1
|
Jimenez-Martin B, Guerra-Arias DA, Martinez A, García-Hernández R, Medina-O'Donnell M, Pérez-Victoria JM, Rivas F. Hydroxytyrosol N-alkylcarbamate conjugates as antitrypanosomal and antileishmanial agents. Bioorg Chem 2025; 159:108354. [PMID: 40086189 DOI: 10.1016/j.bioorg.2025.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Novel lipophilic hydroxytyrosol N-alkylcarbamate conjugates were synthesized by coupling several alkyl isocyanates of different chain lengths with the primary hydroxy group of this natural phenol. These N-alkylcarbamate conjugates were tested as antitrypanosomal and antileishmanial agents, and their cytotoxicity was evaluated against the human MRC-5 and THP-1 cell lines. Five of these N-alkylcarbamate derivatives showed submicromolar IC50 concentrations against Trypanosoma brucei brucei, with values ranging from 0.2 to 0.8 μM, and three other hydroxytyrosol conjugates showed IC50 values below 5 μM. Data for the five most active N-alkylcarbamate derivatives indicate a gain in activity relative to hydroxytyrosol of between 115- and 460-fold, and selectivity indices for control/human MRC-5 cells relative to T. b. brucei parasites of between 47- and 140-fold. These N-alkylcarbamate derivatives were also tested against the intracellular amastigote form of Leishmania donovani in infected THP-1 macrophages, where five compounds had IC50 values less than or equal to 10 μM, with selectivity indices relative to L. donovani of between 3- and 25-fold in MRC-5 cells and between 8- and 60-fold in THP-1 cells. In all of these derivatives, the ortho-diphenolic groups were free. When the hydroxytyrosol derivatives had ortho-diphenolic groups protected by benzyl groups, cytotoxicity against T. b. brucei and L. donovani showed significantly higher IC50 values, with most cases exceeding 20 μM.
Collapse
Affiliation(s)
- Belinda Jimenez-Martin
- Departamento de Quimica Organica. Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Diego A Guerra-Arias
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Spain; Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Antonio Martinez
- Departamento de Quimica Organica. Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Spain
| | - Marta Medina-O'Donnell
- Departamento de Quimica Organica. Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - José María Pérez-Victoria
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Spain.
| | - Francisco Rivas
- Departamento de Quimica Organica. Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|
2
|
Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Anti-Cancer, Anti-Angiogenic, and Anti-Atherogenic Potential of Key Phenolic Compounds from Virgin Olive Oil. Nutrients 2024; 16:1283. [PMID: 38732529 PMCID: PMC11085358 DOI: 10.3390/nu16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
3
|
Yuan J, Tuo S, Shi X, Tu J. A new combined technology: Macroporous adsorption resin and high speed counter current chromatography for hydroxytyrosol separation from olive leaf enzymatic hydrolysate. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124058. [PMID: 38394917 DOI: 10.1016/j.jchromb.2024.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Due to three free hydroxyl groups, hydroxytyrosol (HT) presents strong bioactivity and has broad food and drug application prospects. However, there is no good separation and purification technology. In this study, separation and purification technology of HT from the ethyl acetate extraction of enzymatic hydrolysate from olive leaf (EEEH) was investigated with macroporous adsorption resin (MAR) and high-speed counter-current chromatography (HSCCC) and the separation factors were optimized. First, the adsorption properties of eight MARs (AB-8, S-8, D-101, X-5, XAD-1, XAD-5, NKA-Ⅱ, H-103) for HT enrichment were studied. The results showed that H-103 macroporous resin was adsorbent, sample concentration was 1.5 mg/mL, eluent was 30 % ethanol solution, sample loading rate was 3.0 BV/h, elution velocity was 2.0 BV/h, and HT purity of EEEH was increased from 10.23 % to 40.78 %. Then, solvent systems were examined according to partition coefficients of target component and petroleum ether: ethyl acetate: methanol: water (4:6:4:6, v/v) system was chosen. The critical experimental parameters of HSCCC were optimized as following: revolution speed was 1200 rpm and flow rate was 3 mL/min. The HT purity of macroporous resin purified EEEH was increased from 40.78 % to 85.7 %. Therefore, MAR-HSCCC combined technology could be a very effective approach to separate and purify HT from EEEH.
Collapse
Affiliation(s)
- Jiaojiao Yuan
- School of Business and Trade, Dongguan Polytechnic, Dongguan 523808, Guangdong, China
| | - Su Tuo
- School of Business and Trade, Dongguan Polytechnic, Dongguan 523808, Guangdong, China
| | - Xiuhong Shi
- School of Business and Trade, Dongguan Polytechnic, Dongguan 523808, Guangdong, China
| | - Junling Tu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| |
Collapse
|
4
|
Vicinanza S, Annunziata F, Pecora D, Pinto A, Tamborini L. Lipase-mediated flow synthesis of nature-inspired phenolic carbonates. RSC Adv 2023; 13:22901-22904. [PMID: 37520085 PMCID: PMC10375258 DOI: 10.1039/d3ra04735k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
A facile and convenient lipase-catalyzed flow approach for the chemoselective synthesis of tyrosol and hydroxytyrosol methyl carbonates has been developed in neat dimethylcarbonate. The products were obtained in quantitative yield with high catalyst productivity. The biocatalytic approach was then exploited for the preparation of value-added symmetrical tyrosol and hydroxytyrosol carbonates.
Collapse
Affiliation(s)
- Sara Vicinanza
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| | - Desirèe Pecora
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan Via Celoria 2 Milan 20133 Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan Via Mangiagalli 25 Milan 20133 Italy
| |
Collapse
|
5
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
7
|
Leo M, Muccillo L, Pranzini E, Barisciano G, Parri M, Lopatriello G, Carlomagno M, Santi A, Taddei ML, Sabatino L. Transcriptomic Analysis of Colorectal Cancer Cells Treated with Oil Production Waste Products (OPWPs) Reveals Enrichment of Pathways of Mitochondrial Functionality. Cells 2022; 11:cells11243992. [PMID: 36552757 PMCID: PMC9776412 DOI: 10.3390/cells11243992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Oil production waste products (OPWPs) derive from olive mill and represent a crucial environmental problem due to their high polyphenolic content able to pollute the ground. One option to reduce the OPWPs' environmental impact is to exploit polyphenols' biological properties. We sought to analyze the transcriptomic variations of colorectal cancer cells exposed to the OPWPs extracts and hydroxytyrosol, the major component, to recognize unknown and ill-defined characteristics. Among the top affected pathways identified by GSEA, we focused on oxidative phosphorylation in an in vitro system. Colorectal cancer HCT116 and LoVo cells treated with hydroxytyrosol or OPWPs extracts showed enhancement of the respiratory chain complexes' protein levels, ATP production and membrane potential, suggesting stimulation of mitochondrial functions. The major proteins involved in mitochondrial biogenesis and fusion events of mitochondrial dynamics were positively affected, as by Western blot, fostering increase of the mitochondrial mass organized in a network of elongated organelles. Mechanistically, we proved that PPARγ mediates the effects as they are mimicked by a specific ligand and impaired by a specific inhibitor. OPWP extracts and hydroxytyrosol, thus, promote mitochondrial functionality via a feed-forward regulatory loop involving the PPARγ/PGC-1α axis. These results support their use in functional foods and as adjuvants in cancer therapy.
Collapse
Affiliation(s)
- Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Giovannina Barisciano
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Giulia Lopatriello
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy
| | - Marco Carlomagno
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
- Correspondence: (M.L.T.); (L.S.)
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
- Correspondence: (M.L.T.); (L.S.)
| |
Collapse
|
8
|
Choi C, Self JL, Okayama Y, Levi AE, Gerst M, Speros JC, Hawker CJ, Read de Alaniz J, Bates CM. Light-Mediated Synthesis and Reprocessing of Dynamic Bottlebrush Elastomers under Ambient Conditions. J Am Chem Soc 2021; 143:9866-9871. [PMID: 34170665 DOI: 10.1021/jacs.1c03686] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We introduce a novel grafting-through polymerization strategy to synthesize dynamic bottlebrush polymers and elastomers in one step using light to construct a disulfide-containing backbone. The key starting material-α-lipoic acid (LA)-is commercially available, inexpensive, and biocompatible. When installed on the chain end(s) of poly(dimethylsiloxane) (PDMS), the cyclic disulfide unit derived from LA polymerizes under ultraviolet (UV) light in ambient conditions. Significantly, no additives such as initiator, solvent, or catalyst are required for efficient gelation. Formulations that include bis-LA-functionalized cross-linker yield bottlebrush elastomers with high gel fractions (83-98%) and tunable, supersoft shear moduli in the ∼20-200 kPa range. An added advantage of these materials is the dynamic disulfide bonds along each bottlebrush backbone, which allow for light-mediated self-healing and on-demand chemical degradation. These results highlight the potential of simple and scalable synthetic routes to generate unique bottlebrush polymers and elastomers based on PDMS.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Gerst
- BASF SE, Polymers for Adhesives, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Joshua C Speros
- BASF Corporation California Research Alliance, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
9
|
Oliverio M, Nardi M, Di Gioia ML, Costanzo P, Bonacci S, Mancuso S, Procopio A. Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review. Nat Prod Rep 2020; 38:444-469. [PMID: 33300916 DOI: 10.1039/d0np00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Romani A, Campo M, Urciuoli S, Marrone G, Noce A, Bernini R. An Industrial and Sustainable Platform for the Production of Bioactive Micronized Powders and Extracts Enriched in Polyphenols From Olea europaea L. and Vitis vinifera L. Wastes. Front Nutr 2020; 7:120. [PMID: 32974376 PMCID: PMC7473407 DOI: 10.3389/fnut.2020.00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few years, literature data have reported that health status is related to the consumption of foods rich in polyphenols, bioactive compounds found in the plant world, in particular in vegetables and fruit. These pieces of scientific evidence have led to an increase in the demand for functional foods and drinks enriched in polyphenols, so that plant materials are more and more requested. The availability of food and agricultural wastes has adverse effects on the economy, environment, and human health. On the other hand, these materials are a precious source of bioactive compounds as polyphenols. Their recovery and reuse from wastes are according to the circular economy strategy, which has introduced the “zero waste concept.” However, the process is convenient from an economic and environmental point of view only if the final products are standardized and obtained using sustainable and industrial technologies. In this panorama, this paper describes an industrial and sustainable platform for the production of micronized powders and extracts enriched in polyphenols from Olea europaea L. and Vitis vinifera L. wastes that are useful for food, cosmetics, and pharmaceuticals sectors. The platform is based on drying plant materials, extraction of polyphenols through membrane technologies with water, and, when necessary, the concentration of the final fractions under vacuum evaporation. All powders and extracts were characterized by high-performance liquid chromatography–diode array detector–mass spectrometry analysis to define the qualitative and quantitative content of bioactive compounds and insure their standardization and reproducibility. The chromatographic profiles evidenced the presence of secoiridoids, flavones, flavonols, anthocyanins, hydroxycinnamic acids, catechins, and condensed tannins. An overview of the biological activities of the main polyphenols present in Olea europaea L. and Vitis vinifera L. powders and extracts is reported because of biomedical applications.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Giulia Marrone
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Rome, Italy.,UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
11
|
Roma E, Mattoni E, Lupattelli P, Moeini SS, Gasperi T, Bernini R, Incerpi S, Tofani D. New Dihydroxytyrosyl Esters from Dicarboxylic Acids: Synthesis and Evaluation of the Antioxidant Activity In Vitro (ABTS) and in Cell-Cultures (DCF Assay). Molecules 2020; 25:molecules25143135. [PMID: 32659910 PMCID: PMC7397168 DOI: 10.3390/molecules25143135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
New dihydroxytyrosyl esters 2a, 2c–2j of dicarboxylic acids were synthesized from methyl orthoformate protected hydroxytyrosol 3 and diacyl chlorides. New compounds were characterized (HRMS, FT-IR, 1H- and 13C-NMR), and tested for antioxidant activity both in vitro (ABTS) and on L6 myoblasts and THP1 leukemic monocytes cell culture by DCF assay. According to the ABTS assay, compounds 2a, 2c–2j showed a TEAC value of antioxidant capacity up to twice that of Trolox. Very high or complete ROS protections were obtained in the cell environment where lipophilicity and rigidity of dicarboxylic structure seem to facilitate the antioxidant effect. MTT assay and proliferation test were used for assessment of cell viability. These compounds can be envisaged as a new class of preservatives for food or cosmetic products.
Collapse
Affiliation(s)
- Elia Roma
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
| | - Elena Mattoni
- Centro Interdipartimentale per la Didattica Chimica (CeDiC), Via della Vasca Navale 79, 00146 Roma, Italy;
| | - Paolo Lupattelli
- Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Seyed Sepehr Moeini
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
- Centro Interdipartimentale per la Didattica Chimica (CeDiC), Via della Vasca Navale 79, 00146 Roma, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy;
| | - Sandra Incerpi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
| | - Daniela Tofani
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (E.R.); (S.S.M.); (T.G.); (S.I.)
- Centro Interdipartimentale per la Didattica Chimica (CeDiC), Via della Vasca Navale 79, 00146 Roma, Italy;
- Correspondence: ; Tel.: +39-06-5733-3371
| |
Collapse
|
12
|
Hydroxytyrosol Promotes Proliferation of Human Schwann Cells: An In Vitro Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124404. [PMID: 32575426 PMCID: PMC7344605 DOI: 10.3390/ijerph17124404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Recent advances in phytomedicine have explored some potential candidates for nerve regeneration, including hydroxytyrosol (HT). This study was undertaken to explore the potential effects of HT on human Schwann cells' proliferation. Methods: The primary human Schwann cell (hSC) was characterized, and the proliferation rate of hSC supplemented with various concentrations of HT was determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis and protein expression of glial fibrillary acidic protein (GFAP) and p75 nerve growth factor receptor (p75 NGFR) were evaluated via the immunofluorescence technique. Results: In vitro culture of hSCs revealed spindle-like, bipolar morphology with the expression of specific markers of hSC. Hydroxytyrosol at 10 and 20 ng/mL significantly increased the proliferation of hSCs by 30.12 ± 5.9% and 47.8 ± 6.7% compared to control (p < 0.05). Cell cycle analysis showed that HT-treated hSCs have a higher proliferation index (16.2 ± 0.2%) than the control (12.4 ± 0.4%) (p < 0.01). In addition, HT significantly increased the protein expression of GFAP and p75NGFR (p < 0.05). Conclusion: HT stimulates the proliferation of hSCs in vitro, indicated by a significant increase in the hSC proliferation index and protein expression of hSCs' proliferation markers, namely p75 NGFR and GFAP.
Collapse
|
13
|
Manzoor R, Rasool A, Ahmed M, Kaleem U, Duru LN, Ma H, Deng Y. Synergistic Neuroprotective Effect of Endogenously-Produced Hydroxytyrosol and Synaptic Vesicle Proteins on Pheochromocytoma Cell Line Against Salsolinol. Molecules 2020; 25:E1715. [PMID: 32276517 PMCID: PMC7181248 DOI: 10.3390/molecules25071715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress triggers a lethal cascade, leading to Parkinson's disease by causing degeneration of dopaminergic neurons. In this study, eight antioxidants were screened for their neuroprotective effect on PC12 cells (pheochromocytoma cell line) under oxidative stress induced by salsolinol (OSibS). Hydroxytyrosol was found to be the strongest neuroprotective agent; it improved viability of PC12 cells by up to 81.69% under OSibS. Afterward, two synaptic vesicle proteins, synapsin-1 and septin-5, were screened for their neuroprotective role; the overexpression of synapsin-1 and the downregulation of septin-5 separately improved the viability of PC12 cells by up to 71.17% and 67.00%, respectively, compared to PC12 cells only treated with salsolinol (PoTwS) under OSibS. Subsequently, the PC12+syn++sep- cell line was constructed and pretreated with 100 µM hydroxytyrosol, which improved its cell viability by up to 99.03% and led to 14.71- and 6.37-fold reductions in the levels of MDA and H2O2, respectively, and 6.8-, 12.97-, 10.57-, and 7.57-fold increases in the activity of catalase, glutathione reductase, superoxide dismutase, and glutathione peroxidase, respectively, compared to PoTwS under OSibS. Finally, alcohol dehydrogenase-6 from Saccharomyces cerevisiae was expressed in PC12+syn++sep- cells to convert 3,4-dihydroxyphenylacetaldehyde (an endogenous neurotoxin) into hydroxytyrosol. The PC12+syn++sep-+ADH6+ cell line also led to 22.38- and 12.33-fold decreases in the production of MDA and H2O2, respectively, and 7.15-, 13.93-, 12.08-, and 8.11-fold improvements in the activity of catalase, glutathione reductase, superoxide dismutase, and glutathione peroxidase, respectively, compared to PoTwS under OSibS. Herein, we report the endogenous production of a powerful antioxidant, hydroxytyrosol, from 3,4-dihydroxyphenylacetaldehyde, and evaluate its synergistic neuroprotective effect, along with synapsin-1 and septin-5, on PC12 cells under OSibS.
Collapse
Affiliation(s)
- Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Maqbool Ahmed
- Department of Tuberculosis, Bolan University of Medical and Health Sciences, Quetta 87300, Pakistan;
| | - Ullah Kaleem
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Lucienne Nneoma Duru
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| |
Collapse
|
14
|
Michalska P, Tenti G, Satriani M, Cores A, Ramos MT, García AG, Menéndez JC, León R. Aza-CGP37157-lipoic hybrids designed as novel Nrf2-inducers and antioxidants exert neuroprotection against oxidative stress and show neuroinflammation inhibitory properties. Drug Dev Res 2019; 81:283-294. [PMID: 31693218 DOI: 10.1002/ddr.21618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
Two multitarget hybrids, derived from an aza-analogue of CGP37157, a mitochondrial Na+ /Ca2+ exchanger antagonist, and lipoic acid were designed in order to combine in a single molecule the antioxidant and Nrf2 induction properties of lipoic acid and the neuroprotective activity of CGP37157. The hybrid derivatives showed Nrf2 induction and radical scavenging properties, leading to a good neuroprotective profile against oxidative stress, together with an interesting antineuroinflammatory activity. The results obtained show differences in activity depending on the configuration of the chiral center of LA.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Giammarco Tenti
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Michelle Satriani
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Angel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Teresa Ramos
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
15
|
An Aromatic Aldehyde Synthase Controls the Synthesis of Hydroxytyrosol Derivatives Present in Virgin Olive Oil. Antioxidants (Basel) 2019; 8:antiox8090352. [PMID: 31480559 PMCID: PMC6770214 DOI: 10.3390/antiox8090352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/30/2023] Open
Abstract
The phenolic composition of virgin olive oil (VOO) is strongly determined by the content and distribution of secoiridoid phenolic glucosides present in the olive fruit. Among them, oleuropein is the most abundant in olive mesocarp and is characterized by containing an hydroxytyrosol residue in its chemical structure. Hydroxytyrosol-containing molecules are those that exhibit the most important biological activities in virgin olive oil. In this regard, we identified an aromatic aldehyde synthase gene (OeAAS) from an olive transcriptome, which was synthesized, expressed in Eschrichia coli, and purified its encoded protein. The recombinant OeAAS is a bifunctional enzyme catalyzing decarboxylation and amine-oxidation reactions in a single step. OeAAS displays strict substrate specificity for l-DOPA to form 2,4-dihydroxyphenylacetaldehyde, the immediate precursor of hydroxytyrosol. In addition to the biochemical characterization of the enzyme, the expression analysis carried out in different olive cultivars and ripening stages indicate that OeAAS gene is temporally regulated in a cultivar-dependent manner. High correlation coefficients were found between OeAAS expression levels and the phenolic content of olive fruits and oils, which supports a key role for OeAAS in the accumulation of hydroxytyrosol-derived secoiridoid compounds in olive fruit and virgin olive oil.
Collapse
|
16
|
Romani A, Ieri F, Urciuoli S, Noce A, Marrone G, Nediani C, Bernini R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019; 11:nu11081776. [PMID: 31374907 PMCID: PMC6724211 DOI: 10.3390/nu11081776] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022] Open
Abstract
Olea europaea L. fruit is a peculiar vegetal matrix containing high levels of fatty acids (98–99% of the total weight of extra-virgin olive oil, EVOO) and low quantities (1–2%) of phenolics, phytosterols, tocopherols, and squalene. Among these minor components, phenolics are relevant molecules for human health. This review is focused on their beneficial activity, in particular of hydroxytyrosol (HT), oleuropein (OLE), oleocanthal (OLC), and lignans found in EVOO, olive oil by-products and leaves. Specifically, the cardioprotective properties of the Mediterranean diet (MD) related to olive oil consumption, and the biological activities of polyphenols recovered from olive oil by-products and leaves were described. Recent European projects such as EPIC (European Prospective Investigation into Cancer and Nutrition) and EPICOR (long-term follow-up of antithrombotic management patterns in acute coronary syndrome patients) have demonstrated the functional and preventive activities of EVOO showing the relation both between cancer and nutrition and between consumption of EVOO, vegetables, and fruit and the incidence of coronary heart disease. The data reported in this review demonstrate that EVOO, one of the pillars of the MD, is the main product of Olea europaea L. fruits; leaves and by-products are secondary but precious products from which bioactive compounds can be recovered by green technologies and reused for food, agronomic, nutraceutical, and biomedical applications according to the circular economy strategy.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Ieri
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
17
|
Deshpande R, Raina P, Shinde K, Mansara P, Karandikar M, Kaul-Ghanekar R. Flax seed oil reduced tumor growth, modulated immune responses and decreased HPV E6 and E7 oncoprotein expression in a murine model of ectopic cervical cancer. Prostaglandins Other Lipid Mediat 2019; 143:106332. [DOI: 10.1016/j.prostaglandins.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
|
18
|
Albini A, Bassani B, Baci D, Dallaglio K, Gallazzi M, Corradino P, Bruno A, Noonan DM. Nutraceuticals and "Repurposed" Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer. Curr Med Chem 2019; 26:973-987. [PMID: 28933290 DOI: 10.2174/0929867324666170920144130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic, degenerative diseases are often characterized by inflammation and aberrant angiogenesis. For these pathologies, including rheumatoid arthritis, cardiovascular and autoimmune diseases, cancer, diabetes, and obesity, current therapies have limited efficacy. OBJECTIVES The validation of novel (chemo)preventive and interceptive approaches, and the use of new or repurposed agents, alone or in combination with registered drugs, are urgently required. RESULTS Phytochemicals (triterpenoids, flavonoids, retinoids) and their derivatives, nonsteroidal anti-inflammatory drugs (aspirin) as well as biguanides (metformin and phenformin) originally developed from phytochemical backbones, are multi-target agents showing antiangiogenic and anti-anti-inflammatory proprieties. Many of them target AMPK and metabolic pathways such as the mTOR axis. We summarize the beneficial effects of several compounds in conferring protection and supporting therapy, and as a paradigm, we present data on terpenoids & biquanides on beer hop xanthohumol and hydroxytryrosol from olive mill waste waters. CONCLUSIONS These molecules could be employed for combinatorial chemoprevention and interception approaches or chemoprevention/therapy regimens for cancer and other chronic complex diseases.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Barbara Bassani
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Denisa Baci
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Katiuscia Dallaglio
- Laboratory of Translational Research, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Matteo Gallazzi
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Corradino
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Bernini R, Carastro I, Santoni F, Clemente M. Synthesis of Lipophilic Esters of Tyrosol, Homovanillyl Alcohol and Hydroxytyrosol. Antioxidants (Basel) 2019; 8:E174. [PMID: 31197081 PMCID: PMC6617409 DOI: 10.3390/antiox8060174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Low-molecular weight phenols such as tyrosol, homovanillyl alcohol and hydroxytyrosol are valuable compounds that exhibit a high number of health-promoting effects such as antioxidant, anti-inflammatory and anticancer activity. Despite these remarkable properties, their applications such as dietary supplements and stabilizers of foods and cosmetics in non-aqueous media are limited for the hydrophilic character. With the aim to overcome this limitation, the paper describes a simple and low-cost procedure for the synthesis of lipophilic esters of tyrosol, homovanillyl alcohol and hydroxytyrosol. The reactions were carried out under mild and green chemistry conditions, at room temperature, solubilizing the phenolic compounds in dimethyl carbonate, an eco-friendly solvent, and adding a little excess of the appropriate C2-C18 acyl chloride. The final products were isolated in good yields. Finally, according to the "circular economy" strategy, the procedure was applied to hydroxytyrosol-enriched extracts obtained by Olea europaea by-products to prepare a panel of lipophilic extracts that are useful for applications where solubility in lipid media is required.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| | - Isabella Carastro
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| | - Francesca Santoni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| |
Collapse
|
20
|
Olejarz W, Wrzosek M, Jóźwiak M, Grosicka-Maciąg E, Roszkowski P, Filipek A, Cychol A, Nowicka G, Struga M. Synthesis and anticancer effects of α-lipoic ester of alloxanthoxyletin. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02335-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Fernandez-Pastor I, Martínez-García M, Medina-O'Donnell M, Rivas F, Martinez A, Pérez-Victoria JM, Parra A. Semisynthesis of ω-Hydroxyalkylcarbonate Derivatives of Hydroxytyrosol as Antitrypanosome Agents. JOURNAL OF NATURAL PRODUCTS 2018; 81:2075-2082. [PMID: 30160961 DOI: 10.1021/acs.jnatprod.8b00431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Several lipophilic ω-hydroxyalkylcarbonate hydroxytyrosol derivatives and also their corresponding dimeric derivatives have been synthesized, coupling the primary hydroxy group of this phenolic compound with several terminal diols of different chain lengths, by the use of a carbonate linker. The trypanocidal activity and cytotoxicity of these ω-hydroxyalkylcarbonate derivatives of hydroxytyrosol and known alkylcarbonate derivatives of hydroxytyrosol were assessed. Three of the hydroxytyrosol alkylcarbonate derivatives were active against Trypanosoma brucei: two with an alkyl chain of average size (0.2 and 0.5 μM) and another with a double bond in the alkyl chain (0.4 μM). These values suggest an increase in activity with respect to hydroxytyrosol (264-, 90-, and 116-fold, respectively). Furthermore, these compounds showed high selectivity indices against MRC-5, a nontumor human cell line (62, 71, and 39, respectively). Some other ω-hydroxyalkylcarbonate and alkylcarbonate derivatives of hydroxytyrosol were also active against T. brucei within a low micromolar range (about 1 μM).
Collapse
Affiliation(s)
- Ignacio Fernandez-Pastor
- Departamento de Quimica Organica, Facultad de Ciencias , Universidad de Granada , Fuentenueva, s/n , E-18071 Granada , Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC (IPBLN-CSIC), PTS Granada , Avenida del Conocimiento, 17 , 18016 , Armilla, Granada , Spain
| | - Marta Medina-O'Donnell
- Departamento de Quimica Organica, Facultad de Ciencias , Universidad de Granada , Fuentenueva, s/n , E-18071 Granada , Spain
| | - Francisco Rivas
- Departamento de Quimica Organica, Facultad de Ciencias , Universidad de Granada , Fuentenueva, s/n , E-18071 Granada , Spain
| | - Antonio Martinez
- Departamento de Quimica Organica, Facultad de Ciencias , Universidad de Granada , Fuentenueva, s/n , E-18071 Granada , Spain
| | - José María Pérez-Victoria
- Instituto de Parasitología y Biomedicina "Lopez-Neyra", CSIC (IPBLN-CSIC), PTS Granada , Avenida del Conocimiento, 17 , 18016 , Armilla, Granada , Spain
| | - Andres Parra
- Departamento de Quimica Organica, Facultad de Ciencias , Universidad de Granada , Fuentenueva, s/n , E-18071 Granada , Spain
| |
Collapse
|
22
|
Yuan JJ, Tu JL, Qin FGF, Xu YJ, Li B. Phenolic composition of oleuropein extract after enzymatic process by HPLC-MS and their antioxidant and antibacterial activities. J Food Biochem 2018. [DOI: 10.1111/jfbc.12517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jiao-Jiao Yuan
- School of Chemical Engineering and Energy Technology; Dongguan University of Technology; Guangdong Dongguan 523808 China
- School of Food Science and Engineering; South China University of Technology; Guangdong Guangzhou 510640 China
| | - Jun-Ling Tu
- School of Chemical Engineering and Energy Technology; Dongguan University of Technology; Guangdong Dongguan 523808 China
| | - Frank G. F. Qin
- School of Chemical Engineering and Energy Technology; Dongguan University of Technology; Guangdong Dongguan 523808 China
| | - Yong-Jun Xu
- School of Chemical Engineering and Energy Technology; Dongguan University of Technology; Guangdong Dongguan 523808 China
| | - Bing Li
- School of Food Science and Engineering; South China University of Technology; Guangdong Guangzhou 510640 China
| |
Collapse
|
23
|
Tu JL, Yuan JJ. Thermal Decomposition Behavior of Hydroxytyrosol (HT) in Nitrogen Atmosphere Based on TG-FTIR Methods. Molecules 2018; 23:molecules23020404. [PMID: 29438312 PMCID: PMC6017782 DOI: 10.3390/molecules23020404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/02/2022] Open
Abstract
The thermal decomposition behavior of olive hydroxytyrosol (HT) was first studied using thermogravimetry (TG). Cracked chemical bond and evolved gas analysis during the thermal decomposition process of HT were also investigated using thermogravimetry coupled with infrared spectroscopy (TG-FTIR). Thermogravimetry-Differential thermogravimetry (TG-DTG) curves revealed that the thermal decomposition of HT began at 262.8 °C and ended at 409.7 °C with a main mass loss. It was demonstrated that a high heating rate (over 20 K·min−1) restrained the thermal decomposition of HT, resulting in an obvious thermal hysteresis. Furthermore, a thermal decomposition kinetics investigation of HT indicated that the non-isothermal decomposition mechanism was one-dimensional diffusion (D1), integral form g(x) = x2, and differential form f(x) = 1/(2x). The four combined approaches were employed to calculate the activation energy (E = 128.50 kJ·mol−1) and Arrhenius preexponential factor (ln A = 24.39 min−1). In addition, a tentative mechanism of HT thermal decomposition was further developed. The results provide a theoretical reference for the potential thermal stability of HT.
Collapse
Affiliation(s)
- Jun-Ling Tu
- Department of Chemical Engineering , School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jiao-Jiao Yuan
- Department of Chemical Engineering , School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
24
|
Synthesis and Evaluation of the Antioxidant Activity of Lipophilic Phenethyl Trifluoroacetate Esters by In Vitro ABTS, DPPH and in Cell-Culture DCF Assays. Molecules 2018; 23:molecules23010208. [PMID: 29351214 PMCID: PMC6017616 DOI: 10.3390/molecules23010208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
Abstract
Polyphenols are natural compounds showing a variety of health-promoting effects. Unfortunately, due to low lipid solubility, their applications in the pharmaceutical, food, and cosmetic industries are limited. With the aim of obtaining novel lipophilic derivatives, the present study reports the synthesis of a series of phenethyl trifluoroacetate esters containing up to two hydroxyl groups in the aromatic ring. Experimental logP values confirmed a greater lipophilicity of the novel compounds compared to the parent compounds. The radical scavenging capacity of all phenethyl trifluoroacetate esters was evaluated by in vitro assays (ABTS, DPPH) and in cultured cells (L6 myoblasts and THP-1 leukemic monocytes) using 2′,7′-dichlorodihydrofluorescein diacetate. These data revealed that the esters showed a good antioxidant effect that was strictly dependent on the grade of hydroxylation of the phenyl ring. The lack of toxicity, evaluated by the MTT assay and proliferation curves, makes these trifluoroacetates attractive derivatives for pharmaceutical, food, and cosmetic applications.
Collapse
|
25
|
Roleira FM, Varela CL, Costa SC, Tavares-da-Silva EJ. Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00004-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Velázquez-Palmero D, Romero-Segura C, García-Rodríguez R, Hernández ML, Vaistij FE, Graham IA, Pérez AG, Martínez-Rivas JM. An Oleuropein β-Glucosidase from Olive Fruit Is Involved in Determining the Phenolic Composition of Virgin Olive Oil. FRONTIERS IN PLANT SCIENCE 2017; 8:1902. [PMID: 29163620 PMCID: PMC5682033 DOI: 10.3389/fpls.2017.01902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/20/2017] [Indexed: 05/08/2023]
Abstract
Phenolic composition of virgin olive oil is determined by the enzymatic and/or chemical reactions that take place during olive fruit processing. Of these enzymes, β-glucosidase activity plays a relevant role in the transformation of the phenolic glycosides present in the olive fruit, generating different secoiridoid derivatives. The main goal of the present study was to characterize olive fruit β-glucosidase genes and enzymes responsible for the phenolic composition of virgin olive oil. To achieve that, we have isolated an olive β-glucosidase gene from cultivar Picual (OepGLU), expressed in Nicotiana benthamiana leaves and purified its corresponding recombinant enzyme. Western blot analysis showed that recombinant OepGLU protein is detected by an antibody raised against the purified native olive mesocarp β-glucosidase enzyme, and exhibits a deduced molecular mass of 65.0 kDa. The recombinant OepGLU enzyme showed activity on the major olive phenolic glycosides, with the highest levels with respect to oleuropein, followed by ligstroside and demethyloleuropein. In addition, expression analysis showed that olive GLU transcript level in olive fruit is spatially and temporally regulated in a cultivar-dependent manner. Furthermore, temperature, light and water regime regulate olive GLU gene expression in olive fruit mesocarp. All these data are consistent with the involvement of OepGLU enzyme in the formation of the major phenolic compounds present in virgin olive oil.
Collapse
Affiliation(s)
- David Velázquez-Palmero
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Carmen Romero-Segura
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - Rosa García-Rodríguez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - María L. Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - Fabián E. Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Ana G. Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| | - José M. Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Sevilla, Spain
| |
Collapse
|
27
|
Zubair H, Bhardwaj A, Ahmad A, Srivastava SK, Khan MA, Patel GK, Singh S, Singh AP. Hydroxytyrosol Induces Apoptosis and Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells. Nutr Cancer 2017; 69:932-942. [PMID: 28718667 DOI: 10.1080/01635581.2017.1339818] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SCOPE Hydroxytyrosol (HT), a polyphenol from olives, is a potential anticancer agent. This study was designed to evaluate the anticancer activity of HT against prostate cancer cells, and the mechanism thereof. METHODS AND RESULTS Treatment of LNCaP and C4-2 prostate cancer cells with HT resulted in a dose-dependent inhibition of proliferation. This was in contrast to HT's ineffectiveness against normal prostate epithelial cells RWPE1 and PWLE2, suggesting cancer-cell-specific effect. HT induced G1/S cell cycle arrest, with inhibition of cyclins D1/E and cdk2/4 and induction of inhibitory p21/p27. HT also induced apoptosis, as confirmed by flow cytometry, caspase activation, PARP cleavage, and BAX/Bcl-2 ratio. It inhibited the phosphorylation of Akt/STAT3, and induced cytoplasmic retention of NF-κB, which may explain its observed effects. Finally, HT inhibited androgen receptor (AR) expression and the secretion of AR-responsive prostate-specific antigen. CONCLUSION Castration-resistant prostate cancers retain AR signaling and are often marked by activated Akt, NF-κB, and STAT3 signaling. Our results establish a pleiotropic activity of HT against these oncogenic signaling pathways. Combined with its nontoxic effects against normal cells, our results support further testing of HT for prostate cancer therapy.
Collapse
Affiliation(s)
- Haseeb Zubair
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Arun Bhardwaj
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Aamir Ahmad
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Sanjeev Kumar Srivastava
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Mohammad Aslam Khan
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Girijesh Kumar Patel
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Seema Singh
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA.,b Department of Biochemistry and Molecular Biology , College of Medicine, University of South Alabama , Mobile , Alabama , USA
| | - Ajay Partap Singh
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA.,b Department of Biochemistry and Molecular Biology , College of Medicine, University of South Alabama , Mobile , Alabama , USA
| |
Collapse
|
28
|
Yuan JJ, Qin FGF, Tu JL, Li B. Preparation, Characterization, and Antioxidant Activity Evaluation of Liposomes Containing Water-Soluble Hydroxytyrosol from Olive. Molecules 2017; 22:molecules22060870. [PMID: 28538693 PMCID: PMC6152771 DOI: 10.3390/molecules22060870] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/03/2023] Open
Abstract
Due to the multiple hydroxyl groups in its structure, hydroxytyrosol (HT) is very sensitive to air and light and has very strong instability and hydrophilicity that affect its biological activity. This study attempted to prepare liposomes containing water-soluble HT to improve the bioavailability and biocompatibility of the target drug. The preparation process factors (temperature, mass ratio of phospholipid (PL) and cholesterol (CH), Tween-80 volume, HT mass) were studied and response surface methodology (RSM) was applied to optimize the conditions. The results demonstrated that by using a temperature of 63 °C, mass ratio of PL and CH 4.5:1, HT mass 5 mg and Tween-80 volume of 6 mL, HT liposomes with an encapsulation efficiency (EE) of 45.08% were prepared. It was found that the particle sizes of the HT liposomes were well distributed in the range of 100–400 nm. Compared to free HT, prepared HT liposomes had better stability and a distinct slow release effect in vitro. Besides, HT liposomes presented better DPPH radical scavenging activity than free HT, which could be due to the fact that HT was encapsulated fully inside the liposomes. In addition, the encapsulation mechanism of HT was evaluated. In summary, the results indicated that HT liposome could enhance the antioxidant activity and was a promising formulation for prolonging the biological activity time of the target drug.
Collapse
Affiliation(s)
- Jiao-Jiao Yuan
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Frank G F Qin
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jun-Ling Tu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
29
|
Sustainability, Innovation, and Green Chemistry in the Production and Valorization of Phenolic Extracts from Olea europaea L. SUSTAINABILITY 2016. [DOI: 10.3390/su8101002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Fernandez-Pastor I, Fernandez-Hernandez A, Rivas F, Martinez A, Garcia-Granados A, Parra A. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives. JOURNAL OF NATURAL PRODUCTS 2016; 79:1737-1745. [PMID: 27337069 DOI: 10.1021/acs.jnatprod.6b00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.
Collapse
Affiliation(s)
- Ignacio Fernandez-Pastor
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonia Fernandez-Hernandez
- Centro "Venta del Llano" del Instituto Andaluz de Investigacion y Formacion Agraria, Pesquera, Agroalimentaria y de la Produccion Ecologica (IFAPA) , Mengibar, Jaén 23620, Spain
| | - Francisco Rivas
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonio Martinez
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Garcia-Granados
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Parra
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| |
Collapse
|
31
|
Rosignoli P, Fuccelli R, Sepporta MV, Fabiani R. In vitro chemo-preventive activities of hydroxytyrosol: the main phenolic compound present in extra-virgin olive oil. Food Funct 2016; 7:301-7. [DOI: 10.1039/c5fo00932d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The co-incubation in the culture medium with hydroxytyrosol [3,4-dihydroxyphenyl ethanol (3,4-DHPEA)], the main phenolic compound present in extra-virgin olive oil, and H2O2reduces the oxidative DNA damage in peripheral blood mononuclear cells (PBMC).
Collapse
Affiliation(s)
- Patrizia Rosignoli
- Department of Chemistry
- Biology and Biotechnologies
- University of Perugia
- Italy
| | - Raffaela Fuccelli
- Department of Chemistry
- Biology and Biotechnologies
- University of Perugia
- Italy
| | | | - Roberto Fabiani
- Department of Chemistry
- Biology and Biotechnologies
- University of Perugia
- Italy
| |
Collapse
|
32
|
Tassano E, Alama A, Basso A, Dondo G, Galatini A, Riva R, Banfi L. Conjugation of Hydroxytyrosol with Other Natural Phenolic Fragments: From Waste to Antioxidants and Antitumour Compounds. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Bernini R, Gilardini Montani MS, Merendino N, Romani A, Velotti F. Hydroxytyrosol-Derived Compounds: A Basis for the Creation of New Pharmacological Agents for Cancer Prevention and Therapy. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00669] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Roberta Bernini
- Department
of Agriculture, Nature, Forests and Energy (DAFNE), Tuscia University, Via
S. Camillo De Lellis, 01100 Viterbo, Italy
| | | | - Nicolò Merendino
- Department
of Ecological and Biological Sciences (DEB), Tuscia University, 01100 Viterbo, Italy
| | - Annalisa Romani
- PHYTOLAB
(Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)—DISIA, University of Florence, 50134 Florence, Italy
| | - Francesca Velotti
- Department
of Ecological and Biological Sciences (DEB), Tuscia University, 01100 Viterbo, Italy
| |
Collapse
|
34
|
Regioselective chemical and rapid enzymatic synthesis of a novel redox – Antiproliferative molecular hybrid. Eur J Med Chem 2015; 96:47-57. [DOI: 10.1016/j.ejmech.2015.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/17/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
|
35
|
Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 2015; 183:235-58. [PMID: 25863633 DOI: 10.1016/j.foodchem.2015.03.039] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.
Collapse
Affiliation(s)
- Fernanda M F Roleira
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Elisiário J Tavares-da-Silva
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla L Varela
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saul C Costa
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Jorge Garrido
- CIQUP/Departamento de Engenharia Química, Instituto Superior de Engenharia, IPP, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| |
Collapse
|
36
|
Yuan JJ, Wang CZ, Ye JZ, Tao R, Zhang YS. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities. Molecules 2015; 20:2903-21. [PMID: 25679050 PMCID: PMC6272143 DOI: 10.3390/molecules20022903] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/30/2015] [Indexed: 11/16/2022] Open
Abstract
Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.
Collapse
Affiliation(s)
- Jiao-Jiao Yuan
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China.
- Key Laboratory of Biomass Energy and Matetial, Nanjing 210042, China.
- Institute of New Technology of Forestry, CAF, Beijing 100091, China.
| | - Cheng-Zhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China.
- Key Laboratory of Biomass Energy and Matetial, Nanjing 210042, China.
- Institute of New Technology of Forestry, CAF, Beijing 100091, China.
| | - Jian-Zhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China.
- Key Laboratory of Biomass Energy and Matetial, Nanjing 210042, China.
- Institute of New Technology of Forestry, CAF, Beijing 100091, China.
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China.
- Key Laboratory of Biomass Energy and Matetial, Nanjing 210042, China.
- Institute of New Technology of Forestry, CAF, Beijing 100091, China.
| | - Yu-Si Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China.
- Key Laboratory of Biomass Energy and Matetial, Nanjing 210042, China.
- Institute of New Technology of Forestry, CAF, Beijing 100091, China.
| |
Collapse
|
37
|
Koufaki M. Therapeutic applications of lipoic acid: a patent review (2011 – 2014). Expert Opin Ther Pat 2014; 24:993-1005. [DOI: 10.1517/13543776.2014.937425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Kaki SS, Balakrishna M, Prasad RBN. Enzymatic synthesis and characterization of 1-lipoyl-2-palmitoyl phosphatidylcholine: A novel phospholipid containing lipoic acid. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shiva Shanker Kaki
- Centre for Lipid Research; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad India
| | - Marrapu Balakrishna
- Centre for Lipid Research; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad India
| | - Rachapudi B. N. Prasad
- Centre for Lipid Research; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad India
| |
Collapse
|
39
|
Oral RA, Doğan M, Sarioğlu K. RECOVERY OF BIOACTIVE PHENOLIC COMPOUNDS FROM OLIVE MILL WASTE WATER, POMEGRANATE PEEL, AND EUROPEAN CRANBERRYBUSH (VIBURNUM OPULUS L.) JUICE BY PREPARATIVE MPLC. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.825843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rasim Alper Oral
- a Department of Food Engineering, Faculty of Engineering , Erciyes University , Kayseri , Turkey
| | - Mahmut Doğan
- a Department of Food Engineering, Faculty of Engineering , Erciyes University , Kayseri , Turkey
| | - Kemal Sarioğlu
- a Department of Food Engineering, Faculty of Engineering , Erciyes University , Kayseri , Turkey
| |
Collapse
|
40
|
Biresaw G, Laszlo JA, Evans KO, Compton DL, Bantchev GB. Synthesis and tribological investigation of lipoyl glycerides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2233-2243. [PMID: 24576015 DOI: 10.1021/jf404289r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lipoyl glycerides were synthesized by enzymatic transesterification of lipoic acid with high-oleic sunflower oil in 2-methyl-2-butanol solvent. The synthesis gave a crude product mixture comprising unreacted lipoic acid, free fatty acids, and several lipoyl glyceride structures of varying lipoic acid substitution. A more purified product mixture, devoid of unreacted lipoic acid and free fatty acids, was obtained in 61% yield. The crude and purified product mixtures were thoroughly characterized and their components positively identified. The tribological properties of the product mixtures were further investigated using a variety of methods. The product mixtures displayed significantly improved oxidation stability, cold-flow, and extreme pressure properties over those of the parent high-oleic sunflower oil. The extreme pressure results for the neat products showed a higher weld point for the crude than for the purified mixture. This was attributed to differences in the chemical properties of the components in the two product mixtures.
Collapse
Affiliation(s)
- Girma Biresaw
- Bio-Oils Research Unit and ‡Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, United States
| | | | | | | | | |
Collapse
|
41
|
Barontini M, Bernini R, Carastro I, Gentili P, Romani A. Synthesis and DPPH radical scavenging activity of novel compounds obtained from tyrosol and cinnamic acid derivatives. NEW J CHEM 2014. [DOI: 10.1039/c3nj01180a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel compounds exhibiting DPPH radical scavenging activity were synthesised. The key step was the trifluoroacetic acid-mediated hydroarylation of cinnamic ester with tyrosol.
Collapse
Affiliation(s)
- Maurizio Barontini
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE)
- Università degli Studi della Tuscia
- 01100 Viterbo, Italy
| | - Roberta Bernini
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE)
- Università degli Studi della Tuscia
- 01100 Viterbo, Italy
| | - Isabella Carastro
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE)
- Università degli Studi della Tuscia
- 01100 Viterbo, Italy
| | - Patrizia Gentili
- Dipartimento di Chimica and IMC-CNR Sezione Meccanismi di Reazione
- Università degli Studi La Sapienza
- 00185 Roma, Italy
| | | |
Collapse
|
42
|
Amorati R, Valgimigli L, Panzella L, Napolitano A, d’Ischia M. 5-S-Lipoylhydroxytyrosol, a Multidefense Antioxidant Featuring a Solvent-Tunable Peroxyl Radical-Scavenging 3-Thio-1,2-dihydroxybenzene Motif. J Org Chem 2013; 78:9857-64. [DOI: 10.1021/jo401522q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Riccardo Amorati
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy
| | - Luca Valgimigli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126, Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126, Naples, Italy
| | - Marco d’Ischia
- Department
of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126, Naples, Italy
| |
Collapse
|
43
|
Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol. Food Chem 2013; 138:1172-82. [DOI: 10.1016/j.foodchem.2012.11.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/22/2022]
|
44
|
Mateos R, Pereira-Caro G, Bacon JR, Bongaerts R, Sarriá B, Bravo L, Kroon PA. Anticancer activity of olive oil hydroxytyrosyl acetate in human adenocarcinoma Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3264-3269. [PMID: 23452288 DOI: 10.1021/jf305158q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The anticancer activity of hydroxytyrosyl acetate (HTy-Ac) has been studied in human colon adenocarcinoma cells. Gene expression of proteins involved in cell cycle (p21, p53, cyclin B1, and cyclin G2) and programmed cell death (BNIP3, BNIP3L, PDCD4, and ATF3), as well as phase I and phase II detoxifying enzymes CYPA1 and UGT1A10, were evaluated by reverse transcription polymerase chain reaction after 24 h of exposure of Caco-2/TC7 cells to 5, 10, and 50 μM of HTy-Ac. The results show that HTy-Ac inhibited cell proliferation and arrested cell cycle by enhancing p21 and CCNG2 and lowering CCNB1 protein expression. HTy-Ac also affected the transcription of genes involved in apoptosis up-regulating of BNIP3, BNIP3L, PDCD4, and ATF3 and activating caspase-3. In addition, HTy-Ac also up-regulated xenobiotic metabolizing enzymes CYP1A1 and UGT1A10, thus enhancing carcinogen detoxification. In conclusion, these results highlight that HTy-Ac has the potential to modulate biomarkers involved in colon cancer.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Panzella L, Verotta L, Goya L, Ramos S, Martín MA, Bravo L, Napolitano A, d'Ischia M. Synthesis and bioactivity profile of 5-s-lipoylhydroxytyrosol-based multidefense antioxidants with a sizeable (poly)sulfide chain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1710-1717. [PMID: 23256907 DOI: 10.1021/jf302690c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Novel polyfunctionalized antioxidants, 5-S-lipoylhydroxytyrosol (1) and its disulfide 2, trisulfide 3, and tetrasulfide 4, were prepared from tyrosol and dihydrolipoic acid in the presence, when appropriate, of sulfur. Compound 1 exhibited significant activity in the ferric reducing/antioxidant power (FRAP) assay (1.60 Trolox equiv), whereas polysulfides 2-4 were more efficient in the DPPH reduction assay (88-93% reduction vs 68% by Trolox). At 10 μM concentration, all compounds 1-4 proved to be efficient hydroxyl radical scavengers (56-69% inhibition) in a Fenton reaction assay. When administered to human HepG2 cells, 1-4 proved to be nontoxic and exhibited marked protective effects against reactive oxygen species (ROS) generation (60-84% inhibition at 1 μM concentration) and cell damage induced by 400 μM tert-butylhydroperoxide. All compounds 1-4 exhibited overall greater antioxidant activity than hydroxytyrosol.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chennamaneni S, Zhong B, Lama R, Su B. COX inhibitors Indomethacin and Sulindac derivatives as antiproliferative agents: synthesis, biological evaluation, and mechanism investigation. Eur J Med Chem 2012; 56:17-29. [PMID: 22940705 DOI: 10.1016/j.ejmech.2012.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/23/2012] [Accepted: 08/02/2012] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase (COX) inhibitors Indomethacin and its structural analogs Sulindac exhibit cell growth inhibition and apoptosis inducing activities in various cancer cell lines via COX independent mechanisms. In this study, the molecular structures of Indomethacin and Sulindac were used as starting scaffolds to design novel analogs and their effects on the proliferation of human cancer cells were evaluated. Compared to Indomethacin and Sulindac inhibiting cancer cell proliferation with IC(50)s of more than 1 mM, the derivatives displayed significantly increased activities. Especially, one of the Indomethacin analogs inhibited the growth of a series of cancer cell lines with IC(50)s around 0.5 μM-3 μM. Mechanistic investigation revealed that the new analog was in fact a tubulin inhibitor, although the parental compound Indomethacin did not show any tubulin inhibitory activity. Tubulin polymerization assay indicated this compound inhibited tubulin assembly at high concentrations, but promoted this process at low concentrations which is a very unique mechanism. The binding mode of this compound in tubulin was predicted using the molecular docking simulation.
Collapse
Affiliation(s)
- Snigdha Chennamaneni
- Department of Chemistry and Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
47
|
Bernini R, Crisante F, Barontini M, Tofani D, Balducci V, Gambacorta A. Synthesis and structure/antioxidant activity relationship of novel catecholic antioxidant structural analogues to hydroxytyrosol and its lipophilic esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7408-7416. [PMID: 22780104 DOI: 10.1021/jf301131a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A large panel of novel catecholic antioxidants and their fatty acid or methyl carbonate esters has been synthesized in satisfactory to good yields through a 2-iodoxybenzoic acid (IBX)-mediated aromatic hydroxylation as the key step. The new catechols are structural analogues of naturally occurring hydroxytyrosol (3,4-DHE). To evaluate structure/activity relationships, the antioxidant properties of all catecholic compounds were evaluated in vitro by ABTS assay and on whole cells by DCF fluorometric assay and compared with that of the corresponding already known hydroxytyrosyl derivatives. Results outline that all of the new catechols show antioxidant capacity in vitro higher than that of the corresponding hydroxytyrosyl derivatives. Less evident positive effects have been detected in whole cells experiments. Cytotoxicity experiments, using MTT assay, on a representative set of compounds evidenced no influence in cell survival.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia , Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Kono Y, Inomata M, Hagiwara S, Hiratsuka T, Suzuki K, Koga H, Shiraishi N, Noguchi T, Kitano S. Antiproliferative effects of a new α-lipoic acid derivative, DHL-HisZnNa, in HT29 human colon cancer cellsin vitro. Expert Opin Ther Targets 2012; 16 Suppl 1:S103-9. [DOI: 10.1517/14728222.2011.640320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Kaki SS, Grey C, Adlercreutz P. Bioorganic synthesis, characterization and antioxidant activity of esters of natural phenolics and α-lipoic acid. J Biotechnol 2011; 157:344-9. [PMID: 22138637 DOI: 10.1016/j.jbiotec.2011.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/17/2011] [Accepted: 11/16/2011] [Indexed: 10/15/2022]
Abstract
Chemo-enzymatic synthesis of six esters of natural phenolics and α-lipoic acid was carried to produce novel compounds with potential bioactivity. The synthetic route was mild, simple, and efficient with satisfactory yields. The synthesized compounds were screened for antioxidant activities. The prepared derivatives exhibited very good antioxidant activities as determined by DPPH radical scavenging assay and inhibition of lipid oxidation in fish oil emulsion system. Among the prepared derivatives, three compounds exhibited radical scavenging activity similar to the reference antioxidants, BHT and alpha-tocopherol in the DPPH radical scavenging assay, where as in fish oil emulsion system, two derivatives showed activity, which was similar to the reference antioxidants.
Collapse
Affiliation(s)
- Shiva Shanker Kaki
- Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | | | | |
Collapse
|
50
|
Lu C, Kim BM, Chai KY. Design, synthesis and evaluation of PEGylated lipoic acid derivatives with functionality as potent anti-melanogenic agents. Eur J Med Chem 2011; 46:5184-8. [DOI: 10.1016/j.ejmech.2011.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
|