Maculewicz B, Fessas D. Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5'-triphosphates. Int J Pharm 2015; 495:940-7. [PMID: 26456295 DOI: 10.1016/j.ijpharm.2015.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 01/15/2023]
Abstract
Poly(propylene imine) (PPI) dendrimers contained surface maltose modification are proposed as drug carriers for nucleoside analog (NA) 5'-triphosphates. The aim of this study was to investigate the interactions between PPI dendrimers of 3rd (G3) or 4th (G4) generation and cytidine-5'-triphosphate (CTP) by Isothermal Titration Calorimetry method. CTP was used as a model molecule of pyrimidine nucleoside analog-cytarabine (ara-CTP) commonly used in leukemia treatment. Complexes of PPI dendrimers with NAs may help to overcome severe limitations of NAs associated with their low solubility and stability or resistance in cancer cells. In the present work, we evaluated stoichiometry and a mechanism of forming complexes between dendrimers and the nucleotide. Moreover, we examined the efficiency of complex formation in relation to dendrimer generations, a type of dendrimer modification with maltose residues and a type of solvent. It was observed that PPI dendrimers create complexes with CTP with high efficiency that makes them promising candidates for a drug delivery system.
Collapse
Affiliation(s)
- Aleksandra Szulc
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| | - Alberto Schiraldi
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| |
Collapse
|
35
|
Oledzka E, Sawicka A, Sobczak M, Nalecz-Jawecki G, Skrzypczak A, Kolodziejski W. Prazosin-Conjugated Matrices Based on Biodegradable Polymers and α-Amino Acids--Synthesis, Characterization, and in Vitro Release Study. Molecules 2015; 20:14533-51. [PMID: 26274943 PMCID: PMC6332215 DOI: 10.3390/molecules200814533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 11/16/2022] Open
Abstract
Novel and promising macromolecular conjugates of the α1-adrenergic blocker prazosin were directly synthesized by covalent incorporation of the drug to matrices composed of biodegradable polymers and α-amino acids for the development of a polymeric implantable drug delivery carrier. The cyto- and genotoxicity of the synthesized matrices were evaluated using a bacterial luminescence test, protozoan assay, and Salmonella typhimurium TA1535. A new urethane bond was formed between the hydroxyl end-groups of the synthesized polymer matrices and an amine group of prazosin, using 1,1'-carbonyldiimidazole (CDI) as a coupling agent. The structure of the polymeric conjugates was characterized by various spectroscopy techniques. A study of hydrogen nuclear magnetic resonance ((1)H-NMR) and differential scanning calorimetry (DSC) thermodiagrams indicated that the presence of prazosin pendant groups in the macromolecule structures increased the polymer's rigidity alongside increasing glass transition temperature. It has been found that the kinetic release of prazosin from the obtained macromolecular conjugates, tested in vitro under different conditions, is strongly dependent on the physicochemical properties of polymeric matrices. Furthermore, the presence of a urethane bond in the macromolecular conjugates allowed for obtaining a relatively controlled release profile of the drug. The obtained results confirm that the pharmacokinetics of prazosin might be improved through the synthesis of polymeric conjugates containing biomedical polymers and α-amino acids in the macromolecule.
Collapse
Affiliation(s)
- Ewa Oledzka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Anna Sawicka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Grzegorz Nalecz-Jawecki
- Department of Environmental Health Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Agata Skrzypczak
- Department of Environmental Health Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Waclaw Kolodziejski
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| |
Collapse
|
36
|
Bielski ER, Zhong Q, Brown M, da Rocha SRP. Effect of the Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial Targeting of Poly(amidoamine) Dendrimers. Mol Pharm 2015; 12:3043-53. [PMID: 26158804 DOI: 10.1021/acs.molpharmaceut.5b00320] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many clinically relevant diseases with known poor therapeutic outcomes, including cancer and neurodegenerative disorders, have been directly linked to mitochondrial dysfunction. The ability to efficiently target therapeutics to intracellular organelles such as mitochondria may represent new opportunities for the effective treatment of such ailments. The present study reports the synthesis, cellular uptake, cytotoxicity, and mitochondrial colocalization of conjugates of triphenylphosphonium cation (TPP) to amine-terminated, generation 4, poly(amidoamine) (PAMAM) dendrimer (G4NH2) nanocarriers. The mitochondrial-targeting moiety TPP was either directly conjugated to G4NH2 (G4NH2-TPP) or to the dendrimer through a flexible polyethylene glycol (PEG) linker (G4NH2-PEGTPP). Conjugation was done at various TPP densities to assess their biological activity and potential for mitochondrial-targeted drug delivery. Tests in an in vitro model of the human alveolar carcinoma (A549 cells) showed that even at a low TPP density (∼5 TPP) both the cellular internalization and mitochondrial targeting increase significantly, as determined by fluorescence activated cell sorting (FACS) and confocal microscopy (CM), respectively. At a density of ∼10 TPP per G4NH2, further increase in cellular internalization and mitochondrial targeting was achieved. However, at this higher density, the nanocarriers also showed pronounced cytotoxicity. It was observed that the toxicity of the conjugates is decreased upon the addition of a PEG linker between the dendrimer and TPP (G4NH2-PEGTPP), while the mitochondrial targeting ability of the nanocarriers is not affected as the PEG density increases. The proposed strategies indicate that TPP-conjugated G4NH2 dendrimers represent a potentially viable strategy for the targeting of therapeutic molecules to mitochondria, which may help improve therapeutic outcomes of diseases related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elizabeth R Bielski
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Qian Zhong
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Matthew Brown
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Sandro R P da Rocha
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
37
|
Spectroscopic and calorimetric studies of formation of the supramolecular complexes of PAMAM G5-NH₂ and G5-OH dendrimers with 5-fluorouracil in aqueous solution. Int J Pharm 2015; 490:102-11. [PMID: 25997661 DOI: 10.1016/j.ijpharm.2015.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023]
Abstract
The results of spectroscopic measurements (increase in solubility, equilibrium dialysis, (1)H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate exothermic (ΔH<0) and spontaneous (ΔG < 0) combination of an antitumor drug, 5-fluorouracil, by both cationic PAMAM G5-NH2 dendrimer and its hydroxyl analog PAMAM G5-OH in aqueous solutions at room temperature. PAMAM G5-NH2 dendrimer combines about 70 molecules of the drug with equilibrium constant K ≅ 300, which is accompanied by an increase in the system order (ΔS < 0). Hydroxyl dendrimer, PAMAM G5-OH, combines about 14 molecules of 5-fluorouracil with equilibrium constant K ≅ 100. This process is accompanied by an increase in the system disorder (ΔS > 0).
Collapse
|
38
|
Posocco B, Dreussi E, de Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G, Dapas B. Polysaccharides for the Delivery of Antitumor Drugs. MATERIALS 2015; 8:2569-2615. [PMCID: PMC5455549 DOI: 10.3390/ma8052569] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs), an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.
Collapse
Affiliation(s)
- Bianca Posocco
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Eva Dreussi
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Jacopo de Santa
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Giuseppe Toffoli
- Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081 Aviano (PN), Italy; E-Mails: (B.P.); (E.D.); jdesanta.@cro.it (J.S.); (G.T.)
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; E-Mails: (M.A.); (B.D.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy; E-Mail:
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Federica Tonon
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy; E-Mails: (M.G.); (R.F.); (F.T.)
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; E-Mails: (M.A.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; E-Mails: (M.A.); (B.D.)
| |
Collapse
|
39
|
Singh U, Dar MM, Anayutullah S, Alam H, Manzoor N, Al-Thabaiti SA, Hashmi AA. Design and synthesis of Co(II) and Cu(II) complexes of a dendrimeric chelate: promising anticandidal potential of chelotherapeutic agents. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1040007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Urvashi Singh
- Department of Chemistry, Jamia Millia Islamia University, New Delhi, India
| | | | - Syed Anayutullah
- Department of Chemistry, Jamia Millia Islamia University, New Delhi, India
| | - Hammad Alam
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | | | - Athar Adil Hashmi
- Department of Chemistry, Jamia Millia Islamia University, New Delhi, India
| |
Collapse
|
40
|
Murugan E, Yogaraj V, Geetha Rani DP, Sinha AK. Evaluation of surface acetylated and internally quaternized poly(propylene imine) dendrimer as a biocompatible drug carrier for piroxicam as a model drug. RSC Adv 2015. [DOI: 10.1039/c5ra20704e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two types of new surface acetylated and internally quaternized poly(propylene imine) dendrimers QPPI-NHAc (G2)/(G3) were prepared, characterized and then demonstrated as potential and biocompatible drug carriers using piroxicam as a model drug.
Collapse
Affiliation(s)
- E. Murugan
- Department of Physical Chemistry
- School of Chemical Sciences
- University of Madras
- Chennai – 600 025
- India
| | - V. Yogaraj
- Department of Physical Chemistry
- School of Chemical Sciences
- University of Madras
- Chennai – 600 025
- India
| | - D. P. Geetha Rani
- Department of Physical Chemistry
- School of Chemical Sciences
- University of Madras
- Chennai – 600 025
- India
| | - Alok Kumar Sinha
- Department of Science and Technology
- Nano Mission Division
- New Delhi – 110016
- India
| |
Collapse
|
41
|
He X, Lin M, Lu T, Qu Z, Xu F. Molecular analysis of interactions between a PAMAM dendrimer–paclitaxel conjugate and a biomembrane. Phys Chem Chem Phys 2015; 17:29507-17. [DOI: 10.1039/c5cp02242h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the underlying mechanism of nanomedicine–biomembrane interactions is important for the design and optimization of payload delivery systems.
Collapse
Affiliation(s)
- XiaoCong He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Min Lin
- Bioinspired Engineering and Biomechanics Center (BEBC)
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
| | - TianJian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC)
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - ZhiGuo Qu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC)
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
| |
Collapse
|
42
|
Tharkar P, Madani AU, Lasham A, Shelling AN, Al-Kassas R. Nanoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2014; 23:97-108. [DOI: 10.3109/1061186x.2014.958844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Zhao J, Zhou R, Fu X, Ren W, Ma L, Li R, Zhao Y, Guo L. Cell-Penetrable Lysine Dendrimers for Anti-Cancer Drug Delivery: Synthesis and Preliminary Biological Evaluation. Arch Pharm (Weinheim) 2014; 347:469-77. [PMID: 24740712 DOI: 10.1002/ardp.201300415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Xiaoyu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
- State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; Chengdu P. R. China
| | - Wen Ren
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Lifang Ma
- School of Chemical Engineering; Sichuan University; Chengdu P. R. China
| | - Ran Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| |
Collapse
|
44
|
Jain V, Bharatam PV. Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs. NANOSCALE 2014; 6:2476-2501. [PMID: 24441940 DOI: 10.1039/c3nr05400d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticle based drug delivery systems are gaining popularity due to their wide spectrum advantages over traditional drug delivery systems; among them, dendrimeric nano-vectors are the most widely explored carriers for pharmaceutical and biomedical applications. The precise mechanism of encapsulation of drug molecules inside the dendritic matrix, delivery of drugs into specific cells, interactions of nano-formulation with biological targets and proteins, etc. present a substantial challenge to the scientific understanding of the subject. Computational methods complement experimental techniques in the design and optimization of drug delivery systems, thus minimizing the investment in drug design and development. Significant progress in computer simulations could facilitate an understanding of the precise mechanism of encapsulation of bioactive molecules and their delivery. This review summarizes the pharmacoinformatic studies spanning from quantum chemical calculations to coarse-grained simulations, aimed at providing better insight into dendrimer-drug interactions and the physicochemical parameters influencing the binding and release mechanism of drugs.
Collapse
Affiliation(s)
- Vaibhav Jain
- Department of Medicinal Chemistry, Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| | | |
Collapse
|
45
|
|
46
|
Abstract
Schematized types of interactions of dendrimers with drugs or biologically active substances.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4, France
- Université de Toulouse
- UPS
| | - Cédric-Olivier Turrin
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4, France
- Université de Toulouse
- UPS
| |
Collapse
|
47
|
Solubility enhancement of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. Int J Pharm 2013; 451:18-22. [DOI: 10.1016/j.ijpharm.2013.04.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022]
|
48
|
Murugan E, Geetha Rani DP, Srinivasan K, Muthumary J. New surface hydroxylated and internally quaternised poly(propylene imine) dendrimers as efficient biocompatible drug carriers of norfloxacin. Expert Opin Drug Deliv 2013; 10:1319-34. [DOI: 10.1517/17425247.2013.801957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Du Z, Lu Y, Dai X, Zhang-Negrerie D, Gao Q. The Discovery of a Facile Access to the Synthesis of NSAID Dendritic Prodrugs. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13602443643042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient and straightforward method for the preparation of dendritic prodrugs is reported. Based on this new approach, a class of biodegradable dendrimers has been synthesised from L-tartaric acid and one of the nonsteroidal anti-inflammatory drugs, namely, aspirin or ibuprofen.
Collapse
Affiliation(s)
- Zuyin Du
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yanhui Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xuedong Dai
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Daisy Zhang-Negrerie
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
50
|
Cai X, Hu J, Xiao J, Cheng Y. Dendrimer and cancer: a patent review (2006-present). Expert Opin Ther Pat 2013; 23:515-29. [PMID: 23339480 DOI: 10.1517/13543776.2013.761207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Dendrimers were widely used in cancer diagnosis and therapy during the past decade. The surface functionalities allow bioactive molecules such as imaging probes, therapeutic compounds, targeting ligands to be present on dendrimer surface in a multivalent fashion. In addition, the interior pockets as well as the charged surface of dendrimer can be encapsulated/bound with anti-cancer drugs or therapeutic DNAs/siRNAs. AREAS COVERED The combination of dendrimer chemistry and new cancer therapy techniques such as radiotherapy, photodynamic therapy, neuron capture therapy, and photothermal therapy provides promising strategies in future cancer therapy. Here, we focused on recent advances on this topic in the patents (2006 - present) and discussed the advantages of dendrimer technology in these inventions. EXPERT OPINION The challenges and perspectives of dendrimer-based theranostics for cancer diagnosis and therapy are discussed. Future efforts in this area should be focused on designing materials to solve problems such as cancer metastasis, multidrug resistance (MDR) in cancer cells, and early-stage cancer diagnosis.
Collapse
Affiliation(s)
- Xiaopan Cai
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, Shanghai, PR China
| | | | | | | |
Collapse
|