1
|
Mottaghi Amlashi D, Mobini S, Shahedi M, Habibi Z, Bavandi H, Yousefi M. Biocatalytic synthesis of oxa(thia)diazole aryl thioethers. Sci Rep 2024; 14:19468. [PMID: 39174618 PMCID: PMC11341560 DOI: 10.1038/s41598-024-70239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach for the synthesis of 1,3,4-oxa(thia)diazole aryl thioethers through a biocatalytic strategy has been introduced. By leveraging Myceliophthora thermophila laccase (Novozym 51003) as a catalyst, catechol undergoes oxidation to ortho-quinone, facilitating subsequent 1,4-thia-Michael addition reactions. The method offers efficiency and mild reaction conditions, demonstrating promise for sustainable synthesis pathways in organic chemistry. Using this approach, 13 new derivatives of 2,5-disubstituted-1,3,4-oxa(thia)diazole aryl thioethers, with a yield of 46-94%, were synthesized.
Collapse
Affiliation(s)
- Donya Mottaghi Amlashi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Sepideh Mobini
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran.
| | - Hossein Bavandi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Maryam Yousefi
- Avicenna Research Institute, Nanobiotechnology Research Center, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Akkiraju AG, Atcha KR, Sagurthi SR. Cloning, Purification, and Biophysical Characterization of FemB Protein from Methicillin-Resistant Staphylococcus aureus and Inhibitors Screening. Appl Biochem Biotechnol 2024; 196:4974-4992. [PMID: 37991634 DOI: 10.1007/s12010-023-04780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Methicillin-resistant Staphylococcus aureus has emerged as a leading cause of nosocomial, community acquired infections worldwide. Earlier investigations revealed that mecA-encoded FEM proteins play a role in antimicrobial resistance by developing unique peptidoglycan cross-linking which helps in the formation of protective cell membrane. In view to this, present study focused on expression, purification FEM proteins, and FemB biophysical characterization with the aid of in silico and in vitro approaches. Furthermore, we carried out biological screening assays and identified the novel potent 1,2,3-triazole conjugated 1,3,4-oxadiazole hybrid molecule which could inhibit the MRSA than the proven oxacillin.
Collapse
Affiliation(s)
- Anjini Gayatri Akkiraju
- Molecular Medicine Lab, Dept. of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Krishnam Raju Atcha
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana, 500001, India
| | - Someswar Rao Sagurthi
- Molecular Medicine Lab, Dept. of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
3
|
Khwaza V, Mlala S, Aderibigbe BA. Advancements in Synthetic Strategies and Biological Effects of Ciprofloxacin Derivatives: A Review. Int J Mol Sci 2024; 25:4919. [PMID: 38732134 PMCID: PMC11084713 DOI: 10.3390/ijms25094919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
4
|
Santhosh C, Singh KR, Sheela K, Swaroop TR, Sadashiva MP. Regioselective Synthesis of 2,5-Disubstituted-1,3,4-thiadiazoles and 1,3,4-Oxadiazoles via Alkyl 2-(Methylthio)-2-thioxoacetates and Alkyl 2-Amino-2-thioxoacetates. J Org Chem 2023; 88:11486-11496. [PMID: 37523659 DOI: 10.1021/acs.joc.3c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An acid-catalyzed regioselective cyclization reaction of 2,5-disubstituted-1,3,4-thiadiazoles and 1,3,4-oxadiazoles has been developed. The synthetic precursors alkyl 2-(methylthio)-2-thioxoacetates/alkyl 2-amino-2-thioxoacetates react efficiently with acyl hydrazides, which transformed into a series of dehydrative and desulfurative products with employment of p-TSA and AcOH through a regioselective cyclization process. The alkyl 2-amino-2-thioxoacetate pathway generates excellent yield among the mentioned procedures. The reported methods are operationally simplistic and highly efficient with metal-free conditions and demonstrate significant functional group compatibility. Regioselective cyclized products were confirmed by single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
| | - Krishna Ravi Singh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Kalleshappa Sheela
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Toreshettahally R Swaroop
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | | |
Collapse
|
5
|
Wang G, He M, Huang Y, Peng Z. Synthesis and biological evaluation of new kojic acid-1,3,4-oxadiazole hybrids as tyrosinase inhibitors and their application in the anti-browning of fresh-cut mushrooms. Food Chem 2023; 409:135275. [PMID: 36586247 DOI: 10.1016/j.foodchem.2022.135275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In the food industry, inhibition of tyrosinase activity is considered as one of the main means to prevent browning. Therefore, fourteen kojic acid-1,3,4-oxadiazole hybrids (5a-5n) were prepared and tested for their tyrosinase inhibitory effects. Among them, 5f (IC50 = 5.32 ± 0.58 μM) has the best anti-tyrosinase activity and was 9 times higher than that of kojic acid (IC50 = 49.77 ± 1.19 μM). Additionally, the inhibitory mechanism was studied by copper-chelating assay, ultraviolet spectrophotometry, fluorescence quenching, molecular docking, etc. The results had shown that 5f could not only bind to the copper ion in the active region of tyrosinase but also change the secondary structure of tyrosinase. Combined with the outstanding anti-browning effect and low cytotoxicity of 5f, it is concluded that these title derivatives could be used as the leading molecules in the development of new anti-browning agents.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Kim H, Gu L, Yeo H, Choi U, Lee CR, Yu H, Koo S. Rapid Assembly of Pyrrole-Ligated 1,3,4-Oxadiazoles and Excellent Antibacterial Activity of Iodophenol Substituents. Molecules 2023; 28:molecules28083638. [PMID: 37110872 PMCID: PMC10142073 DOI: 10.3390/molecules28083638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Pyrrole-ligated 1,3,4-oxadiazole is a very important pharmacophore which exhibits broad therapeutic effects such as anti-tuberculosis, anti-epileptic, anti-HIV, anti-cancer, anti-inflammatory, antioxidant, and antibacterial activities. A one-pot Maillard reaction between D-Ribose and an L-amino methyl ester in DMSO with oxalic acid at 2.5 atm and 80 °C expeditiously produced pyrrole-2-carbaldehyde platform chemicals in reasonable yields, which were utilized for the synthesis of pyrrole-ligated 1,3,4-oxadiazoles. Benzohydrazide reacted with the formyl group of the pyrrole platforms to provide the corresponding imine intermediates, which underwent I2-mediated oxidative cyclization to the pyrrole-ligated 1,3,4-oxadiazole skeleton. The structure and activity relationship (SAR) of the target compounds with varying alkyl or aryl substituents of the amino acids and electron-withdrawing or electron-donating substituents on the phenyl ring of benzohydrazide were evaluated for antibacterial activity against Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii as representative Gram(-) and Gram(+) bacteria. Branched alkyl groups from the amino acid showed better antibacterial activities. Absolutely superior activities were observed for 5f-1 with an iodophenol substituent against A. baumannii (MIC < 2 μg/mL), a bacterial pathogen that displays a high resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Hyein Kim
- Department of Chemistry, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin 17058, Gyeonggi-Do, Republic of Korea
| | - Lina Gu
- Department of Chemistry, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin 17058, Gyeonggi-Do, Republic of Korea
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Huisu Yeo
- Department of Chemistry, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin 17058, Gyeonggi-Do, Republic of Korea
| | - Umji Choi
- Department of Biological Sciences and Bioinformatics, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin 17058, Gyeonggi-Do, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences and Bioinformatics, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin 17058, Gyeonggi-Do, Republic of Korea
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Sangho Koo
- Department of Chemistry, Myongji University, Myongji-Ro 116, Cheoin-Gu, Yongin 17058, Gyeonggi-Do, Republic of Korea
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
7
|
AkhtarVirk N, Iqbal J, ur-Rehman A, Rasool S, Abid MA, un-Nisa M, Saadiq M, khalid H, Shah SAA. Novel 1,2,4-triazoles as anti-enzymatic agents: Microwave versus conventional synthesis, characterization, docking and BSA binding studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
M. A. Asif H, Kamal S, Aziz-ur-Rehman, Bibi I, AlMasoud N, Alomar TS, Iqbal M. Synthesis characterization and evaluation of novel triazole based analogs as a acetylcholinesterase and α-glucosidase inhibitors. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
9
|
Tiwari D, Narang R, Sudhakar K, Singh V, Lal S, Devgun M. 1,3,4-oxadiazole derivatives as potential antimicrobial agents. Chem Biol Drug Des 2022; 100:1086-1121. [PMID: 35676800 DOI: 10.1111/cbdd.14100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Due to the emergence of drug-resistant microbial strains, different research groups are continuously developing novel drug molecules against already exploited and unexploited targets. 1,3,4-Oxadiazole derivatives exhibited noteworthy antimicrobial activities. The presence of 1,3,4-oxadiazole moiety in antimicrobial agents can modify their polarity and flexibility, which significantly improves biological activities due to various bonded and non-bonded interactions viz. hydrogen bond, steric, electrostatic, and hydrophobic with target sites. The present review elaborates the therapeutic targets and mode of interaction of 1,3,4-oxadiazoles as antimicrobial agents. 1,3,4-oxadiazole derivatives target enoyl reductase (InhA), 14α-demethylase in the mycobacterial cell; GlcN-6-P synthase, thymidylate synthase, peptide deformylase, RNA polymerase, dehydrosqualene synthase in bacterial strains; ergosterol biosynthesis pathway, P450-14α demethylase, protein-N-myristoyltransferase in fungal strains; FtsZ protein, interfere with purine and functional protein synthesis in plant bacteria. The present review also summarizes the effect of different moieties and functional groups on the antimicrobial activity of 1,3,4-oxadiazole derivatives.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
10
|
Ultrasonic-Assisted Synthesis of Benzofuran Appended Oxadiazole Molecules as Tyrosinase Inhibitors: Mechanistic Approach through Enzyme Inhibition, Molecular Docking, Chemoinformatics, ADMET and Drug-Likeness Studies. Int J Mol Sci 2022; 23:ijms231810979. [PMID: 36142889 PMCID: PMC9500974 DOI: 10.3390/ijms231810979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Furan-oxadiazole structural hybrids belong to the most promising and biologically active classes of oxygen and nitrogen containing five member heterocycles which have expanded therapeutic scope and potential in the fields of pharmacology, medicinal chemistry and pharmaceutics. A novel series 5a-j of benzofuran-oxadiazole molecules incorporating S-alkylated amide linkage have been synthesized using ultrasonic irradiation and screened for bacterial tyrosinase inhibition activity. Most of the synthesized furan-oxadiazole structural motifs exhibited significant tyrosinase inhibition activity in the micromolar range, with one of the derivatives being more potent than the standard drug ascorbic acid. Among the tested compounds, the scaffold 5a displayed more tyrosinase inhibition efficacy IC50 (11 ± 0.25 μM) than the ascorbic acid IC50 (11.5 ± 0.1 μM). Compounds 5b, 5c and 5d efficiently inhibited bacterial tyrosinase with IC50 values in the range of 12.4 ± 0.0-15.5 ± 0.0 μM. The 2-fluorophenylacetamide containing furan-oxadiazole compound 5a may be considered as a potential lead for tyrosinase inhibition with lesser side effects as a skin whitening and malignant melanoma anticancer agent.
Collapse
|
11
|
Abdullah Asif H, Kamal S, Rehman AU, Rasool S, Hamid Akash MS. Synthesis, Characterization, and Enzyme Inhibition Properties of 1,2,4-Triazole Bearing Azinane Analogues. ACS OMEGA 2022; 7:32360-32368. [PMID: 36119993 PMCID: PMC9476189 DOI: 10.1021/acsomega.2c03779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Considering the importance of acetylcholine esterase (AChE, BchE) and α-glucosidase in the treatment of Alzheimer's disease and diabetes mellitus, the synthesis of novel azinane triazole-based derivatives as effective acetylcholinesterase (AchE), α-glucosidase, urease, lipoxygenase (LOX), and butyrylcholinesterase (BChE) inhibitors is described. Azinane analogue (2) was merged with 1,2,4-triazole to acquire 1-(4-toluenesulfonyl)-4-(3-mercapto-4-methyl-4H-1,2,4-triazol-5-yl) piperidine (8) through a list of intermediates including 1-(4-toluenesulfonyl)-4-(ethoxycarbonyl) piperidine (3), 1-(4-toluenesulfonyl)-4-(2-hydrazinocarbonyl)piperidine (5), and 1-(4-toluenesulfonyl)-4-[1-(methyl amino thiocarbonyl)-2-hydrazinocarbonyl]piperidine (7). The target molecules, 1-(4-toluenesulfonyl)-4-[3-(N-alkyl/phenyl/aryl-2-ethanamoyl thio)-4-methyl-4H-1,2,4-triazol-5-yl] piperidine (12a-o), were achieved through the reaction of 8 with N-alkyl/phenyl/aryl-2-bromo ethanamides (11a-o) as electrophiles. These electrophiles were accomplished by a benign reaction of alkyl/phenyl/aryl amines (9a-o) and 2-bromo ethanoyl bromide (10). The spectral study of IR, 1D-NMR, and EI-MS corroborated the synthesized compounds. Methyl phenyl and methyl phenyl-substituted derivatives 12d and 12m with IC50 = 0.73 ± 0.54; 36.74 ± 1.24; 19.35 ± 1.28; 0.017 ± 0.53; and 0.038 ± 0.50 μM are found to be the most potent AChE, α-glucosidase, urease, and BChE inhibitors. The high inhibition potential of synthesized molecules against AChE, α-glucosidase, urease, and BChEenzymes inferred their role in enzyme inhibition properties.
Collapse
Affiliation(s)
| | - Shagufta Kamal
- Department
of Biochemistry, Government College University, Faisalabad 38040, Pakistan
| | - Aziz-ur Rehman
- Department
of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Shahid Rasool
- Department
of Chemistry, Government College University, Lahore 54000, Pakistan
| | | |
Collapse
|
12
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Mao K, Ma Y, Lv L, Li Z. [4+1] Cyclization of α‐CF3 Carbonyls with Hydrazides: Synthesis of 1,3,4‐Oxadiazoles under Ambient Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kuantao Mao
- Renmin University of China Chemistry Beijing CHINA
| | - Yangyang Ma
- Renmin University of China Chemistry Beijing CHINA
| | - Leiyang Lv
- Renmin University of China Chemistry Beijing CHINA
| | - Zhiping Li
- Renmin University of China Department of Chemistry Zhongguancun Street No.59 100872 Beijing CHINA
| |
Collapse
|
14
|
Yarmohammadi E, Beyzaei H, Aryan R, Moradi A. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents. Mol Divers 2021; 25:2367-2378. [PMID: 32770458 DOI: 10.1007/s11030-020-10125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
One of the goals of green chemistry is to use environmentally friendly solvents or remove and reduce the volume of harmful spent solvents. In this study, a novel process for the synthesis of 5-substituted 1,3,4-oxadiazole-2-thiol derivatives was proposed via ultrasound-assisted reaction of aryl hydrazides with CS2 (1:1 molar ratio) in some drops of DMF in the absence of basic or acidic catalysts. They were produced in good to excellent yields under easy workup and purification conditions. In order to prove the usefulness of the prepared compounds, their antioxidant, antibacterial, and antifungal potentials were screened by DPPH free radical scavenging, serial twofold microdilution and streak plate methods. Acceptable to significant inhibitory activities were observed with synthesized heterocycles. The results showed that 5-(4-fluorophenyl)-1,3,4-oxadiazole-2-thiol (3c) is an broad-spectrum antimicrobial agent. Many of them displayed remarkable antioxidant properties comparable to standard controls (ascorbic acid and α-tocopherol). Synthesized 1,3,4-oxadiazoles are also potent candidates to treat cancer, Parkinson, inflammatory, and diabetes diseases. Eighteen 5-substituted 1,3,4-oxadiazole-2-thiol derivatives as potent antimicrobial and antioxidant agents were prepared via a new, efficient and green procedure.
Collapse
Affiliation(s)
- Elahe Yarmohammadi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Reza Aryan
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Ashraf Moradi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
15
|
Feng X, Li J, Feng Y, Zhang K, Chen N, Fang H, Li Z. Series of d10 complexes based on sulfamethoxazole: Auxiliary ligand induces structure diversity, luminescence and antibacterial properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Long ZQ, Yang LL, Zhang JR, Liu ST, Wang PY, Zhu JJ, Shao WB, Liu LW, Yang S. Fabrication of Versatile Pyrazole Hydrazide Derivatives Bearing a 1,3,4-Oxadiazole Core as Multipurpose Agricultural Chemicals against Plant Fungal, Oomycete, and Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8380-8393. [PMID: 34296859 DOI: 10.1021/acs.jafc.1c02460] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing multipurpose agricultural chemicals is appealing in crop protection, thus eventually realizing the reduction and efficient usage of pesticides. Herein, an array of versatile pyrazole hydrazide derivatives bearing a 1,3,4-oxadiazole core were initially synthesized and biologically evaluated the antifungal, antioomycetes, and antibacterial activities. In addition, the pyrazole ring was replaced by the correlative pyrrole, thiazole, and indole scaffolds to extend the molecular diversity. The results showed that most of these hybrid compounds were empowered with multifunctional bioactivities, which are exemplified by compounds a1-a6, b1-b3, b7, b10, b13, and b18. For the antifungal activity, the minimal EC50 values could afford 0.47 (a2), 1.05 (a2), 0.65 (a1), and 1.32 μg/mL (b3) against the corresponding fungi Gibberella zeae (G. z.), Fusarium oxysporum, Botryosphaeria dothidea, and Rhizoctonia solani. In vivo pot experiments against corn scab (caused by G. z.) revealed that the compound a2 was effective with protective and curative activities of 90.2 and 86.3% at 200 μg/mL, which was comparable to those of fungicides boscalid and fluopyram. Further molecular docking study and enzymatic activity analysis (IC50 = 3.21 μM, a2) indicated that target compounds were promising succinate dehydrogenase inhibitors. Additionally, compounds b2 and a4 yielded superior anti-oomycete and antibacterial activities toward Phytophora infestins and Xanthomonas oryzae pv. oryzae with EC50 values of 2.92 and 8.43 μg/mL, respectively. In vivo trials against rice bacterial blight provided the control efficiency within 51.2-55.3% (a4) at 200 μg/mL, which were better than that of bismerthiazol. Given their multipurpose characteristics, these structures should be positively explored as agricultural chemicals.
Collapse
Affiliation(s)
- Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Li Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Vanjare BD, Choi NG, Mahajan PG, Raza H, Hassan M, Han Y, Yu SM, Kim SJ, Seo SY, Lee KH. Novel 1,3,4-oxadiazole compounds inhibit the tyrosinase and melanin level: Synthesis, in-vitro, and in-silico studies. Bioorg Med Chem 2021; 41:116222. [PMID: 34058664 DOI: 10.1016/j.bmc.2021.116222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
In this research work, we have designed and synthesized some biologically useful of 1,3,4-Oxadiazoles. The structural interpretation of the synthesized compounds has been validated by using FT-IR, LC-MS, HRMS, 1H NMR and 13C NMR techniques. Moreover, the in-vitro mushroom tyrosinase inhibitory potential of the target compounds was assessed. The in-vitro study reveals that, all compounds demonstrate an excellent tyrosinase inhibitory activity. Especially, 2-(5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-ylthio)-N-phenylacetamide (IC50 = 0.003 ± 0.00 µM) confirms much more significant potent inhibition activity compared with standard drug kojic acid (IC50 = 16.83 ± 1.16 µM). Subsequently, the most potent five oxadiazole compounds were screened for cytotoxicity study against B16F10 melanoma cells using an MTT assay method. The survival rate for the most potent compound was more pleasant than other compounds. Furthermore, the western blot results proved that the most potent compound considerably decreased the expression level of tyrosinase at 50 µM (P < 0.05). The molecular docking investigation exposed that the utmost potent compound displayed the significant interactions pattern within the active region of the tyrosinase enzyme and which might be responsible for the decent inhibitory activity towards the enzyme. A molecular dynamic simulation experiment was presented to recognize the residual backbone stability of protein structure.
Collapse
Affiliation(s)
- Balasaheb D Vanjare
- Dept. of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Nam Gyu Choi
- Dept. of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Prasad G Mahajan
- Vidya Pratishthan's Arts, Science & Commerce College, Vidyanagari, Baramati, Maharashtra 413133, India
| | - Hussain Raza
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54590, Pakistan
| | - Yohan Han
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Seon-Mi Yu
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Science, Kongju National University, Gongju, Chungnam 32588, Republic of Korea
| | - Ki Hwan Lee
- Dept. of Chemistry, Kongju National University, Gongju, Chungnam 32588, Republic of Korea.
| |
Collapse
|
18
|
Design, Synthesis, and Antibacterial Screening of Some Novel Heteroaryl-Based Ciprofloxacin Derivatives as DNA Gyrase and Topoisomerase IV Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14050399. [PMID: 33922361 PMCID: PMC8145110 DOI: 10.3390/ph14050399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
A novel series of ciprofloxacin hybrids comprising various heterocycle derivatives has been synthesized and structurally elucidated using 1H NMR, 13C NMR, and elementary analyses. Using ciprofloxacin as a reference, compounds 1-21 were screened in vitro against Gram-positive bacterial strains such as Staphylococcus aureus and Bacillus subtilis and Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa. As a result, many of the compounds examined had antibacterial activity equivalent to ciprofloxacin against test bacteria. Compounds 2-6, oxadiazole derivatives, were found to have antibacterial activity that was 88 to 120% that of ciprofloxacin against Gram-positive and Gram-negative bacteria. The findings showed that none of the compounds tested had antifungal activity against Aspergillus flavus, but did have poor activity against Candida albicans, ranging from 23% to 33% of fluconazole, with compound 3 being the most active (33% of fluconazole). The most potent compounds, 3, 4, 5, and 6, displayed an IC50 of 86, 42, 92, and 180 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). Compounds 4, 5, and 6 showed IC50 values (1.47, 6.80, and 8.92 µM, respectively) against E. coli topo IV in comparison to novobiocin (IC50 = 11 µM).
Collapse
|
19
|
|
20
|
Karabelyov V, Kondeva-Burdina M, Angelova VT. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review. Bioorg Med Chem 2021; 29:115888. [PMID: 33360082 DOI: 10.1016/j.bmc.2020.115888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Selective monoamine oxidase type B (MAO-B) inhibitors are currently used as coadjuvants for treating early motor symptoms of Parkinson's disease. Aiming at the elucidation of MAO-B inhibitors with 1,3,4-oxadiazole scaffolds, we make a comprehensive update on the new and old chemical methods employed for the synthesis of the unsymmetrical oxadiazole derivatives that lead to high yield compounds. We summarize a state of the selective MAO-B inhibitors with oxadiazole scaffold, describing the results, structures, structure-activity relationships (SARs) and medicinal chemistry strategies over the years. The analysis of the recent papers would facilitate tracking the increasing number of oxadiazole derivatives as new chemical spaces with MAO-B inhibitory potential designed to ensure the safe use of the compounds and elimination of the unwanted drug-drug interactions.
Collapse
Affiliation(s)
- Valentin Karabelyov
- Laboratory "Drug metabolism and drug toxicity", Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory "Drug metabolism and drug toxicity", Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Violina T Angelova
- Laboratory "Drug metabolism and drug toxicity", Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria.
| |
Collapse
|
21
|
Kumar G, Singh NP. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg Chem 2020; 107:104608. [PMID: 33465668 DOI: 10.1016/j.bioorg.2020.104608] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/14/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022]
Abstract
Non-Steroidal biologically active heterocyclic compounds 4-(2-(4-chlorophenyl) benzo[d]thiazol-3(2H)-yl)-N-((3-substituted-2-hydrobenzo[d]thiazol-2-yl)methylene) thiazol-2-amine (3a-3d), 4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)-N-((3-substituted - 2-hydrobenzo [d]thiazol-2-yl)methylene)oxazol-2-amine (3a'-3d'), (Z)-N'-(4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)thiaol-2-yl)-N-(4-substituted phenylimino)-3-substituted-2-hydrobenzo[d]thiazole-2-carboxamidine (4a-4 h) and (Z)-N'-(4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)oxazol-2-yl)-N-(4-substituted phenylimino) - 3-substituted-2-hydrobenzo[d]thiazole-2-carboxamidine (4a'-4h') were synthesized starting from 2-chloro-1-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl) ethanone (1). The structure configuration of newly synthesized compounds has been determined by elemental analysis and various spectroscopic (IR, 1HNMR and GCMS) techniques. These compounds were tested for their anti-inflammation, analgesic, ulcerogenic, acute toxicity and free radical scavenging action and compared with reference drugs in albino rats. Compound 4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)-N-((3-substituted-2-hydrobenzo [d]thiazol-2-yl)methylene)thiazol-2-amine (3c) was the most active compound than reference drug at a dose of 50 mg/kg p.o.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of Chemistry, Krishna College, Bijnor 246701, UP, India.
| | - N P Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, UP, India
| |
Collapse
|
22
|
Lalpara JN, Hadiyal SD, Radia AJ, Dhalani JM, Dubal GG. Design and Rapid Microwave Irradiated One-Pot Synthesis of Tetrahydropyrimidine Derivatives and Their Screening In Vitro Antidiabetic Activity. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. N. Lalpara
- Department of chemistry, RK University, Rajkot, Gujarat, India
| | - S. D. Hadiyal
- Department of chemistry, RK University, Rajkot, Gujarat, India
| | - A. J. Radia
- Department of chemistry, RK University, Rajkot, Gujarat, India
| | - J. M. Dhalani
- Department of chemistry, RK University, Rajkot, Gujarat, India
| | - G. G. Dubal
- Department of chemistry, RK University, Rajkot, Gujarat, India
| |
Collapse
|
23
|
Synthesis of New 1, 3, 4-Oxadiazole-Incorporated 1, 2, 3-Triazole Moieties as Potential Anticancer Agents Targeting Thymidylate Synthase and Their Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110390. [PMID: 33202652 PMCID: PMC7696185 DOI: 10.3390/ph13110390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Thymidylate synthase (TS) has emerged as a hot spot in cancer treatment, as it is directly involved in DNA synthesis. In the present article, nine hybrids containing 1,2,3-triazole and 1,3,4-oxadiazole moieties (6–14) were synthesized and evaluated for anticancer and in vitro thymidylate synthase activities. According to in silico pharmacokinetic studies, the synthesized hybrids exhibited good drug likeness properties and bioavailability. The cytotoxicity results indicated that compounds 12 and 13 exhibited remarkable inhibition on the tested Michigan Cancer Foundation (MCF-7) and Human colorectal Carcinoma (HCT-116) cell lines. Compound 12 showed four-fold inhibition to a standard drug, 5-fluoruracil, and comparable inhibition to tamoxifen, whereas compound 13 exerted five-fold activity of tamoxifen and 24-fold activity of 5-fluorouracil for MCF-7 cells. Compounds 12 and 13 inhibited thymidylate synthase enzyme, with an half maximal inhibitory concentration, IC50 of 2.52 µM and 4.38 µM, while a standard drug, pemetrexed, showed IC50 = 6.75 µM. The molecular docking data of compounds 12 and 13 were found to be in support of biological activities data. In conclusion, hybrids (12 and 13) may inhibit thymidylate synthase enzyme, which could play a significant role as a chemotherapeutic agent.
Collapse
|
24
|
Bitla S, Sagurthi SR, Dhanavath R, Puchakayala MR, Birudaraju S, Gayatri AA, Bhukya VK, Atcha KR. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Perla P, Seelam N, Bera R. Design and Synthesis of Novel 1a,3,4-Oxadiazole Derivatives as Cytotoxic Agents: A Combined Experimental and Docking Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020050280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Zheng XJ, Li CS, Cui MY, Song ZW, Bai XQ, Liang CW, Wang HY, Zhang TY. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg Med Chem Lett 2020; 30:127237. [PMID: 32386981 DOI: 10.1016/j.bmcl.2020.127237] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022]
Abstract
Twenty benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety were synthesized and evaluated for their anti-oxidant and anti-inflammatory activities. Among these compounds, 8h and 8l were appeared to have high radical scavenging efficacies as 0.05 ± 0.02 and 0.07 ± 0.03 mmol/L of IC50 values in ABTS+ bioassay, respectively. In anti-inflammatory tests, compound 8h displayed good activity with 57.35% inhibition after intraperitoneal administration, which was more potent than the reference drug (indomethacin). Molecular modeling studies were performed to investigate the binding mode of the representative compound 8h into COX-2 enzyme. In vitro enzyme study implied that compound 8h exerted its anti-inflammatory activity through COX-2 inhibition.
Collapse
Affiliation(s)
- Xian-Jing Zheng
- Jilin Medical University, Jilin, Jilin Province 132013, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, PR China
| | - Chun-Shi Li
- The Third People's Hospital of Dalian, Dalian, Liaoning Province 116000, PR China
| | - Ming-Yue Cui
- The Third People's Hospital of Dalian, Dalian, Liaoning Province 116000, PR China
| | - Ze-Wen Song
- Jilin Medical University, Jilin, Jilin Province 132013, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, PR China
| | - Xue-Qian Bai
- Jilin Medical University, Jilin, Jilin Province 132013, PR China
| | - Cheng-Wu Liang
- Jilin Medical University, Jilin, Jilin Province 132013, PR China.
| | - Hui-Yan Wang
- Jilin Medical University, Jilin, Jilin Province 132013, PR China.
| | - Tian-Yi Zhang
- Jilin Medical University, Jilin, Jilin Province 132013, PR China.
| |
Collapse
|
27
|
Shahzadi I, Zahoor AF, Rasul A, Rasool N, Raza Z, Faisal S, Parveen B, Kamal S, Zia‐ur‐Rehman M, Zahid FM. Synthesis, anticancer, and computational studies of 1, 3,
4‐oxadiazole‐purine
derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Irum Shahzadi
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Ameer F. Zahoor
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Azhar Rasul
- Department of ZoologyGovernment College University Faisalabad Faisalabad Pakistan
| | - Nasir Rasool
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Zohaib Raza
- Department of PharmacologyGovernment College University Faisalabad Faisalabad Pakistan
| | - Shahla Faisal
- Department of StatisticsGovernment College University Faisalabad Faisalabad Pakistan
| | - Bushra Parveen
- Department of ChemistryGovernment College University Faisalabad Faisalabad Pakistan
| | - Shagufta Kamal
- Department of BiochemistryGovernment College University Faisalabad Faisalabad Pakistan
| | | | - Faisal M. Zahid
- Department of StatisticsGovernment College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
28
|
Rayam P, Polkam N, Kuntala N, Banothu V, Anantaraju HS, Perumal Y, Balasubramanian S, Anireddy JS. Design and synthesis of oxaprozin‐1,3,4‐oxadiazole hybrids as potential anticancer and antibacterial agents. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Parsharamulu Rayam
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally, Hyderabad Telangana State India
| | - Naveen Polkam
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally, Hyderabad Telangana State India
| | - Naveen Kuntala
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally, Hyderabad Telangana State India
| | - Venkanna Banothu
- Department of Biotechnology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally, Hyderabad Telangana State India
| | - Hasitha Shilpa Anantaraju
- Department of PharmacyBirla Institute of Technology and Science, Pilani Hyderabad Telangana State India
| | - Yogeeswari Perumal
- Department of PharmacyBirla Institute of Technology and Science, Pilani Hyderabad Telangana State India
| | - Sridhar Balasubramanian
- X‐ray Crystallography DivisionCSIR‐Indian Institute of Chemical Technology Hyderabad Telangana State India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally, Hyderabad Telangana State India
| |
Collapse
|
29
|
Turukarabettu V, Kalluraya B, Hemanth K, Revanasiddappa BC. Cu(I) Catalyzed 1,3-Dipolar Click Synthesis of S-Heterocyclic 1,2,3-Triazole Derivatives, Their Antibacterial Activity. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220010223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Iqbal J, Rasool S, Khan SU, Htar TT, Khalid H, Laulloo SJ, Ali Shah SA. Microwave‐assisted synthesis of triazole derivatives conjugated with piperidine as new anti‐enzymatic agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Naeem A. Virk
- Department of ChemistryGovernment College University, Lahore Lahore Pakistan
| | - Aziz‐ur‐ Rehman
- Department of ChemistryGovernment College University, Lahore Lahore Pakistan
| | - Muhammad A. Abbasi
- Department of ChemistryGovernment College University, Lahore Lahore Pakistan
| | - Sabahat Z. Siddiqui
- Department of ChemistryGovernment College University, Lahore Lahore Pakistan
| | - Javed Iqbal
- Department of ChemistryThe University of Lahore Lahore Pakistan
| | - Shahid Rasool
- Department of ChemistryGovernment College University, Lahore Lahore Pakistan
| | - Shafi U. Khan
- School of PharmacyMONASH University Malaysia Subang Jaya Selangor Malaysia
| | - Thet T. Htar
- School of PharmacyMONASH University Malaysia Subang Jaya Selangor Malaysia
| | - Hira Khalid
- Department of ChemistryForman Christian College University Lahore Pakistan
| | | | - Syed A. Ali Shah
- Faculty of PharmacyUniversiti Teknologi MARA Bandar Puncak Alam Selangor Darul Ehsan Malaysia
- Atta‐ur‐Rahman Institute for Natural Products Discovery (AuRIns)Universiti Teknologi MARA Bandar Puncak Alam Selangor Darul Ehsan Malaysia
| |
Collapse
|
31
|
El-Enein SAA, Ali AM, Abdel-Monem YK, Senna MH, Madkour M. Novel lanthanide(III) 4-methylbenzoylhydrazide complexes as precursors for lanthanide oxide nanophotocatalysts. RSC Adv 2019; 9:42010-42019. [PMID: 35542881 PMCID: PMC9076505 DOI: 10.1039/c9ra08080e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/14/2019] [Indexed: 12/03/2022] Open
Abstract
A series of metal complexes were prepared from separate reactions of lanthanide nitrate salts (La(iii), Ce(iii), Sm(iii), Gd(iii) and Ho(iii)) with 4-methylbenzoylhydrazide. The structures of the complexes were confirmed by analytical studies, spectral measurements and thermal studies. Complexes were formed with different stoichiometries of 1 : 2 and 1 : 3 (M : L). The ligand chelates by the nitrogen and oxygen atoms of the amino and carbonyl groups of the hydrazide moiety in the neutral keto form. The coordination compounds were converted to metal oxide nanoparticles (MONPs) through solid state thermal decomposition as monocular source precursors. The obtained MONPs were investigated via XRD, TEM and UV-Vis spectra. As a representative, CeO2 was utilized as a nanophotocatalyst to examine the photocatalytic activity of the MONPs for methylene blue (MB) photodegradation. CeO2 showed high removal of MB dye by 90.1% after UV illumination for 220 min. The reported method provides a generalized and systematic method for the preparation of many metal oxide nanoparticles with manageable and reproducible features. A series of metal complexes were prepared from separate reactions of lanthanide nitrate salts (La(iii), Ce(iii), Sm(iii), Gd(iii) and Ho(iii)) with 4-methylbenzoylhydrazide.![]()
Collapse
Affiliation(s)
- S A Abou El-Enein
- Department of Chemistry, Faculty of Science, Menoufia University Shibin El Kom Egypt
| | - A M Ali
- Department of Chemistry, Faculty of Science, Menoufia University Shibin El Kom Egypt
| | - Y K Abdel-Monem
- Department of Chemistry, Faculty of Science, Menoufia University Shibin El Kom Egypt
| | - M H Senna
- Radiation Chemistry Department, National Center for Radiation Research and Technology Cairo Egypt
| | - Metwally Madkour
- Department of Chemistry, Faculty of Science, Kuwait University P. O. Box: 5969 13060 Kuwait
| |
Collapse
|
32
|
Iftikhar M, Shahnawaz, Saleem M, Riaz N, Aziz‐ur‐Rehman, Ahmed I, Rahman J, Ashraf M, Sharif MS, Khan SU, Htar TT. A novel five‐step synthetic route to 1,3,4‐oxadiazole derivatives with potent α‐glucosidase inhibitory potential and their in silico studies. Arch Pharm (Weinheim) 2019; 352:e1900095. [DOI: 10.1002/ardp.201900095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/10/2019] [Accepted: 09/01/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Muhammad Iftikhar
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Shahnawaz
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Aziz‐ur‐Rehman
- Department of ChemistryGovernment College University Lahore Lahore Pakistan
| | - Ishtiaq Ahmed
- Institute for Biological Interfaces (IBG‐1)Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jameel Rahman
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Muhammad Ashraf
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Muhammad S. Sharif
- Department of Chemistry, Baghdad‐ul‐Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Shafi U. Khan
- School of PharmacyMonash University Malaysia Subang Jaya Malaysia
| | - Thet T. Htar
- School of PharmacyMonash University Malaysia Subang Jaya Malaysia
| |
Collapse
|
33
|
Evren AE, Yurttas L, Yılmaz-Cankilic M. Synthesis of novel N-(naphthalen-1-yl)propanamide derivatives and evaluation their antimicrobial activity. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1657428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Asaf E. Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , Eskisehir , Turkey
- Vocational School of Health Services, Bilecik Şeyh Edebali University , Bilecik , Turkey
| | - Leyla Yurttas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , Eskisehir , Turkey
| | - Meral Yılmaz-Cankilic
- Department of Biology, Faculty of Sciences , Eskişehir Technical University, Eskisehir, Turkey
| |
Collapse
|
34
|
Khan H, Zafar M, Patel S, Shah SMM, Bishayee A. Pharmacophore studies of 1, 3, 4-oxadiazole nucleus: Lead compounds as α-glucosidase inhibitors. Food Chem Toxicol 2019; 130:207-218. [DOI: 10.1016/j.fct.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 01/22/2023]
|
35
|
Li S, Wang HX, Liu HY, Jing F, Fu XY, Li CW, Shi YP, Chen BQ. Synthesis and biological evaluation of novel disulfides incorporating 1,3,4-thiadiazole scaffold as promising antitumor agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Rhoufal F, Bentiss F, Guesmi S, Ketatni EM, Saadi M, El Ammari L. Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-di-aqua-[2,5-bis-(pyridin-4-yl)-1,3,4-oxa-diazole]di-thio-cyanato-nickel(II). Acta Crystallogr E Crystallogr Commun 2019; 75:1046-1050. [PMID: 31392022 PMCID: PMC6659318 DOI: 10.1107/s2056989019008727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 11/10/2022]
Abstract
The reaction of 2,5-bis-(pyridin-4-yl)-1,3,4-oxa-diazole (4-pox) and thio-cyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octa-hedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water mol-ecules. In the crystal, the mol-ecules are linked into a three-dimensional network through strong O-H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the inter-molecular inter-actions in the crystal packing.
Collapse
Affiliation(s)
- Ferdaousse Rhoufal
- Laboratoire de Chimie de Coordination et d’Analytique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco
| | - Fouad Bentiss
- Laboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco
| | - Salaheddine Guesmi
- Laboratoire de Chimie de Coordination et d’Analytique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco
| | - El Mostafa Ketatni
- Laboratory of Organic and Analytical Chemistry, University Sultan Moulay Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
| |
Collapse
|
37
|
Iqbal Z, Iqbal A, Ashraf Z, Latif M, Hassan M, Nadeem H. Synthesis and docking studies of N-(5-(alkylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamide analogues as potential alkaline phosphatase inhibitors. Drug Dev Res 2019; 80:646-654. [PMID: 31032540 DOI: 10.1002/ddr.21542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
A series of N-(5-(alkylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamides 6a-i were synthesized as alkaline phosphatase inhibitors. The intermediate 5-substituted 1,3,4-oxadiazole-2-thione 4 was synthesized starting with hippuric acid. Hippuric acid in the first step was converted into corresponding methyl ester 2 which upon reaction with hydrazine hydrate furnished the formation of hydrazide 3. The hippuric acid hydrazide was then cyclized into 5-substituted 1,3,4-oxadiazole-2-thione 4. The intermediate 4 was then reacted with alkyl or aryl halides 5a-5i to afford the title compounds N-(5-(methylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamides 6a-i. The bioassay results showed that compounds 6a-i exhibited good to excellent alkaline phosphatase inhibitory activity. The most potent activity was exhibited by the compound 6i having IC50 value 0.420 μM, whereas IC50 value of standard (KH2 PO4 ) was 2.80 μM. Molecular docking studies was performed against alkaline phosphatase enzyme (PDBID 1EW2) to check binding affinity of the synthesized compounds 6a-i against target protein. The docking results showed that three compounds 6c, 6e, and 6i have maximum binding interactions with binding energy values of -8 kcal/mol. The compound 6i displayed the interactions of oxadiazole ring nitrogen with amino acid His265 having a binding distance 2.13 Ǻ. It was concluded from our results that synthesized compounds, especially compound 6i may serve as lead structure to design more potent inhibitors of human alkaline phosphatase.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Ambreen Iqbal
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Latif
- Department is genetics and Inherited diseases, College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
38
|
Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur J Med Chem 2019; 168:1-10. [DOI: 10.1016/j.ejmech.2019.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 11/17/2022]
|
39
|
Tok F, Ilhan R, Günal S, Ballar-Kirmizibayrak P, Koçyiğit-Kaymakçioğlu B. Design, Synthesis and Evaluation of the Biological Activities of Some New Carbohydrazide and Urea Derivatives. Turk J Pharm Sci 2018; 15:304-308. [PMID: 32454674 DOI: 10.4274/tjps.64935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022]
Abstract
Objectives Urea and carbohydrazide derivatives are important compounds exhibiting cytotoxic activities. In this study, a series of new urea and carbohydrazide derivatives containing an pyridine ring were synthesized and evaluated for cytotoxic activity. Materials and Methods The proposed structures of the synthesized compounds were confirmed using elemental analysis, IR, and 1H-NMR spectroscopic techniques. The cytotoxic potencies of synthesized compounds were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) on BRCA mutant-carrying HCC1937 and Capan-1 cell lines, as well as on MCF7, HeLa, and MRC5 cells. Results 3a, 3b, 3c and 3d showed cytotoxic activity against all cancer cell lines. Conclusion Our data indicate that compounds 3a-d are more selective to cancer cells compared with nontumoral fibroblasts; however, these compounds are not more potent on HR defective cells with BRCA mutants.
Collapse
Affiliation(s)
- Fatih Tok
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Turkey
| | - Recep Ilhan
- Ege University, Faculty of Pharmacy, Department of Biochemistry, İzmir, Turkey
| | - Selin Günal
- Ege University, Faculty of Pharmacy, Department of Biochemistry, İzmir, Turkey
| | | | | |
Collapse
|
40
|
Panunzi B, Concilio S, Diana R, Shikler R, Nabha S, Piotto S, Sessa L, Tuzi A, Caruso U. Photophysical Properties of Luminescent Zinc(II)-Pyridinyloxadiazole Complexes and their Glassy Self-Assembly Networks. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800344] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Barbara Panunzi
- Department of Agriculture; University of Napoli Federico II; Via Università 100 80055 Portici NA Italy
| | - Simona Concilio
- Department of Industrial Engineering; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | - Rosita Diana
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 80126 Napoli Italy
| | - Rafi Shikler
- Department of Electrical and Computer Engineering; Ben-Gurion University of the Negev; POB 653 84105 Beer-Sheva Israel
| | - Shiran Nabha
- Department of Electrical and Computer Engineering; Ben-Gurion University of the Negev; POB 653 84105 Beer-Sheva Israel
| | - Stefano Piotto
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | - Lucia Sessa
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | - Angela Tuzi
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 80126 Napoli Italy
| | - Ugo Caruso
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 80126 Napoli Italy
| |
Collapse
|
41
|
Mikhailov IE, Artyushkina YM, Dushenko GA, Mikhailova OI, Revinskii YV, Minkin VI. Spectral-Luminescent Properties of 2-Aryl-1,3,4-oxadiazoles. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Popov LD, Zubenko AA, Fetisov LN, Drobin YD, Klimenko AI, Bodryakov AN, Borodkin SA, Melkozerova IE. The Synthesis of (1,3,4-Oxadiazol-2-yl)Acrylic Acid Derivatives with Antibacterial and Protistocidal Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Zhang Y, Zhan YZ, Ma Y, Hua XW, Wei W, Zhang X, Song HB, Li ZM, Wang BL. Synthesis, crystal structure and 3D-QSAR studies of antifungal (bis-)1,2,4-triazole Mannich bases containing furyl and substituted piperazine moieties. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Rehman AU, Iqbal J, Abbasi MA, Siddiqui SZ, Khalid H, Jhaumeer Laulloo S, Akhtar Virk N, Rasool S, Shah SAA. Compounds with 1,3,4-oxadiazole and azinane appendages to evaluate enzymes inhibition applications supported by docking and BSA binding. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/23312009.2018.1441597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aziz-ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | | | | | - Hira Khalid
- Department of Chemistry, Forman Christian College University, Lahore 54600, Pakistan
| | | | - Naeem Akhtar Virk
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Shahid Rasool
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
45
|
Mikhailov IE, Artyushkina YM, Dushenko GA, Mikhailova OI, Revinskii YV, Minkin VI. Spectral Luminescent Properties of 2-Aryl-5-(2,6-dimethoxyphenyl)-1H-1,3,4-oxadiazoles. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s107036321802024x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Tok F, Kocyigit-Kaymakcioglu B, Tabanca N, Estep AS, Gross AD, Geldenhuys WJ, Becnel JJ, Bloomquist JR. Synthesis and structure-activity relationships of carbohydrazides and 1,3,4-oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, Aedes aegypti. PEST MANAGEMENT SCIENCE 2018; 74:413-421. [PMID: 28869331 PMCID: PMC5817975 DOI: 10.1002/ps.4722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND 1,3,4-Oxadiazole and imidazolidine rings are important heterocyclic compounds exhibiting a variety of biological activities. In this study, novel compounds with oxadiazole and imidazolidine rings were synthesized from 3-(methylsulfonyl)-2-oxoimidazolidine-1-carbonyl chloride and screened for insecticidal activities. The proposed structures of the 17 synthesized compounds were confirmed using elemental analysis, infrared (IR), proton nuclear magnetic resonance (1 H-NMR), and mass spectroscopy. RESULTS None of the compounds showed larvicidal activity at the tested concentrations against first-instar Aedes aegypti larvae. However, nine compounds exhibited promising adulticidal activity, with mortality rates of ≥80% at 5 µg per mosquito. Further dose-response bioassays were undertaken to determine median lethal dose (LD50 ) values. Compounds 1, 2b, 2c, 2d, 2 g, 3b, 3c, 3 g, and 3 h were effective, with typical LD50 values of about 5 - 10 µg per mosquito against female Ae. aegypti. Compounds 2c (bearing a nitro group on the aromatic ring; LD50 = 2.80 ± 0.54 µg per mosquito) and 3 h (double halogen groups at 2,4 position on the phenyl ring; LD50 = 2.80 ± 0.54 µg per mosquito) were the most promising compounds. CONCLUSION Preliminary mode of action studies failed to show consistent evidence of either neurotoxic or mitochondria-directed effects. Further chemical synthesis within this series may lead to the development of new effective insecticides. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | | | - Nurhayat Tabanca
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, Gainesville, FL, USA
| | - Alden S Estep
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, Gainesville, FL, USA
- Navy Entomology Center of Excellence, CMAVE Detachment, Gainesville, FL, USA
| | - Aaron D Gross
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - James J Becnel
- Center for Medical, Agricultural, and Veterinary Entomology, USDA, ARS, Gainesville, FL, USA
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Wang BL, Zhang LY, Liu XH, Ma Y, Zhang Y, Li ZM, Zhang X. Synthesis, biological activities and SAR studies of new 3-substitutedphenyl-4-substitutedbenzylideneamino-1,2,4-triazole Mannich bases and bis-Mannich bases as ketol-acid reductoisomerase inhibitors. Bioorg Med Chem Lett 2017; 27:5457-5462. [DOI: 10.1016/j.bmcl.2017.10.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
|
49
|
Salahuddin, Mazumder A, Yar MS, Mazumder R, Chakraborthy GS, Ahsan MJ, Rahman MU. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1360911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - A. Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - M. Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - R. Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - G. S. Chakraborthy
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Mujeeb Ur Rahman
- Department of Drug Discovery and Development, Alwar Pharmacy College MIA Alwar, Alwar, Rajasthan, India
| |
Collapse
|
50
|
Polkam N, Kummari B, Rayam P, Brahma U, Ganga Modi Naidu V, Balasubramanian S, Anireddy JS. Synthesis of 2,5-Disubstituted-1,3,4-oxadiazole Derivatives and Their Evaluation as Anticancer and Antimycobacterial Agents. ChemistrySelect 2017. [DOI: 10.1002/slct.201701101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Naveen Polkam
- Centre for Chemical Sciences and Technology, Institute of Science and Technology; Jawaharlal Nehru Technological University Hyderabad; Kukatpally Hyderabad 500085, Telangana State India
| | - Bhaskar Kummari
- Centre for Chemical Sciences and Technology, Institute of Science and Technology; Jawaharlal Nehru Technological University Hyderabad; Kukatpally Hyderabad 500085, Telangana State India
| | - Parsharamulu Rayam
- Centre for Chemical Sciences and Technology, Institute of Science and Technology; Jawaharlal Nehru Technological University Hyderabad; Kukatpally Hyderabad 500085, Telangana State India
| | - Umarani Brahma
- Department of Pharmacology & Toxicology; National Institute of Pharmaceutical Education & Research; Hyderabad 5000037, Telangana State India
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology & Toxicology; National Institute of Pharmaceutical Education & Research; Hyderabad 5000037, Telangana State India
| | - Sridhar Balasubramanian
- X-ray Crystallography Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences and Technology, Institute of Science and Technology; Jawaharlal Nehru Technological University Hyderabad; Kukatpally Hyderabad 500085, Telangana State India
| |
Collapse
|