1
|
Malik A, Huda NU, Tahir SS, Warsi Z, Arif R, Khan MA, Rasheed S. Identification of new 1,2,3-Triazole analogues of sulfanilamide as inhibitors of the carbonic anhydrase II enzyme: Comprehensive in-vitro and in-vivo analyses. Int J Biol Macromol 2025; 303:140426. [PMID: 39894100 DOI: 10.1016/j.ijbiomac.2025.140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrases (CAs) play a vital role in various physiological processes by catalyzing the reversible hydration of CO2 into HCO3-, hence maintaining the fluid and pH balance. Overexpression of carbonic anhydrases II (CA II) is associated with diseases, such as glaucoma, and epilepsy; therefore, it is considered as an important clinical target. Therapeutically used CA inhibitors exhibit several undesirable effects; therefore, there is an urgent need to identify new, safe, and effective inhibitors of the CAs. Keeping in view the importance of CA II inhibition, a library of new 1,3-disubstituted-1,2,3-triazole analogues of sulfanilamide is synthesized via Click chemistry, starting from sulfanilamide azide and different substituted propargyl ethers, incorporating benzyl and heteroarylmethyl moieties. The new derivatives showed significant CA II inhibitory activity (IC50 ranging between 0.19 0.66 μM) when compared with the standard inhibitor, acetazolamide (0.13 ± 0.01 μM). Among all, compounds 16 and 17 showed the most potent activity (IC50 = 0.19 μM) followed by compounds 23, and 18 (IC50 = 0.24 ± 0.014 and 0.26 ± 0.04 μM, respectively). Kinetics studies showed that all compounds are competitive inhibitors of bCA II enzyme (Ki ranging between 0.14-0.68 μM). Additionally, molecular docking studies revealed that all compounds formed network of interactions with the active site residues of the bCA II enzyme. All compounds were found to be non-toxic against BJ Human fibroblast cells. From in-vivo studies, we found that CA activity was significantly inhibited by the intraperitoneal administration of compounds 16 and 17 for up to 5 h. In conclusion, new 1,2,3-triazole analogues of sulfanilamide were identified as good CA II inhibitors.
Collapse
Affiliation(s)
- Aqsa Malik
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Noor Ul Huda
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syeda Sarah Tahir
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zoha Warsi
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida Arif
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Saima Rasheed
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Sharma S, Babu MA, Kumar R, Singh TG, Dwivedi AR, Ahmad G, Goel KK, Kumar B. A review on pyrimidine-based pharmacophore as a template for the development of hybrid drugs with anticancer potential. Mol Divers 2025:10.1007/s11030-025-11112-x. [PMID: 39937329 DOI: 10.1007/s11030-025-11112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The low efficacy and toxicity of traditional chemotherapy, led by drug resistance of targeted anticancer therapies, have mandated the exploration and development of anticancer molecules. In this league, hybrid drugs, owing to their peculiar multitargeted functionality and structural diversity, could serve as vital leads in this quest for drug discovery. They are plausibly found to offer added advantages considering the improved efficacy, low toxicity, and improved patient compliance. Among numerous heterocycles explored, pyrimidine derivatives epitomize as a valuable resource for the hybrid drug development due to their validated efficacy and versatility. The present review discusses the role of pyrimidine, a diversified pharmacophore in drug development and concepts of hybrid drugs. The study covers the recent advancements in pyrimidine-based hybrid pharmacophores. It delves further into the challenges in hybrid drug development and ongoing research in hybrid drug discovery. Furthermore, the challenges faced in developing hybrid molecules, such as their design and optimization complexities, bioavailability and pharmacokinetics issues, target identification and validation, and off-target effects, are discussed.
Collapse
Affiliation(s)
- Shivam Sharma
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, 151401, India
- Graphic Era (Deemed to Be University, Clement Town, Dehradun, 248002, India
| | - Thakur Gurjeet Singh
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy Hyderabad Campus GITAM University, Hyderabad, 502329, India
| | - Gazanfar Ahmad
- Prabha Harjilal College of Pharmacy and Paraclinical Sciences, Jammu, Jammu and Kashmir, India
| | - Kapil Kumar Goel
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University, Dist. Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
3
|
Ahmed NM, Mohamed MS, Awad SM, Abd El-Hameed RH, El-tawab NAA, Gaballah MS, Said AM. Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers. J Enzyme Inhib Med Chem 2024; 39:2304625. [PMID: 38348824 PMCID: PMC10866072 DOI: 10.1080/14756366.2024.2304625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | | | | | - Mohamed S. Gaballah
- Biochemistry and Molecular Biology Department, Helwan University, Ein-Helwan, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, USA
- Athenex Inc, Buffalo, NY, USA
| |
Collapse
|
4
|
Badawi WA, Okda TM, Abd El Wahab SM, Ezz-ElDien ES, AboulWafa OM. Developing new anticancer agents: Design, synthesis, biological evaluation and in silico study of several functionalized pyrimidine-5-carbonitriles as small molecules modulators targeting breast cancer. Bioorg Chem 2024; 153:107953. [PMID: 39556931 DOI: 10.1016/j.bioorg.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Committed to our growing effort addressed toward the development of potent anti-breast cancer candidates, new 4-hydrazinylpyrimidine-5-carbonitriles featuring a morpholinyl or piperidinyl moiety at the position-2 and derivatized with various functionalities at the hydrazinyl group were designed through structure optimization, and their antiproliferative potency against two human breast cancer (BC) cell lines, relative to the reference drug 5-FU, was evaluated. Compounds showing remarkable cytotoxic activity versus the hormone dependent MCF-7 cell line (IC50 = 1.62 ± 0.06 µM- 9.88 ± 0.38 µM) and the non-hormone dependent MDA-MB-231 cell line (IC50 = 3.26 ± 0.14 µM-12.93 ± 0.55 µM) were further tested by multiple assays for clarification of their potential activity. Promising derivatives revealing low damage to healthy cells were subject to enzymatic inhibitory assessment against ARO and EGFR and their activities compared to letrozole and erlotinib respectively. Compounds 3c, 6a as well as compounds 4c, 4d proved to be good inhibitors of the ARO and EGFR enzymes respectively. Active compounds were also evaluated for their underlying mode of action by further investigation for CDK, Hsp90, PI3K inhibition and compared to normal MCF-10A cells and assessed for their enhancement of the caspase 9 levels. Additionally, cell cycle analysis and apoptotic induction were performed. They demonstrated remarkable activities in the previous assays and emanated as leads as anti-breast cancer candidates. Eventually, molecular docking analysis revealed that hit compounds 3c, 4c, 4d, and 6a could bind favorably to the proposed in silico models of various protein-ligand interactions. Therefore, our promising top candidates, by demonstrating appreciable anti-breast cancer activities, present valuable prospects for optimization, potency enhancement and future application.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Shrouk M Abd El Wahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt
| | - Eman S Ezz-ElDien
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
5
|
Ahmad Sheikh K, Parveen D, Mumtaz Alam M, Azam F, Ahmed Khan M, Akhter M, Tasneem S, Meenu, Parvez S, Imtiyaz K, Rizvi MA, Shaquiquzzaman M. Exploring cyclopropylamine containing cyanopyrimidines as LSD1 inhibitors: Design, synthesis, ADMET, MD analysis and anticancer activity profiling. Bioorg Chem 2024; 147:107336. [PMID: 38636431 DOI: 10.1016/j.bioorg.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
In this series we report the structure-based design, synthesis and anticancer activity evaluation of a series of eighteen cyclopropylamine containing cyanopyrimidine derivatives. The computational predictions of ADMET properties revealed appropriate aqueous solubility, high GI absorption, no BBB permeability, no Lipinski rule violations, medium total clearance and no mutagenic, tumorigenic, irritant and reproductive toxic risks for most of the compounds. Compounds VIIb, VIIi and VIIm emerged as the most potent anticancer agents among all compounds evaluated against 60 cancer cell lines through the one-dose (10 µM) sulforhodamine B assay. Further, the multiple dose cell viability studies against cancer cell lines MOLT-4, A549 and HCT-116 revealed results consistent with the one-dose assay, besides sparing normal cell line HEK-293. The three potent compounds also displayed potent LSD1 inhibitory activity with IC50 values of 2.25, 1.80 and 6.08 µM. The n-propyl-thio/isopropyl-thio group bonded to the pyrimidine ring and unsubstituted/ electron donating group (at the para- position) attached to the phenyl ring resulted in enhanced anticancer activity. However, against leukemia cancer, the electron donating isopropyl group remarkably enhanced anti-cancer activity. Our findings provide important leads, which merit further optimization to result in better cancer therapeutics.
Collapse
Affiliation(s)
- Khursheed Ahmad Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Darakhshan Parveen
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Sharba Tasneem
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Meenu
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Bioscience, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid A Rizvi
- Genome Biology Lab, Department of Bioscience, Jamia Millia Islamia, New Delhi 110025, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Rashdan HRM, El-Sayyad GS, Shehadi IA, Abdelmonsef AH. Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules. Molecules 2023; 28:7491. [PMID: 38005213 PMCID: PMC10672871 DOI: 10.3390/molecules28227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (4-9) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine-pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9's antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza 12566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Ihsan A Shehadi
- Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
7
|
Dorbabu A. Pyrazole/pyrazoline as an excellent pharmacophore in the design of carbonic anhydrase inhibitors (2018-2022). Arch Pharm (Weinheim) 2023; 356:e2200562. [PMID: 36599496 DOI: 10.1002/ardp.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase (CA) is a metalloenzyme that catalyzes the interconversion between carbon dioxide and water and dissociated ions of carbonic acid. In addition, CA performs various other functions in animals and plants, depending on the part of the living being. CAs have been found in almost all organisms. Besides, CAs are associated with several diseases, such as glaucoma, obesity, epilepsy, cancer, and so on. CAs are also involved in tumor cell growth and angiogenesis. Thus, inhibition of CA may be an attractive way of control of such diseases. Hence, CA inhibitors have been designed and developed to cure CA-associated diseases. Some examples of approved CA inhibitors are dorzolamide, methazolamide, brinzolamide, and dichlorphenamide. Furthermore, various heterocyclic scaffolds were utilized for the design of CA inhibitors. Among those, pyrazole/pyrazoline derivatives have exhibited greater potency toward CA inhibition. Hence, research that took place in the field of drug design and discovery of CA inhibition has been systematically reviewed and collated. Alongside, the structure-activity relationship has been described, followed by a description of the most potent molecules and their structural features.
Collapse
Affiliation(s)
- Atukuri Dorbabu
- SRMPP Government First Grade College, Huvina Hadagali, India
| |
Collapse
|
8
|
Sharma S, Mittal N, Banik BK. Chemistry and Therapeutic Aspect of Triazole: Insight into the Structure-activity Relationship. Curr Pharm Des 2023; 29:2702-2720. [PMID: 37916492 DOI: 10.2174/0113816128271288231023045049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
The triazole ring is a highly significant heterocycle that occurs naturally in many commodities and is a common feature in pharmaceuticals. Recently, heterocyclic compounds and their derivatives have been getting a lot of attention in medicinal chemistry because they have a lot of pharmacological and biological potential. For example, a lot of drugs have nitrogen-containing heterocyclic moieties. The triazole ring is often used as a bio-isostere of the oxadiazole nucleus. The oxygen atom in the oxadiazole nucleus is replaced by nitrogen in the triazole analogue. This article explores the pharmacological properties of the triazole moiety, including but not limited to antibacterial, analgesic, anticonvulsant, anthelmintic, anti-inflammatory, antitubercular, antimalarial, antioxidant, antiviral, and other properties. Additionally, we discuss the diverse multi- target pharmacological activities exhibited by triazole-based compounds. Based on a literature review, it is evident that triazole-based chemicals hold significant potential for various applications.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar 301028, India
| | - Nitin Mittal
- Department of Pharmaceutical Science, Lords University, Alwar 301028, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Qureshi F, Nawaz M, Hisaindee S, Almofty SA, Ansari MA, Jamal QMS, Ullah N, Taha M, Alshehri O, Huwaimel B, Bin Break MK. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19. ARAB J CHEM 2022; 15:104366. [PMID: 36276298 PMCID: PMC9580235 DOI: 10.1016/j.arabjc.2022.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
We report microwave synthesis of seven unique pyrimidine anchored derivatives (1–7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1–7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1–7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24 ± 1.36 µM and 89.37 ± 1.17 µM, respectively. Molecular docking was performed for derivatives (1–7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of −8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1–7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of −0.03 and −0.018, respectively and absence of AMES toxicity.
Collapse
Affiliation(s)
- Faiza Qureshi
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.0. Box 1982, Dammam 31441, Saudi Arabia.,Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soleiman Hisaindee
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Sarah Ameen Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.0. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ohood Alshehri
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.,Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
10
|
Guo WG, Zhao JR, Li M, Hu T, Dan Z, Zhang Q, Ma LY, Zhang SY, Zhao B. Design, synthesis and anti-tumor activity studies of novel pyrido[3, 4-d]pyrimidine derivatives. Bioorg Med Chem Lett 2022; 76:129020. [PMID: 36216031 DOI: 10.1016/j.bmcl.2022.129020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022]
Abstract
In order to find high-efficiency and low-toxic anti-tumor drugs, 29 pyrido[3,4-d]pyrimidine compounds were designed, synthesized and evaluated by MTT assay in vitro. The results presented that most of the compounds had good antitumor activities, among which compound 30 had the best anti-tumor activity on MGC803 cells (IC50 = 0.59 μM). Mechanistic studies exhibited that compound 30 inhibited migration of MGC803 and induced apoptosis. It was proved that compound 30 up-regulated expression of Bid and PARP, down-regulated expression of CycD1 by western blot experiments. This study indicated that compound 30 might be served as a lead agent for the treatment of human gastric cancers.
Collapse
Affiliation(s)
- Wen-Ge Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pharmaceutical Department, Changzhi Medical College, Changzhi 046000, China
| | - Jun-Ru Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zengyangzong Dan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China; Laboratory of Cardio-cerebrovascular Drug, Henan Province, China.
| | - Sai-Yang Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China.
| | - Bing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Limpachayaporn P, Nuchpun S, Sirirak J, Charoensuksai P, Wongprayoon P, Chuaypen N, Tangkijvanich P, Suksamrarn A. meta-Ureidophenoxy-1,2,3-triazole hybrid as a novel scaffold for promising HepG2 hepatocellular carcinoma inhibitors: Synthesis, biological evaluation and molecular docking studies. Bioorg Med Chem 2022; 74:117048. [PMID: 36270111 DOI: 10.1016/j.bmc.2022.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Thirty-one meta-ureidophenoxymethyl-1,2,3-triazole derivatives were designed and synthesized via nucleophilic addition, nucleophilic substitution and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The evaluation of their cytotoxicity using MTT assay indicated that almost all derivatives exhibited significantly superior inhibitory activity against hepatocellular carcinoma cell line HepG2 compared to the parental molecule sorafenib (1). Among the series, 5r was the most potent anti-HepG2 agent with IC50 = 1.04 µM, which was almost 5-fold more active than sorafenib (IC50 = 5.06 µM), while the cytotoxic activity against human embryonal lung fibroblast cell line MRC-5 remained comparable to sorafenib. The synthetic derivative 5r, thus, possessed 5.2-time higher selectivity index (SI) than that of sorafenib. Molecular docking studies revealed an efficient interaction of 5r at the same sorafenib's binding region in both B-Raf and VEGFR-2 with lower binding energies than those of sorafenib, consistent with its cytotoxic effect. Furthermore, 5r was proven to induce apoptosis in a dose-dependent manner similar to sorafenib. In addition, the prediction using SwissADME suggested that 5r possessed appropriate drug properties conforming to Veber's studies. These findings revealed that the newly designed meta-ureidophenoxy-1,2,3-triazole hybrid scaffold was a promising structural feature for an efficient inhibition of HepG2. Moreover, derivative 5r emerged as a promising candidate for further development as a targeted anti-cancer agent for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Panupun Limpachayaporn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Sopon Nuchpun
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Purin Charoensuksai
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pawaris Wongprayoon
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| |
Collapse
|
12
|
Avula SK, Ullah S, Halim SA, Khan A, Anwar MU, Csuk R, Al-Harrasi A. Synthesis of Novel Substituted Quinoline Derivatives as Diabetics II Inhibitors and along with Their In-Silico Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Gülbenek C, Yıldırım M, Yıldırım A. Microwave-mediated approach to highly substituted nitropyrimidines via double Mannich reactions and their biological properties. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Oekchuae S, Sirirak J, Charoensuksai P, Wongprayoon P, Chuaypen N, Boonsombat J, Ruchirawat S, Tangkijvanich P, Suksamrarn A, Limpachayaporn P. The Design and Synthesis of a New Series of 1,2,3-Triazole-Cored Structures Tethering Aryl Urea and Their Highly Selective Cytotoxicity toward HepG2. Pharmaceuticals (Basel) 2022; 15:ph15050504. [PMID: 35631331 PMCID: PMC9147274 DOI: 10.3390/ph15050504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/02/2023] Open
Abstract
Target cancer drug therapy is an alternative treatment for advanced hepatocellular carcinoma (HCC) patients. However, the treatment using approved targeted drugs has encountered a number of limitations, including the poor pharmacological properties of drugs, therapy efficiency, adverse effects, and drug resistance. As a consequence, the discovery and development of anti-HCC drug structures are therefore still in high demand. Herein, we designed and synthesized a new series of 1,2,3-triazole-cored structures incorporating aryl urea as anti-HepG2 agents. Forty-nine analogs were prepared via nucleophilic addition and copper-catalyzed azide-alkyne cycloaddition (CuAAC) with excellent yields. Significantly, almost all triazole-cored analogs exhibited less cytotoxicity toward normal cells, human embryonal lung fibroblast cell MRC-5, compared to Sorafenib and Doxorubicin. Among them, 2m’ and 2e exhibited the highest selectivity indexes (SI = 14.7 and 12.2), which were ca. 4.4- and 3.7-fold superior to that of Sorafenib (SI = 3.30) and ca. 3.8- and 3.2-fold superior to that of Doxorubicin (SI = 3.83), respectively. Additionally, excellent inhibitory activity against hepatocellular carcinoma HepG2, comparable to Sorafenib, was still maintained. A cell-cycle analysis and apoptosis induction study suggested that 2m’ and 2e likely share a similar mechanism of action to Sorafenib. Furthermore, compounds 2m’ and 2e exhibit appropriate drug-likeness, analyzed by SwissADME. With their excellent anti-HepG2 activity, improved selectivity indexes, and appropriate druggability, the triazole-cored analogs 2m’ and 2e are suggested to be promising candidates for development as targeted cancer agents and drugs used in combination therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Sittisak Oekchuae
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.O.); (J.S.)
- Chulabhorn Research Institute, Bangkok 10210, Thailand; (J.B.); (S.R.)
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.O.); (J.S.)
| | - Purin Charoensuksai
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.C.); (P.W.)
| | - Pawaris Wongprayoon
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.C.); (P.W.)
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (P.T.)
| | - Jutatip Boonsombat
- Chulabhorn Research Institute, Bangkok 10210, Thailand; (J.B.); (S.R.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Bangkok 10210, Thailand; (J.B.); (S.R.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (P.T.)
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand;
| | - Panupun Limpachayaporn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.O.); (J.S.)
- Correspondence: or ; Tel.: +66-34-255797; Fax: +66-34-271356
| |
Collapse
|
15
|
Han Mİ, Küçükgüzel ŞG. Thioethers: An Overview. Curr Drug Targets 2022; 23:170-219. [DOI: 10.2174/1389450122666210614121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
:
Spreading rapidly in recent years, cancer has become one of the causes of the highest mor-tality rates after cardiovascular diseases. The reason for cancer development is still not clearly under-stood despite enormous research activities in this area. Scientists are now working on the biology of cancer, especially on the root cause of cancer development. The aim is to treat the cancer disease and thus cure the patients. The continuing efforts for the development of novel molecules as potential anti-cancer agents are essential for this purpose. The main aim of this review was to present a survey on the medicinal chemistry of thioethers and provide practical data on their cytotoxicities against various cancer cell lines. The research articles published between 2001-2020 were consulted to pre-pare this review article; however, patent literature has not been included. The thioether-containing heterocyclic compounds may emerge as a new class of potent and effective anti-cancer agents in the future.
Collapse
Affiliation(s)
- M. İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Talas, 38050, Kayseri, Turkey
| | - Ş. Güniz Küçükgüzel
- Vocational School of Health Services, Fenerbahçe University, Ataşehir, 34758, İstanbul, Turkey
| |
Collapse
|
16
|
Khattab RR, Alshamari AK, Hassan AA, Elganzory HH, El-Sayed WA, Awad HM, Nossier ES, Hassan NA. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J Enzyme Inhib Med Chem 2021; 36:504-516. [PMID: 33504239 PMCID: PMC8759726 DOI: 10.1080/14756366.2020.1871335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
In the current study, new thienopyrimidine conjugates bearing 1,2,3-triazole core and different sugar moieties have been designed and synthesized by Cu(I)-catalysed click dipolar cycloaddition. The cytotoxic activity of the synthesised conjugates 2, 5, 7, and 13-18 was studied against HCT-116 and MCF-7 cell lines by the MTT assay. The triazole glycosides 16 and 18 provided significant cytotoxic activities against HCT-116 cell lines comparable to that of doxorubicin and other studied compounds. The cytotoxic behaviour against MCF-7 exhibited that all the investigated compounds were more potent than doxorubicin. Moreover, all screened targets were evaluated against mutant EGFR kinase type L858R and the results revealed that the acetylated 1,2,3-triazole glycosides 13-18 exhibited excellent EGFR inhibitory activity in comparison with gefitinib. Furthermore, molecular modelling studies were performed to investigate the binding affinity of the most active compounds to EGFR enzyme.
Collapse
Affiliation(s)
- Reham R. Khattab
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | - Asma K. Alshamari
- Chemistry Department, College of Science, Ha'il University, Ha'il, KSA
| | - Allam A. Hassan
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt
- Department of Chemistry, College of Science, Shaqra University, Shaqra, KSA
| | | | - Wael A. El-Sayed
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
- Department of Chemistry, College of Science, Qassim University, Buraydah, KSA
| | - Hanem M. Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Cairo, Egypt
| | - Eman S. Nossier
- Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nasser A. Hassan
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, Shaqra University, Shaqra, KSA
| |
Collapse
|
17
|
Zhou T, Zhu Y, Zhang H, He J, Li H, Lang M, Wang J, Peng S. One‐Pot Synthesis of 1,2,3‐Triazolo Polycyclic Systems via Copper‐Catalyzed/TsOH‐Promoted Tandem Annulation of 1,6‐Allenynes with Organic Azides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ting Zhou
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Yuqi Zhu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hong Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jieyin He
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hongguang Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
- School of Pharmaceutical Sciences Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology Ministry of Education Tsinghua University Beijing 100084 People's Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| |
Collapse
|
18
|
Kumar L, Lal K, Kumar A, Kumar A. Synthesis, antimicrobial evaluation and docking studies of oxazolone-1,2,3-triazole-amide hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04588-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Khattab RR, Hassan AA, A Osman DA, Abdel-Megeid FM, Awad HM, Nossier ES, El-Sayed WA. Synthesis, anticancer activity and molecular docking of new triazolo[4,5- d]pyrimidines based thienopyrimidine system and their derived N-glycosides and thioglycosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1090-1113. [PMID: 34496727 DOI: 10.1080/15257770.2021.1975297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A series of new substituted triazolo[4,5-d]pyrimidine derivatives linked to thienopyrimidine ring system were prepared as a hybrid heterocyclic systems, as possible nucleobases analogs, starting from the key carboxamide derivative 2 and its azide precursor via heterocyclization reactions and their structures were characterized. Glycosylation of the prepared triazolopyrimidine derivatives was performed and afforded, regioselctively, the corresponding thienopyrimidine-triazolopyrimidine hybrid N1-glycosides and their thioglycoside analogues in good yields. The synthesized glycosyl heterocycles were studied for their cytotoxic activity against HepG-2 and MCF-7 human cancer cells and significant results were obtained. Compounds 7a, 8 b, 9 b, 9a and 7 b demonstrated promising activities comparable to the activity of the doxorubicin for (HepG-2) cell line. Furthermore, a number of the afforded triazolopyrimidine glycosides were found potent against cancer cells (MCF-7). Furthermore, docking simulation the promising thienopyrimidine analogues 7-13 was done against EGFR kinase to provide a binding model that could serve in discovery of further anticancer agents.
Collapse
Affiliation(s)
- Reham R Khattab
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | - Allam A Hassan
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt.,Medical Laboratories Department, Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Dalia A A Osman
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | | | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Wael A El-Sayed
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
20
|
Mahapatra A, Prasad T, Sharma T. Pyrimidine: a review on anticancer activity with key emphasis on SAR. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00274-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Cancer is a global health challenge, it impacts the quality of life and its treatment is associated with several side effects. Resistance of the cancer cells to the existing drugs has led to search for novel anticancer agents. Pyrimidine, a privileged scaffold, is part of living organisms and plays vital role in various biological procedures as well as in cancer pathogenesis. Due to resemblance in structure with the nucleotide base pair of DNA and RNA, it is recognized as valuable compound in the treatment of cancer.
Main text
Many novel pyrimidine derivatives have been designed and developed for their anticancer activity in the last few years. The present review aims to focus on the structure activity relationship (SAR) of pyrimidine derivatives as anticancer agent from the last decade.
Conclusion
This review intends to assist in the development of more potent and efficacious anticancer drugs with pyrimidine scaffold.
Graphical abstract
Collapse
|
21
|
Kumar S, Khokra SL, Yadav A. Triazole analogues as potential pharmacological agents: a brief review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:106. [PMID: 34056014 PMCID: PMC8148872 DOI: 10.1186/s43094-021-00241-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background A large number of studies have recently reported that, because of their significant biological and pharmacological properties, heterocyclic compounds and their derivatives have attracted a strong interest in medicinal chemistry. The triazole nucleus is one of the most important heterocycles which has a feature of natural products as well as medicinal agents. Heterocyclic nitrogen is abundantly present in most medicinal compounds. The derivatization of triazole ring is based on the phenomenon of bio-isosteres in which substituted the oxygen atom of oxadiazole nucleus with nitrogen triazole analogue. Main text This review focuses on recent synthetic procedure of triazole moiety, which comprises of various pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic, antitubercular, anthelmintic, antioxidant, antimalarial, antiviral, etc.. Conclusion This review highlights the current status of triazole compounds as different multi-target pharmacological activities. From the literature survey, triazole is the most widely used compound in different potential activities.
Collapse
Affiliation(s)
- Sachin Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Akash Yadav
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| |
Collapse
|
22
|
Buabeng ER, Henary M. Developments of small molecules as inhibitors for carbonic anhydrase isoforms. Bioorg Med Chem 2021; 39:116140. [PMID: 33905966 DOI: 10.1016/j.bmc.2021.116140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Carbonic anhydrases are ubiquitous, and their role in the hydration of carbon dioxide is essential for the survival of many tissues and organs. However, their association with many pathological diseases, especially in glaucoma, Alzheimer's, obesity, epilepsy, and tumorigenesis, has prompted the design and synthesis of novel carbonic anhydrase inhibitors (CAIs). Herein we describe (1) approaches used in the design of CAIs and (2) synthesis of small molecules as CAIs within the last five years. Despite the active research in this area, there are still more avenues to explore, especially selective inhibition of CA I, CA IX, and XII. These isoforms would continue to open up a diversity of carbonic anhydrase inhibitors containing 1,2,3-triazoles, imidazolone, pyrrolidone, thiadiazole, isatin, and glycoconjugates as part of their molecular frameworks.
Collapse
Affiliation(s)
- Emmanuel Ramsey Buabeng
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
23
|
Abbas N, Matada GSP, Dhiwar PS, Patel S, Devasahayam G. Fused and Substituted Pyrimidine Derivatives as Profound Anti-Cancer Agents. Anticancer Agents Med Chem 2021; 21:861-893. [PMID: 32698738 DOI: 10.2174/1871520620666200721104431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
The rationale behind drug design is the strategic utilization of heterocyclic fragments with specific physicochemical properties to form molecular targeted agents. Among the heterocyclic molecules, pyrimidine has proved to be a privileged pharmacophore for various biological cancer targets. The anti-cancer potential of small molecules with fused and substituted pyrimidines can be enhanced through bioisosteric replacements and altering their ADME parameters. Although several small molecules are used in cancer chemotherapy, oncology therapeutics has various limitations, especially in their routes of administration and their concurrent side effects. Such pernicious effects may be overcome, via selective biological targeting. In this review, the biological targets, to inhibit cancer, have been discussed. The structural activity relationship of fused and substituted pyrimidines was studied. Eco-friendly synthetic approaches for pyrimidine derivatives have also been discussed. This review will give an insight to scientists and researchers of medicinal chemistry discipline to design small molecules having a pyrimidine scaffold with high anti-cancer potential.
Collapse
Affiliation(s)
- Nahid Abbas
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | | | - Prasad S Dhiwar
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Shilpa Patel
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Giles Devasahayam
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| |
Collapse
|
24
|
Dhumad AM, Jassem AM, Alharis RA, Almashal FA. Design, cytotoxic effects on breast cancer cell line (MDA-MB 231), and molecular docking of some maleimide-benzenesulfonamide derivatives. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Zhang XH, Guo Q, Wang HY, Li YH, Khamis MY, Ma LY, Wang B, Liu HM. Gramine-based structure optimization to enhance anti-gastric cancer activity. Bioorg Chem 2021; 107:104549. [PMID: 33383324 DOI: 10.1016/j.bioorg.2020.104549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Gramine is a natural indole alkaloid with a wide range of biological activities, but its anti-gastric cancer activity is poor. Herein, a pharmacophore fusion strategy was adopted to design and synthesize a new series of indole-azole hybrids on the structural basis of gramine. Based on our previous studies, different nitrogen-containing five-membered heterocyclic rings and terminal alkyne group were introduced into the indole-based scaffold to investigate their effect on improving the anti-gastric cancer activity of gramine derivatives. Structure-activity relationship (SAR) studies highlighted the role played by terminal alkyne in enhancing the inhibitory effect, and compound 16h displayed the best antiproliferative activity against gastric cancer MGC803 cells with IC50 value of 3.74 μM. Further investigations displayed compound 16h could induce mitochondria-mediated apoptosis, and caused cell cycle arrest at G2/M phase. Besides, compound 16h could inhibit the metastasis ability of MGC803 cells. Our studies may provide a new strategy for structural optimization of gramine to enhance anti-gastric cancer activity, and provide a potential candidate for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Heng-Ying Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, PR China
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
26
|
Sahin Z, Biltekin SN, Yurttas L, Berk B, Özhan Y, Sipahi H, Gao ZG, Jacobson KA, Demirayak Ş. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur J Med Chem 2020; 212:113125. [PMID: 33422981 DOI: 10.1016/j.ejmech.2020.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
Thiouracil and thiocytosine are important heterocyclic pharmacophores having pharmacological diversity. Antitumor and antiviral activity is commonly associated with thiouracil and thiocytosine derivatives, which are well known fragments for adenosine receptor affinity with many associated pharmacological properties. In this respect, 33 novel compounds have been synthesized in two groups: 24 thiouracil derivatives (4a-x) and 9 thiocytosine derivatives (5a-i). Antitumor activity of all the compounds was determined in the U87 MG glioblastoma cell line. Compound 5e showed an anti-proliferative IC50 of 1.56 μM, which is slightly higher activity than cisplatin (1.67 μM). The 11 most active compounds showed no signficant binding to adenosine A1, A2A or A2B receptors at 1 μM. Brain tumors express high amounts of phosphodiesterases. Compounds were tested for PDE4 inhibition, and 5e and 5f showed the best potency (5e: 3.42 μM; 5f: 0.97 μM). Remakably, those compounds were also the most active against U87MG. However, the compounds lacked a cytotoxic effect on the HEK293 healthy cell line, which encourages further investigation.
Collapse
Affiliation(s)
- Zafer Sahin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey.
| | - Sevde Nur Biltekin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Leyla Yurttas
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskisehir, Turkey
| | - Barkin Berk
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Yağmur Özhan
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Hande Sipahi
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Şeref Demirayak
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| |
Collapse
|
27
|
|
28
|
Nasser AA, Eissa IH, Oun MR, El-Zahabi MA, Taghour MS, Belal A, Saleh AM, Mehany ABM, Luesch H, Mostafa AE, Afifi WM, Rocca JR, Mahdy HA. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M. Org Biomol Chem 2020; 18:7608-7634. [PMID: 32959865 DOI: 10.1039/d0ob01557a] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new series of pyrimidine-5-carbonitrile derivatives has been designed as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). These compounds were synthesized and evaluated for their in vitro cytotoxic activities against a panel of four human tumor cell lines, namely colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), breast cancer (MCF-7), and non-small cell lung cancer cells (A549). Five of the synthesized compounds, 11a, 11b, 12b, 15b and 16a, were found to exhibit moderate antiproliferative activity against the tested cell lines and were more active than the EGFR inhibitor erlotinib. In particular, compound 11b showed 4.5- to 8.4-fold erlotinib activity against HCT-116, HepG-2, MCF-7, and A549 cells with IC50 values of 3.37, 3.04, 4.14, and 2.4 μM respectively. Moreover, the most cytotoxic compounds that showed promising IC50 values against the four cancer cell lines were subjected to further investigation for their kinase inhibitory activities against EGFRWT and EGFRT790M using homogeneous time resolved fluorescence (HTRF) assay. Compound 11b was also found to be the most active compound against both EGFRWT and mutant EGFRT790M, exhibiting IC50 values of 0.09 and 4.03 μM, respectively. The cell cycle and apoptosis analyses revealed that compound 11b can arrest the cell cycle at the G2/M phase and induce significant apoptotic effects in HCT-116, HepG-2, and MCF-7 cells. Additionally, compound 11b upregulated the level of caspase-3 by 6.5 fold in HepG-2 when compared with the control. Finally, molecular docking studies were carried out to examine the binding mode of the synthesized compounds against the proposed targets; EGFRWT and EGFRT790M. Additional in silico ADMET studies were performed to explore drug-likeness properties.
Collapse
Affiliation(s)
- Ahmed A Nasser
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tangadanchu VKR, Gundabathini SR, Bethala L. A. PD, Yedla P, Chityal GK. Isomannide monoundecenoate‐based 1,2,3‐triazoles: Design, synthesis, and in vitro bioactive evaluation. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vijai Kumar Reddy Tangadanchu
- Centre for Lipid Science & Technology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Department of Radiology Washington University School of Medicine St. Louis Missouri USA
| | | | | | - Poornachandra Yedla
- Organic Synthesis & Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Ganesh Kumar Chityal
- Organic Synthesis & Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| |
Collapse
|
30
|
Nainwal LM, Shaququzzaman M, Akhter M, Husain A, Parvez S, Khan F, Naematullah M, Alam MM. Synthesis, ADMET prediction and reverse screening study of 3,4,5-trimethoxy phenyl ring pendant sulfur-containing cyanopyrimidine derivatives as promising apoptosis inducing anticancer agents. Bioorg Chem 2020; 104:104282. [PMID: 33010624 DOI: 10.1016/j.bioorg.2020.104282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 02/09/2023]
Abstract
Cancer remains considered as one of the leading global health problems either due to meagre and suboptimal therapeutic response of chemotherapeutic agents or due to the emergence of spontaneous complex multidrug resistance in cancer cells. This created a persistent need for the development of new anticancer agents. Enthralled by the high success rate for natural product-based drug discovery and current research scenario, we synthesized a new series of 3,4,5-trimethoxy phenyl ring pendant sulfur-containingcyanopyrimidine derivatives clubbed with different amines intending to search an anticancer lead compound. To probe the anti-proliferative spectrum of the synthesized derivatives, an in-vitro evaluation was piloted against a panel of 60 cancer cell lines at the National Cancer Institute (NCI) representing major types of cancer diseases. Most of the derivatives showed good to moderate anti-proliferative activity. The results revealed that compound 4e displayed the most promising broad-spectrum anticancer activity with high growth inhibition of various cell lines representing multiple cancers diseases. Mechanistic investigation of compound 4e in human breast cancer MDA-MB-231 cells showed that compound 4e triggers cell death through the induction of apoptosis. ADMET studies and reverse screening were also performed to identify the potential targets of designed molecules. It was concluded that 3,4,5-trimethoxy phenyl ring pendant sulfur-containingcyanopyrimidine derivative 4e could act as a promising hit molecule for further development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Shaququzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md Naematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
31
|
Nagaraja M, Kalluraya B, Asma, Shreekanth TK, Kumar MS. Synthesis of chalcone precursor via Cu(I) catalyzed 1,3‐dipolar reaction of functionalized acetylene and pyrazole embedded dipole. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Manju Nagaraja
- Department of Studies in Chemistry Mangalore University Mangalagangothri Karnataka India
| | - Balakrishna Kalluraya
- Department of Studies in Chemistry Mangalore University Mangalagangothri Karnataka India
| | - Asma
- Department of Studies in Chemistry Mangalore University Mangalagangothri Karnataka India
| | | | - Madan S. Kumar
- Purse Lab Mangalore University Mangalagangothri Karnataka India
| |
Collapse
|
32
|
Ma L, Wang H, You Y, Ma C, Liu Y, Yang F, Zheng Y, Liu H. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm Sin B 2020; 10:1658-1668. [PMID: 33088686 PMCID: PMC7563019 DOI: 10.1016/j.apsb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- Anticancer
- EMT, epithelial to mesenchymal transition
- ESI, electrospray ionization
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- Flavin adenine dinucleotide (FAD)
- Gastric cancer
- HRMS, high resolution mass spectra
- IC50, half maximal inhibitory concentration
- LSD1 inhibitors
- LSD1, histone lysine specific demethylase 1
- MOE, molecular operating environment
- PAINS, pan assay interference compounds
- PDB, the Protein Data Bank
- Pyrimidine
- RLU, relative light units
- SARs, structure–activity relationship studies
- TCP, tranylcypromine
- VDW, van der Waals
Collapse
Affiliation(s)
| | | | - Yinghua You
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chaoya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuejiao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Akhtar W, Nainwal LM, Khan MF, Verma G, Chashoo G, Bakht A, Iqbal M, Akhtar M, Shaquiquzzaman M, Alam MM. Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Adegoke RO, Oyebamiji AK, Semire B. Dataset on the DFT-QSAR, and docking approaches for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against human esophageal carcinoma (EC-109). Data Brief 2020; 31:105963. [PMID: 32695851 PMCID: PMC7365971 DOI: 10.1016/j.dib.2020.105963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
The investigation of the novel hybrid, 1, 2, 3-triazole moiety combined with pyrimidine derivatives against human esophageal carcinoma is an unexplored field of theoretical/computational chemistry. Also, the development of new drugs still remains a major challenge, cost-intensive and time-consuming, thus making the computational approach now a hot topic due to its ability to hasten up and aid the process of drug designs. Here, the use of the quantum chemical method via density functional theory (DFT) was employed in calculating molecular descriptors for developing the quantitative structure-activity relation (QSAR) model which predicts bioactivity of the selected 1, 2, 3-triazole-pyrimidine derivatives. Quantum chemical method implemented in Spartan 14, was used in calculating the molecular descriptors. The obtained results were imputed into Gretl and SPSS (software package for social sciences) to generate a novel QSAR model equation for human esophageal carcinoma (EC-109) through multiple linear regression. The relationship between the experimental and predicted inhibition efficiency (IC50) of 1,2,3-triazole-pyrimidine with EC-109 was calculated which gives good correlation results. QSAR was validated using CV.R2and R a 2 . Fitting value (R2) of 0.999 with an adjusted fitting value ( R a 2 ) of 0.995 was obtained and the result of validating QSAR performance gave CV.R2 and R a 2 value that is greater than 0.6, signifying its appropriateness and dependability. Molecular docking through simulation using Discovery Studio 4.1, Autodock Tool 1.5.6 and AutodockVina 1.1.2 was also carried out to calculate the free energy of ligand-receptor interactions as well as ligand conformation in the receptor-binding site. The results obtained revealed the presence of hydrogen bond interaction of the ligands with the amino acids residue in the binding sites of the receptor. Conformation of the ligands was essential property for binding ligand with the receptor. Critical examination and the correlations between the IC50 and binding energy showed the activeness of ligand conformation in the gouge of the receptor with binding energy greater than the 5-fluorouracil (5- Fu) that was used as the standard compound.
Collapse
Affiliation(s)
- Rhoda Oyeladun Adegoke
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Abel Kolawole Oyebamiji
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
35
|
Faeza Abdul Kareem Almashal, Al-Hujaj HH, Jassem AM, Al-Masoudi NA. A Click Synthesis, Molecular Docking, Cytotoxicity on Breast Cancer (MDA-MB 231) and Anti-HIV Activities of New 1,4-Disubstituted-1,2,3-Triazole Thymine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Kilic-Kurt Z, Ozmen N, Bakar-Ates F. Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents. Bioorg Chem 2020; 101:104028. [PMID: 32645482 DOI: 10.1016/j.bioorg.2020.104028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
A new series of pyrimidine derivatives containing aryl urea moieties was designed and synthesized. The anticancer activities of all compounds were evaluated in vitro against colon and prostat cancer cell lines by MTT assay. Among these compounds, 4b exhibited the highest cytotoxic activity against SW480 cancer cell line with IC50 value of 11.08 µM. Mechanistic studies showed that compound 4b arrested cell cycle at G2/M phase and induced apoptosis through upregulating Bax, Ikb-α and cleaved PARP and downregulating Bcl-2 expression levels. Moreover, compound 4b induced loss of mitochondrial membrane potential in SW480 cells. These results suggest that pyrimidine with urea moieties could be a template for designing new anticancer agents.
Collapse
Affiliation(s)
- Zühal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Nuri Ozmen
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
37
|
Asgari MS, Sepehri S, Bahadorikhalili S, Ranjbar PR, Rahimi R, Gholami A, Kazemi A, Khoshneviszadeh M, Larijani B, Mahdavi M. Magnetic silica nanoparticle-supported copper complex as an efficient catalyst for the synthesis of novel triazolopyrazinylacetamides with improved antibacterial activity. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02685-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Oyewole RO, Oyebamiji AK, Semire B. Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches. Heliyon 2020; 6:e03926. [PMID: 32462084 PMCID: PMC7243141 DOI: 10.1016/j.heliyon.2020.e03926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023] Open
Abstract
This work used quantum chemical method via DFT to calculate molecular descriptors for the development of QSAR model to predict bioactivity (IC50- 50% inhibition concentration) of the selected 1, 2, 3-triazole-pyrimidine derivatives against receptor (human gastric cancer cell line, MGC-803). The selected molecular parameters were obtained by B3LYP/6-31G∗∗. QSAR model linked the molecular parameters of the studied compounds to their cytotoxicity and reproduced their observed bioactivities against MGC-803. The calculated IC50 tailored the observed IC50 and greater than standard compound, 5-fluorouracil, suggesting that the developed QSAR model reproduced the observed bioactivity. Statistical analyses (including R2, CV. R2 andR a 2 gave 0.950, 0.970 and 0.844 respectively) revealed a very good fitness. Molecular docking studies revealed the hydrogen bonding with the amino acid residues in the binding site, as well as ligand conformations which are essential feature for ligand-receptor interactions. Therefore, the methods used in this study are veritable tools that can be employed in pharmacological and medicinal chemistry researches in designing better drugs with improve potency.
Collapse
Affiliation(s)
- Rhoda Oyeladun Oyewole
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Abel Kolawole Oyebamiji
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
39
|
Akhtar W, Nainwal LM, Kaushik SK, Akhtar M, Shaquiquzzaman M, Almalki F, Saifullah K, Marella A, Alam MM. Methylene‐bearing sulfur‐containing cyanopyrimidine derivatives for treatment of cancer: Part‐II. Arch Pharm (Weinheim) 2020; 353:e1900333. [DOI: 10.1002/ardp.201900333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Wasim Akhtar
- Drug Design and Medicinal Chemistry Laboratory, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia HamdardNew Delhi India
| | - Lalit M. Nainwal
- Drug Design and Medicinal Chemistry Laboratory, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia HamdardNew Delhi India
| | - Sumit K. Kaushik
- Drug Design and Medicinal Chemistry Laboratory, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia HamdardNew Delhi India
| | - Mymoona Akhtar
- Drug Design and Medicinal Chemistry Laboratory, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia HamdardNew Delhi India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Laboratory, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia HamdardNew Delhi India
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, College of PharmacyUmm Al‐Qura UniversityMecca Saudi Arabia
| | - Khalid Saifullah
- Department of Pharmaceutical Chemistry, College of PharmacyUmm Al‐Qura UniversityMecca Saudi Arabia
| | - Akranth Marella
- Department of Regulatory AffairsGenpact India Private LimitedMumbai India
| | - Mohammad M. Alam
- Drug Design and Medicinal Chemistry Laboratory, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia HamdardNew Delhi India
| |
Collapse
|
40
|
Ragab FA, Nissan YM, Seif EM, Maher A, Arafa RK. Synthesis and in vitro investigation of novel cytotoxic pyrimidine and pyrazolopyrimidne derivatives showing apoptotic effect. Bioorg Chem 2020; 96:103621. [DOI: 10.1016/j.bioorg.2020.103621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
|
41
|
Golobokova TV, Proidakov AG, Kizhnyaev VN. Selective Synthesis of Functionally Substituted
1,2,3-Triazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Oyebamiji AK, Fadare OA, Semire B. Hybrid-based drug design of 1,2,3-triazole-pyrimidine-hybrid derivatives: Efficient inhibiting agents of mesenchymal–epithelial transition factor reducing gastric cancer cell growth. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519819898354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anti-gastric cancer activity of 18 synthesized compounds was studied using theoretical and computational method. The studied compounds were docked against mesenchymal–epithelial transition factor (PDB ID: 2wgj) and the obtained scoring was compared with the standard used. Thus, all the studied compounds were efficient than the standard (5-florouracil); also, A9 proved to be more effective than other studied compounds.
Collapse
Affiliation(s)
- Abel Kolawole Oyebamiji
- Theoretical and Computational Chemistry Laboratory, Department of Basic Sciences, Adeleke University, Ede, Nigeria
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Olatomide A Fadare
- Organic Chemistry Research Laboratory, Chemistry Department, Obafemi Awolowo University, Ife, Nigeria
| | - Banjo Semire
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
43
|
Kolawole OA, Banjo S. In Vitro Biological Estimation of 1,2,3-Triazolo[4,5-d]pyrimidine Derivatives as Anti-breast Cancer Agent: DFT, QSAR and Docking Studies. Curr Pharm Biotechnol 2020; 21:70-78. [DOI: 10.2174/1389201020666190904163003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 08/18/2019] [Indexed: 11/22/2022]
Abstract
Background & Objective:
Series of synthesized molecular compounds were considered as
anti-breast cancer. The molecular descriptors which describe the microbial activities of the studied
compounds were calculated using theoretical approach.
Methods:
The calculated parameters obtained EHOMO (eV), ELUMO (eV), dipole moment (Debye), log P,
molecular weight (amu), HBA, HBD, Vol and Ovality were screened. The obtained calculated descriptors
were used to develop QSAR model for prediction of experimental inhibition concentration
(IC50) using SPSS and Gretl software packages for multiple linear regression (MLR) and MATLAB for
the artificial neural network (ANN).
Results:
From this statistical analysis, MLR and ANN were observed to be predictive, however, ANNQSAR
model predicted more efficiently than MLR.
Conclusion:
Furthermore, molecular docking study was executed with breast cancer cell line
(PDB ID: 1hi7); it was observed that BS20 with binding energy of -7.0 kcal/mol bounded more efficiently
than other compounds also, it inhibited more than the standard used (5-FU).
Collapse
Affiliation(s)
- Oyebamiji A. Kolawole
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria
| | - Semire Banjo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
44
|
Said MA, Messali M, Rezki N, Al-Soud YA, Aouad MR. Green microwave versus conventional synthesis, crystal structure of 1-(4-(Benzothiazol-2-yl)piperazin-1-yl)-2-(4-phenyl-1 H-1,2,3-triazol-1-yl)ethenone and HS-Analysis. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1751977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Musa A. Said
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Mouslim Messali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, El M‘nouar, Algeria
| | - Yaseen A. Al-Soud
- Department of Chemistry, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Mohamed R. Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, El M‘nouar, Algeria
| |
Collapse
|
45
|
Rezaeimanesh F, Bakherad M, Nasr‐Isfahani H, Bahramian B, Naderi S. Synthesis of 1,2,3 triazole‐linked pyrimidines catalyzed by mg‐Al‐LDH‐immobilized‐CuI as a heterogeneous catalyst. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mohammad Bakherad
- Faculty of ChemistryShahrood University of Technology Shahrood 3619995161 Iran
| | | | - Bahram Bahramian
- Faculty of ChemistryShahrood University of Technology Shahrood 3619995161 Iran
| | - Soheila Naderi
- Faculty of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| |
Collapse
|
46
|
Gouhar RS, Kamel MM, Soliman AA. Synthesis and anticancer evaluation of some novel
N
,
O
,
S
heterocyclic compounds pendant to 3‐methyl‐5‐cyano‐6‐(3,4‐dimethoxyphenyl)pyrimidine and other related fused pyrimidines. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rasha S. Gouhar
- Therapeutical Chemistry DepartmentNational Research Centre Giza Egypt
| | - Mohsen M. Kamel
- Therapeutical Chemistry DepartmentNational Research Centre Giza Egypt
| | - Ahmed A.F. Soliman
- Drug Bioassay‐Cell Culture Laboratory, Department of PharmacognosyNational Research Centre Giza Egypt
| |
Collapse
|
47
|
Ravikumar C, Murugavel S. Structural correlation and computational quantum chemical explorations of two 1,2,3-triazolyl-methoxypyridine derivatives as CYP51 antifungal inhibitors. Struct Chem 2019. [DOI: 10.1007/s11224-019-01329-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Zhao JW, Wu ZH, Guo JW, Huang MJ, You YZ, Liu HM, Huang LH. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties. Eur J Med Chem 2019; 181:111520. [DOI: 10.1016/j.ejmech.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
|
49
|
Goud NS, Pooladanda V, Mahammad GS, Jakkula P, Gatreddi S, Qureshi IA, Alvala R, Godugu C, Alvala M. Synthesis and biological evaluation of morpholines linked coumarin–triazole hybrids as anticancer agents. Chem Biol Drug Des 2019; 94:1919-1929. [DOI: 10.1111/cbdd.13578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nerella Sridhar Goud
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Ghouse S. Mahammad
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Pranay Jakkula
- Department of Biotechnology and Bioinformatics School of Life Sciences University of Hyderabad Hyderabad India
| | - Santhosh Gatreddi
- Department of Biotechnology and Bioinformatics School of Life Sciences University of Hyderabad Hyderabad India
| | - Insaf A. Qureshi
- Department of Biotechnology and Bioinformatics School of Life Sciences University of Hyderabad Hyderabad India
| | - Ravi Alvala
- G. Pulla Reddy College of Pharmacy Hyderabad India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Mallika Alvala
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| |
Collapse
|
50
|
Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190514074146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.
Collapse
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| |
Collapse
|