1
|
Lv X, Cheng WH, Li XX, Shang H, Zhang JY, Hong HY, Zheng YJ, Dong YQ, Gong JH, Zheng YB, Zou ZM. Dual inhibition of topoisomerase II and microtubule of podophyllotoxin derivative 5p overcomes cancer multidrug resistance. Eur J Pharmacol 2024; 983:176968. [PMID: 39233039 DOI: 10.1016/j.ejphar.2024.176968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Compound 5p is a 4β-N-substituted podophyllotoxin derivative, which exhibited potent activity toward drug-resistant K562/A02 cells and decreased MDR-1 mRNA expression. Here, we further investigated its detail mechanism and tested its antitumor activity. 5p exerted catalytic inhibition of topoisomerase IIα, and didn't show the inhibitor of topoisomerase I. 5p exhibited the inhibitory effect on microtubule polymerization. 5p showed potent anti-proliferation against breast cancer, oral squamous carcinoma, and their drug-resistant cell lines, with resistance index of 0.61 and 0.86, respectively. 5p downregulated the expression levels of P-gp in KBV200 cells and BCRP in MCF7/ADR cells in dose-dependent manner. Moreover, 5p induced KB and KBV200 cells arrest at G2/M phase by up-regulating the expression of γ-H2AX, p-Histone H3 and cyclin B1. 5p induced apoptosis and pyroptosis by increased the expression levels of cleaved-PARP, cleaved-caspase3, N-GSDME as well as LDH release in KB and KBV200 cells. In addition, 5p efficiently impaired tumor growth in KB and KBV200 xenograft mice. Conclusively, this work elucidated the dual inhibitor of topoisomerase II and microtubule of 5p and its mechanism of overcoming the multidrug resistance, indicating that 5p exerts the antitumor potentiality.
Collapse
Affiliation(s)
- Xing Lv
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China
| | - Wei-Hua Cheng
- HTA Co., Ltd., CAEA Center of Excellence on Nuclear Technology Applications for Engineering and Industrialization of Radiopharmaceuticals, CNNC Engineering Research Center of Radiopharmaceuticals, 102413, Beijing, China
| | - Xiao-Xue Li
- The State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Hai Shang
- The State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Jun-Yi Zhang
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China
| | - Han-Yu Hong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China
| | - Yi-Jia Zheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China
| | - Yan-Qun Dong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China
| | - Jian-Hua Gong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China.
| | - Yan-Bo Zheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan Xili, 100050, Beijing, China.
| | - Zhong-Mei Zou
- The State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China.
| |
Collapse
|
2
|
Khorramdelazad H, Bagherzadeh K, Rahimi A, Safari E, Hassanshahi G, Khoshmirsafa M, Karimi M, Mohammadi M, Darehkordi A, Falak R. Antitumor activities of a novel fluorinated small molecule (A1) in CT26 colorectal cancer cells: molecular docking and in vitro studies. J Biomol Struct Dyn 2023; 42:10175-10188. [PMID: 37705281 DOI: 10.1080/07391102.2023.2256406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Chemotherapeutic treatment of colorectal cancer (CRC) has not been satisfactory until now; therefore, the discovery of more efficient medications is of great significance. Based on available knowledge, the CXCL12/CXCR4 axis plays a significant role in tumorigenesis, and inhibition of CXCR4 chemokine receptor with AMD3100 is one of the most known therapeutic modalities in cancer therapy. Herein, N, N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (A1) was synthesized as a potent CXCR4 inhibitor. A1 inhibitory activity was first evaluated employing Molecular Docking simulations in comparison with the most potent CXCR4 inhibitors. Then, the antiproliferative and cytotoxic effect of A1 on CT26 mouse CRC cells was investigated by MTT assay technique and compared with those of the control molecule, AMD3100. The impact of the target compounds IC50 on apoptosis, cell cycle arrest, and CXCR4 expression was determined by flow cytometry technique. Our finding demonstrated that A1 induces a cytotoxic effect on CT26 cells at 60 μg/mL concentration within 72 h and provokes cell apoptosis and G2/M cell cycle arrest in comparison with the untreated cells, while AMD3100 did not show a cytotoxic effect up to 800 μg/mL dose. The obtained results show that A1 (at a concentration of 40 μg/mL) significantly reduced the proliferation of CT26 cells treated with 100 ng/mL of CXCL12 in 72 h. Moreover, treatment with 60 μg/mL of A1 and 100 ng/mL of CXCL12 for 72 h significantly decreased the number of cells expressing the CXCR4 receptor compared to the control group treated with CXCL12. Eventually, the obtained results indicate that A1, as a dual-function fluorinated small molecule, may benefit CRC treatment through inhibition of CXCR4 and exert a cytotoxic effect on tumor cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ali Darehkordi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Xu G, Li Z, Ding Y, Shen Y. Discovery of 1,2-diphenylethene derivatives as human DNA topoisomerase II catalytic inhibitors and antitumor agents. Eur J Med Chem 2022; 243:114706. [DOI: 10.1016/j.ejmech.2022.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
|
4
|
Bailly C. Anti-inflammatory and anticancer p-terphenyl derivatives from fungi of the genus Thelephora. Bioorg Med Chem 2022; 70:116935. [PMID: 35901638 DOI: 10.1016/j.bmc.2022.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023]
Abstract
Fungi from the genus Thelephora have been exploited to identify bioactive compounds. The main natural products characterized are para-terphenyl derivatives, chiefly represented by the lead anti-inflammatory compound vialinin A isolated from species T. vialis and T. terrestris. Different series of p-terphenyls have been identified, including vialinins, ganbajunins, terrestrins, telephantins and other products. Their mechanism of action is not always clearly identified, and different potential molecule targets have been proposed. The lead vialinin A functions as a protease inhibitor, efficiently targeting ubiquitin-specific peptidases USP4/5 and sentrin-specific protease SENP1 which are prominent anti-inflammatory and anticancer targets. Protease inhibition is coupled with a powerful inhibition of the cellular production of tumor necrosis factor TNFα. Other mechanisms contributing to the anti-inflammatory or anti-proliferative action of these p-terphenyl compounds have been invoked, including the formation of cytotoxic copper complexes for derivatives bearing a catechol central unit such vialinin A, terrestrin B and telephantin O. These p-terphenyl compounds could be further exploited to design novel anticancer agents, as evidenced with the parent compound terphenyllin (essentially found in Aspergillus species) which has revealed marked antitumor and anti-metastatic effects in xenograft models of gastric and pancreatic cancer. This review shed light on the structural and functional diversity of p-terphenyls compounds isolated from Thelephora species, their molecular targets and pharmacological properties.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal) 59290, France.
| |
Collapse
|
5
|
Zhou G, Zhu T, Che Q, Zhang G, Li D. Structural diversity and biological activity of natural p-terphenyls. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:62-73. [PMID: 37073357 PMCID: PMC10077223 DOI: 10.1007/s42995-021-00117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/26/2021] [Indexed: 05/03/2023]
Abstract
p-Terphenyls are aromatic compounds consisting of a central benzene ring substituted with two phenyl groups, and they are mainly isolated from terrestrial and marine organisms. The central ring of p-Terphenyls is usually modified into more oxidized forms, e.g., para quinone and phenols. In some cases, additional ring systems were observed on the terphenyl-type core structure or between two benzene moieties. p-Terphenyls have been reported to have cytotoxic, antimicrobial, antioxidant and α-glucosidase inhibitory effects. In this review, we will mainly summarize the structural diversity and biological activity of naturally occurring p-Terphenyls referring to the research works published before. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00117-8.
Collapse
Affiliation(s)
- Guoliang Zhou
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Qian Che
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Dehai Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
6
|
Olszewska P, Pazdrak B, Kruzel ML. A Novel Human Recombinant Lactoferrin Inhibits Lung Adenocarcinoma Cell Growth and Migration with No Cytotoxic Effect on Normal Human Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2021; 69:33. [PMID: 34748082 PMCID: PMC8575758 DOI: 10.1007/s00005-021-00637-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Lung cancer remains the leading cause of cancer death worldwide. Despite the recent advances in cancer treatment, only a subset of patients responds to targeted and immune therapies, and many patients developing resistance after an initial response. Lactoferrin (Lf) is a natural glycoprotein with immunomodulatory and anticancer activities. We produced a novel recombinant human Lf (rhLf) that exhibits glycosylation profile compatible with the natural hLf for potential parenteral therapeutic applications. The aim of this study was to evaluate the anticancer effects of this novel rhLf in human lung adenocarcinoma cells and its mechanisms of action. The results showed a concentration-dependent inhibition of A549 cancer cell growth in response to rhLf. Treatment with 1 mg/ml of rhLf for 24 h and 72 h resulted in a significant inhibition of cancer cell growth by 32% and 25%, respectively. Moreover, rhLf increased fourfold the percentage of early and late apoptotic cells compared to the control. This effect was accompanied by increased levels of caspase-3 activity and cell cycle arrest at the S phase in rhLf-treated cancer cells. Furthermore, rhLf significantly attenuated A549 cell migration. Importantly, treatment of normal human bronchial epithelial (NHBE) cells with rhLf showed the cell viability and morphology comparable to the control. In contrast, chemotherapeutic etoposide induced cytotoxicity in NHBE cells and reduced the cell viability by 40%. These results demonstrate the selective anticancer effects of rhLf against lung adenocarcinoma cells without cytotoxicity on normal human cells. This study highlights a potential for clinical utility of this novel rhLf in patients with lung cancer.
Collapse
Affiliation(s)
- Paulina Olszewska
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Barbara Pazdrak
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
7
|
Lu Z, Xiao P, Zhou Y, Li Z, Yu X, Sun J, Shen Y, Zhao B. Identification of HN252 as a potent inhibitor of protein phosphatase PPM1B. J Cell Mol Med 2020; 24:13463-13471. [PMID: 33048454 PMCID: PMC7701510 DOI: 10.1111/jcmm.15975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/25/2022] Open
Abstract
Protein phosphatase 1B (PPM1B), a member of metal-dependent protein serine/threonine phosphatase family, is involved in the regulation of several signalling pathways. However, our understanding of its substrate interaction and physiological functions is still largely limited. There is no reported PPM1B inhibitor to date. In this study, we identified HN252, a p-terphenyl derivative, as a potent PPM1B inhibitor (Ki = 0.52 ± 0.06 µM). HN252 binding to PPM1B displayed remarkable and specific inhibition of PPM1B in both in vitro and ex vivo. With the aid of this small molecular inhibitor, we identified 30 proteins' serine/threonine phosphorylation as potential substrates of PPM1B, 5 of which were demonstrated by immunoprecipitation, including one known (CDK2) and 4 novel ones (AKT1, HSP90B, β-catenin and BRCA1). Furthermore, GO and KEGG analysis of dramatically phosphorylated proteins by PPM1B inhibition indicated that PPM1B plays roles in the regulation of multiple cellular processes and signalling pathways, such as gene transcription, inflammatory regulation, ageing and tumorigenesis. Our work provides novel insights into further investigation of molecular mechanisms of PPM1B.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Al-Otaibi JS, Mary YS, Thomas R, Narayana B. Theoretical Studies into the Spectral Characteristics, Biological Activity, and Photovoltaic Cell Efficiency of Four New Polycyclic Aromatic Chalcones. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1747097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Y. Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Changanassery, Kerala, India
| | - B. Narayana
- Department of Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| |
Collapse
|
9
|
Olszewska P, Cal D, Zagórski P, Mikiciuk-Olasik E. A novel trifluoromethyl 2-phosphonopyrrole analogue inhibits human cancer cell migration and growth by cell cycle arrest at G1 phase and apoptosis. Eur J Pharmacol 2020; 871:172943. [DOI: 10.1016/j.ejphar.2020.172943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
|
10
|
Wang D, Wang Y, Ouyang Y, Fu P, Zhu W. Cytotoxic p-Terphenyls from a Marine-Derived Nocardiopsis Species. JOURNAL OF NATURAL PRODUCTS 2019; 82:3504-3508. [PMID: 31820976 DOI: 10.1021/acs.jnatprod.9b00963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three new p-terphenyl derivatives, nocarterphenyls A-C (1-3), along with three known analogues (4-6) were isolated from the marine-derived actinobacterial strain Nocardiopsis sp. OUCMDZ-4936. Their structures were elucidated on the basis of spectroscopic analysis and a single-crystal X-ray diffraction experiment. Compounds 1 and 2 possess a benzothiazole and benzothiazine moiety, respectively, which are rare in the skeleton of p-terphenyls. Nocarterphenyl A (1) showed potent cytotoxic activity against the HL60 and HCC1954 cancer cell lines with the IC50 values of 0.38 and 0.10 μM among 26 human cancer cell lines.
Collapse
Affiliation(s)
- Dongyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Yinfeng Ouyang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266003 , China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266003 , China
| |
Collapse
|
11
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
12
|
Xie ZP, Zeng M, Shi W, Cui DM, Zhang C. Cs2CO3-promoted synthesis of p-terphenyls from allyl ketones. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Hu W, Huang XS, Wu JF, Yang L, Zheng YT, Shen YM, Li ZY, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem 2018; 61:8947-8980. [PMID: 29870668 DOI: 10.1021/acs.jmedchem.7b01202] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 South Shanda Road, 250100 Ji’nan, Shandong, P. R. China
| | - Xu-Sheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ji-Feng Wu
- Institute of Criminal Science and Technology, Ji’nan Public Security Bureau, 21 South QiliShan Road, 250000 Ji’nan, Shandong, P. R. China
| | - Liang Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Zhi-Yu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, Pennsylvania 19104, United States
| | - Xun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| |
Collapse
|
14
|
Zhang XQ, Mou XF, Mao N, Hao JJ, Liu M, Zheng JY, Wang CY, Gu YC, Shao CL. Design, semisynthesis, α-glucosidase inhibitory, cytotoxic, and antibacterial activities of p-terphenyl derivatives. Eur J Med Chem 2018; 146:232-244. [PMID: 29407953 DOI: 10.1016/j.ejmech.2018.01.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 01/27/2023]
Abstract
Terphenyllin (1), a naturally abundant p-terphenyl metabolite, was isolated from the coral derived fungus Aspergillus candidus together with four natural analogues 2-5. To evaluate their potency and selectivity, a series of new derivatives of 1 were designed and semisynthesized. They were evaluated for their α-glucosidase inhibitory, cytotoxic, and antibacterial activities. Compounds 1, 3, 4, 7, 8, 10, 11, 14, 15, 21, 23, 24, 29, 39, and 40 showed significant α-glucosidase inhibitory activity with IC50 values of 4.79-15 μM, which were stronger than that of the positive controls, 1-deoxynojirimycin (IC50 = 192.0 μM) and acarbose (IC50 = 707.9 μM). Compounds 7 and 10 have relatively higher therapeutic indices (CC50/IC50 = 17 and 10, respectively), representing potential promising leads. The enzyme kinetic studies of compounds 1 and 24 showed a non-competitive inhibition on α-glucosidase with Ki values of 1.50 and 3.45 μM, respectively. Additionally, compounds 14, 21, 26, 29, 32, 35, and 37 were found to exhibit strong cytotoxicity against three tumor cell lines A549 (lung adenocarcinoma epithelial), HeLa (cervical carcinoma), and HepG2 (hepatocellular liver carcinoma) with IC50 values ranging from 0.15 to 5.26 μM. Further study indicated that 32 could induce S-phase arrest in the cell cycle progression.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, People's Republic of China
| | - Xiao-Feng Mou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Ning Mao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Jie-Jie Hao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Ji-Yong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, People's Republic of China.
| |
Collapse
|
15
|
Li W, Li XB, Lou HX. Structural and biological diversity of natural p-terphenyls. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:1-13. [PMID: 29027823 DOI: 10.1080/10286020.2017.1381089] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
p-Terphenyls consisting of a C-18 tricyclic or polycyclic C-18 aromatic skeleton, have diverse structures because of the variation of the middle ring and the connections between the rings, and to the main skeleton. p-Terphenyls have recently been found to exhibit various biological activities such as cytotoxic, α-glucosidase inhibitory, antioxidant, and antimicrobial activity. In this review, we briefly summarized the structural varieties, biosyntheses, and bioactivities of natural p-terphenyl derivatives referring to the recent 10 years' publications.
Collapse
Affiliation(s)
- Wei Li
- a Pharmacy Department of Suqian People's Hospital , Drum Tower Hospital Group of Nanjing , Suqian 223800 , China
| | - Xiao-Bin Li
- b Key Laboratory for Biosensor of Shandong Province, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology , Biology Institute of Shandong Academy of Sciences , Jinan 250014 , China
| | - Hong-Xiang Lou
- c Key Lab of Chemical Biology of Ministry of Education, Department of Natural Products Chemistry, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| |
Collapse
|
16
|
Yuan I, Horng CT, Chen VCH, Chen CH, Chen LJ, Hsu TC, Tzang BS. Escitalopram oxalate inhibits proliferation and migration and induces apoptosis in non-small cell lung cancer cells. Oncol Lett 2017; 15:3376-3382. [PMID: 29435082 DOI: 10.3892/ol.2017.7687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023] Open
Abstract
Population-based cohort studies have revealed that neuroleptic medications are associated with a reduced cancer risk. Recent studies have demonstrated that selective serotonin reuptake inhibitors (SSRIs) have an antiproliferative or cytotoxic effect on certain cancer types. Known as a superior SSRI, escitalopram oxalate exhibits favorable tolerability with generally mild and temporary adverse events. The present study aimed to examine the effects of escitalopram oxalate on non-small cell lung cancer (NSCLC) cells. The experimental results revealed that escitalopram oxalate significantly inhibited the proliferation and invasion of A549, and H460 cells compared with BEAS-2B cells. Additionally, escitalopram oxalate significantly increased the sub-G1 population and caspase-3 activity of A549, and H460 cells. Furthermore, escitalopram oxalate significantly induced mitochondria-dependent apoptotic signaling cascades in A549 and H460 cells, which included increases in the protein expression levels of apoptosis regulator Bax, truncated BH3-interacting domain death agonist, cytochrome c, apoptotic protease-activating factor 1, and cleaved caspase-9. These findings suggest that escitalopram oxalate could serve a therapeutic agent for the treatment of NSCLC due to its antiproliferative and apoptotic effects.
Collapse
Affiliation(s)
- I Yuan
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Chi-Ting Horng
- Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan, R.O.C
| | - Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C.,Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Chun-Hung Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Li-Jeng Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
17
|
Chen VCH, Hsieh YH, Chen LJ, Hsu TC, Tzang BS. Escitalopram oxalate induces apoptosis in U-87MG cells and autophagy in GBM8401 cells. J Cell Mol Med 2017; 22:1167-1178. [PMID: 29105282 PMCID: PMC5783874 DOI: 10.1111/jcmm.13372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is recognized as a most aggressive brain cancer with the worst prognosis and survival time. Owing to the anatomic location of gliomas, surgically removing the tumour is very difficult and avoiding damage to vital brain regions during radiotherapy is impossible. Therefore, therapeutic strategies for malignant glioma must urgently be improved. Recent studies have demonstrated that selective serotonin reuptake inhibitors (SSRIs) have cytotoxic effect on certain cancers. Considering as a more superior SSRI, escitalopram oxalate exhibits favourable tolerability and causes generally mild and temporary adverse events. However, limited information is revealed about the influence of escitalopram oxalate on GBM. Therefore, an attempt was made herein to explore the effects of escitalopram oxalate on GBM. The experimental results revealed that escitalopram oxalate significantly inhibits the proliferation and invasive ability of U‐87MG cells and significantly reduced the expressions of cell cycle inhibitors such as Skp2, P57, P21 and P27. Notably, escitalopram oxalate also induced significant apoptotic cascades in U‐87MG cells and autophagy in GBM8401 cells. An animal study indicated that escitalopram oxalate inhibits the proliferation of xenografted glioblastoma in BALB/c nude mice. These findings implied that escitalopram oxalate may have potential in treatment of glioblastomas.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Hsien Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Jeng Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Tsai-Ching Hsu
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
| | - Bor-Show Tzang
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Jansa J, Řezníček T, Jambor R, Bureš F, Lyčka A. Synthesis of Hydroxy-Substitutedp-Terphenyls and some Larger OligophenylenesviaPalladium on Charcoal Catalyzed Suzuki-Miyaura Reaction. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Josef Jansa
- Research Institute for Organic Syntheses (VUOS); Rybitví 296 CZ-533 54 Pardubice-Rybitvì Czech Republic
- Department of Organic Chemistry; Faculty of Science; Palacký University, 17.; listopadu 1192/12 CZ-771 46 Olomouc Czech Republic
| | - Tomáš Řezníček
- Research Institute for Organic Syntheses (VUOS); Rybitví 296 CZ-533 54 Pardubice-Rybitvì Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry; Faculty of Chemical Technology; University of Pardubice; Studentská 573 CZ-532 10 Pardubice Czech Republic
| | - Filip Bureš
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology; University of Pardubice; Studentská 573 CZ-532 10 Pardubice Czech Republic
| | - Antonín Lyčka
- Research Institute for Organic Syntheses (VUOS); Rybitví 296 CZ-533 54 Pardubice-Rybitvì Czech Republic
- Faculty of Science; University of Hradec Králové; Rokitanského 62 CZ-500 03 Hradec Králové Czech Republic
| |
Collapse
|
19
|
Qiu J, Zhao B, Zhong W, Shen Y, Lin H. Synthesis, biological evaluation and modeling studies of terphenyl topoisomerase IIα inhibitors as anticancer agents. Eur J Med Chem 2015; 94:427-35. [DOI: 10.1016/j.ejmech.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023]
|
20
|
Dai B, Wang W, Liu R, Wang H, Zhang Y. Novel taspine derivative 12k inhibits cell growth and induces apoptosis in lung cell carcinoma. Biomed Pharmacother 2015; 70:227-33. [PMID: 25776505 DOI: 10.1016/j.biopha.2015.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 01/15/2023] Open
Abstract
Taspine is an active compound in anticancer agent development. 12k was synthesized with taspine as lead compound bearing biphenyl scaffold and showed potent anticancer activity. Here, we investigated the effect of taspine derivative 12k on A549 lung cells. We showed that 12k not only decreased significantly A549 cell viability, A549 cell colony formation but also impaired A549 cell migration. Moreover, 12k treatment blocked cell cycle progression by increasing cell number in S phase to 42.80% for 6 μmol/L vs. 28.86% for control while decreasing cell number in G1 phase. Accordingly, this was associated with an increase protein expression of cyclin E and a decrease protein expression of cyclin D1, cyclin B1 and its associated CDK1 (cdc2). Meanwhile, we found that 12k induced A549 cell apoptosis, which was closely associated with the effect of the Bcl-2 family. Increase of Bad, Bak and Bax expression levels, decrease of Bcl-2 and Mcl-1 expression levels were observed. SiRNA knockdown of c-myc in A549 cells significantly attenuated tumor inhibition effects of 12k. In conclusion, our results demonstrate that 12k has an inhibitory effect on growth of A549 cell by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenjie Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Rui Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hongying Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
21
|
Olszewska P, Mikiciuk-Olasik E, Błaszczak-Świątkiewicz K, Szymański J, Szymański P. Novel tetrahydroacridine derivatives inhibit human lung adenocarcinoma cell growth by inducing G1 phase cell cycle arrest and apoptosis. Biomed Pharmacother 2014; 68:959-67. [PMID: 25458793 DOI: 10.1016/j.biopha.2014.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is not only the most commonly diagnosed cancers worldwide but it is still the leading cause of cancer-related death. Acridine derivatives are a class of anticancer agents with the ability to intercalate DNA and inhibit topoisomerases. The aim of this study was to evaluate the effect of sixteen new tetrahydroacridine derivatives on the viability and growth of human lung adenocarcinoma cells. We compared anticancer activity of a series of eight compounds with 4-fluorobenzoic acid and eight compounds with 6-hydrazinonicotnic acid differed from each other in length of the aliphatic chain containing from 2 to 9 carbon atoms. Interestingly, tetrahydroacridine with 4-fluorobenzoic acid (compounds 9-16) showed higher anticancer activity than derivatives with 6-hydrazinonicotnic acid (compounds 1-8) and their efficacy was correlated with increasing number of carbon atoms in the aliphatic chain. The results showed that inhibition of cancer cell growth by the most effective compounds 15 and 16 was associated with induction of G1 phase cell cycle arrest followed by caspase-3 dependent apoptosis. Our findings suggest that tetrahydroacridine with 4-fluorobenzoic acid containing 8 and 9 carbon atoms may be potential candidate for treatment of lung cancer.
Collapse
Affiliation(s)
- Paulina Olszewska
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Katarzyna Błaszczak-Świątkiewicz
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Paweł Szymański
- Laboratory of Radiopharmacy, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyñskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
22
|
Shchekotikhin AE, Glazunova VA, Dezhenkova LG, Luzikov YN, Buyanov VN, Treshalina HM, Lesnaya NA, Romanenko VI, Kaluzhny DN, Balzarini J, Agama K, Pommier Y, Shtil AA, Preobrazhenskaya MN. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones. Eur J Med Chem 2014; 86:797-805. [DOI: 10.1016/j.ejmech.2014.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022]
|
23
|
Shen Y, Chen W, Zhao B, Hao H, Li Z, Lu C, Shen Y. CS1 is a novel topoisomerase IIα inhibitor with favorable drug resistance profiles. Biochem Biophys Res Commun 2014; 453:302-8. [DOI: 10.1016/j.bbrc.2014.09.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 01/26/2023]
|
24
|
Design and synthesis of 2-phenylnaphthalenoids as inhibitors of DNA topoisomeraseIIα and antitumor agents. Eur J Med Chem 2014; 86:782-96. [DOI: 10.1016/j.ejmech.2014.08.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/24/2014] [Accepted: 08/31/2014] [Indexed: 01/19/2023]
|
25
|
Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors. Eur J Med Chem 2014; 86:165-74. [PMID: 25151579 DOI: 10.1016/j.ejmech.2014.08.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 01/22/2023]
Abstract
A series of N-alkyl or aryl substituted isoindigo derivatives have been synthesized and their anti-proliferative activity was evaluated by Sulforhodamine B (SRB) assay. Some of the target compounds exhibited significant antitumor activity, including compounds 6h and 6k (against K562 cells), 6i (against HeLa cells) and 6j (against A549 cells). N-(p-methoxy-phenyl)-isoindigo (6k) exhibited a high and selective anti-proliferative activity against K562 cells (IC50 7.8 μM) and induced the apoptosis of K562 cells in a dose-dependent manner. Compound 6k arrested the cell cycle at S phase in K562 cells by decreasing the expression of cyclin A and CDK2, which played critical roles in DNA replication and passage through G2 phase. Moreover, compound 6k down-regulated the expression of p-GSK-3β (Ser9), β-catenin and c-myc proteins, up-regulated the expression of GSK-3β, consequently, suppressed Wnt/β-catenin signaling pathway and induced the apoptosis of K562 cells. The binding mode of compound 6k with GSK-3β was simulated using molecular docking tools. All of these studies gave a better understanding to the molecular mechanisms of this class of agents and clues to develop dual CDK2/GSK-3β (Ser9) phosphorylation inhibitors applied in cancer chemotherapy.
Collapse
|
26
|
Deng J, Lu C, Li S, Hao H, Li Z, Zhu J, Li Y, Shen Y. p-Terphenyl O-β-glucuronides, DNA topoisomerase inhibitors from Streptomyces sp. LZ35ΔgdmAI. Bioorg Med Chem Lett 2014; 24:1362-5. [DOI: 10.1016/j.bmcl.2014.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/01/2013] [Accepted: 01/15/2014] [Indexed: 01/16/2023]
|