1
|
Mohd S, Sharma V, Harish V, Kumar R, Pilli G. Exploring Thiazolidinedione-Naphthalene Analogues as Potential Antidiabetic Agents: Design, Synthesis, Molecular Docking and In-vitro Evaluation. Cell Biochem Biophys 2025; 83:2213-2226. [PMID: 39673041 DOI: 10.1007/s12013-024-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Thiazolidinedione-naphthalene analogues were synthesized and evaluated for antidiabetic activity as Pancreatic α-Amylase (PAA) and intestinal α-glucosidase (IAG) inhibitors. The activity of the compounds (14a-g,17a-k) is compared with acarbose as the standard drug and all the compounds shows good to moderate antidiabetic activity. In-vitro PAA and IAG inhibition assay is performed for the all compounds, the compounds 17e shows superior PAA and IAG inhibitory activity with respective to standard (IC50 = 12.455 ± 0.04 μM and 9.145 ± 0. 01 μM). The molecular interaction with PAA and IAG protein was also studied with the help of molecular docking studies using AutoDock software. while SwissADME and Osiris property explorer tools computed in-silico drug likeliness and toxicity properties. The in-silico results confirmed the 17e molecule as a superior drug with high binding affinity and good drug likeness against PAA and IAG, confirming in-vitro results. We also studied antioxidant activity (AOA) of all synthesized compounds and results confined that the compound 14g and 17e has good antioxidant potential IC50 = 8.04 ± 0.02 μM and 6.36 ± 0.03 μM respectively among all compounds. In conclusion, in-vitro, in-silico antidiabetic and antioxidant studies revealed 17e compound was found to be potential compound.
Collapse
Affiliation(s)
- Sharfuddin Mohd
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Sharma
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vancha Harish
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakesh Kumar
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Govindaiah Pilli
- Faculty of medicine, Department of Pathology, Wayne state University, Detroit, MI, USA.
| |
Collapse
|
2
|
Pandey V, Kennedy JF, Raghav N. Falcipain-2: A review on structurally diverse non-peptide inhibitors. Int J Biol Macromol 2025; 309:142817. [PMID: 40187465 DOI: 10.1016/j.ijbiomac.2025.142817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The lack of a credible malaria vaccine for patients of all age group, the emergence and spread of parasites resistant to most of the clinically used antimalarial drugs and drug combination have aroused an imperative requirement to develop new drugs against malaria. The targeting of causal parasite Plasmodium falciparum's cysteine proteases involved in hemoglobin degradation, especially Falcipain-2 (FP-2) with small molecules inhibitors is one of the promising approaches for antimalarial chemotherapy. In the present review article, emphasis is given on rational and computational approaches used for developing promising non-peptidic inhibitors of FP-2. This review would be useful to researchers involved in the development of small molecule drug design strategies to target the Plasmodium falciparum cysteine protease, FP-2.
Collapse
Affiliation(s)
- Vandana Pandey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - J F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
3
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Kumar H, Sharma A, Kumar D, Marwaha MG, Dhanawat M, Aggarwal N, Marwaha RK. Synthesis, biological evaluation and in silico studies of some new analogues of 3,5-vdisubstituted thiazolidin-2,4-dione. Future Med Chem 2023; 15:2257-2268. [PMID: 37982252 DOI: 10.4155/fmc-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Background: A new series of 3,5-disubstituted thiazolidin-2,4-dione molecules were derived and characterized using various spectral techniques (1H NMR, IR, carbon, hydrogen, nitrogen, etc.) and physicochemical parameters. Materials & methods: The molecules were derived using Knoevenagel condensation followed by Mannich reaction and further synthesized analogues were screened for their antioxidant and antimicrobial potential using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method and serial tube dilution method, respectively, along with in silico studies (docking and absorption, distribution, metabolism and excretion parameters) to explore the drug-receptor interaction and druglikeness. Results & conclusion: In antimicrobial screening, the analogs MP2, MM6, MM7 and MM8 displayed promising activity while molecule MM4 exhibited better antioxidant potential in the series. In molecular docking analysis, the best-fitted analogs, namely, MM6 and MM7, showed good interactions.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Aastha Sharma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak, 124001, India
| | - Meenakshi Dhanawat
- Àmity institute of Pharmacy, Amity University Haryana, Gurugram, 122105, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
5
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
6
|
Tuszewska H, Szczepański J, Mandziuk S, Trotsko N. Thiazolidin-4-one-based derivatives - Efficient tools for designing antiprotozoal agents. A review of the last decade. Bioorg Chem 2023; 133:106398. [PMID: 36739686 DOI: 10.1016/j.bioorg.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Thiazolidin-4-one derivatives have a wide range of therapeutic implementations and clinical significance for medicinal chemistry. This heterocyclic ring has been reported to possess a variety of biological activities, including antiprotozoal activities that have inspired scientists to integrate this scaffold with different pharmacophoric fragments to design novel and effective antiprotozoal compounds. There are reviews describing thiazolidin-4-ones small molecules as good candidates with a single type of antiprotozoal activity, but none of these show collected news associated with the antiprotozoal activity of thiazolidin-4-ones and their SAR analysis from the last decade. In this review we are focusing on the antitoxoplasmic, anti-trypanosomal, antimalarial, antileishmanial, and antiamoebic activity of these derivatives, we attempt to summarize and analyze the recent developments with regard to the antiprotozoal potential of 4-TZD covering the structure-activity relationship and main molecular targets. The importance of various structural modifications at C2, N3, and C5 of the thiazolidine-4-one core has also been discussed in this review. We hope that all information concluded in this review can be useful for other researchers in constructing new effective antiprotozoal agents.
Collapse
Affiliation(s)
- Helena Tuszewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Jacek Szczepański
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Sławomir Mandziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8, Jaczewski Str., 20-090 Lublin, Poland
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland.
| |
Collapse
|
7
|
Tshiluka NR, Bvumbi MV, Mnyakeni-Moleele SS. Synthesis, Cytotoxicity and In Vitro α-Glucosidase Inhibition of New N-Substituted Glitazone and Rhodanine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s106816202302022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Discovery of Novel Thiazolidinedione-Derivatives with Multi-Modal Antidiabetic Activities In Vitro and In Silico. Int J Mol Sci 2023; 24:ijms24033024. [PMID: 36769344 PMCID: PMC9917550 DOI: 10.3390/ijms24033024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) and related complications continue to exert a significant burden on health care systems globally. Although conventional pharmacological therapies are beneficial in the management of this metabolic condition, it is still necessary to seek novel potential molecules for its management. On this basis, we have synthesised and evaluated the anti-diabetic properties of four novel thiazolidinedione (TZD)-derivatives. The TZD derivatives were synthesised through the pharmacophore hybridisation strategy based on N-arylpyrrole and TZD. The resultant derivatives at different concentrations were screened against key enzymes of glucose metabolism and glucose utilisation in the liver (HEP-G2) cell line. Additionally, peroxisome proliferator-activated receptor-γ activation was performed through docking studies. Docking of these molecules against PPAR-γ predicted strong binding, similar to that of rosiglitazone. Hence, TZDD2 was able to increase glucose uptake in the liver cells as compared to the control. The enzymatic inhibition assays showed a relative inhibition activity; with all four derivatives exhibiting ≥ 50% inhibition activity in the α-amylase inhibition assay and a concentration dependent activity in the α-glucosidase inhibition assay. All four derivatives exhibited ≥30% inhibition in the aldose reductase inhibition assay, except TZDD1 at 10 µg/mL. Interestingly, TZDD3 showed a decreasing inhibition activity. In the dipeptidyl peptidase-4 inhibition assay, TZDD2 and TZDD4 exhibited ≥20% inhibition activity.
Collapse
|
9
|
Kumar H, Aggarwal N, Marwaha MG, Deep A, Chopra H, Matin MM, Roy A, Emran TB, Mohanta YK, Ahmed R, Mohanta TK, Saravanan M, Marwaha RK, Al-Harrasi A. Thiazolidin-2,4-Dione Scaffold: An Insight into Recent Advances as Antimicrobial, Antioxidant, and Hypoglycemic Agents. Molecules 2022; 27:6763. [PMID: 36235304 PMCID: PMC9572748 DOI: 10.3390/molecules27196763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak 124001, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Hitesh Chopra
- College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohammed M. Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
10
|
Kumar H, Kumar D, Kumar P, Thareja S, Marwaha MG, Navik U, Marwaha RK. Synthesis, biological evaluation and in-silico ADME studies of novel series of thiazolidin-2,4-dione derivatives as antimicrobial, antioxidant and anticancer agents. BMC Chem 2022; 16:68. [PMID: 36109764 PMCID: PMC9479363 DOI: 10.1186/s13065-022-00861-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background A novel series of thiazolidine-2,4-dione molecules was derived and their chemical structures were established using physiochemical parameters and spectral techniques (1H-NMR, IR, MS etc.). The synthesized molecule were then evaluated for their antioxidant, anticancer and antimicrobial potential. Results and discussion Serial tube dilution method was employed to evaluate the antimicrobial potential against selected fungal and bacterial strains by taking fluconazole and cefadroxil as reference antifungal and antibacterial drugs respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity was used to assess the antioxidant potential of the synthesized analogues. Further, the anticancer potential of the selected molecules was assessed against DU-145 cancer cell lines using MTT assay. The drug-likeness was also evaluated by studying in-silico ADME parameters of the synthesized analogues. Conclusion In antioxidant evaluation studies, the analogue H5 with IC50 = 14.85 μg/mL was found to be the most active molecule. The antimicrobial evaluation outcomes suggested that the molecules H5, H13, H15 and H18 possessed moderate to promising activity against the selected species of microbial strains having MIC range 7.3 µM to 26.3 µM. The results of anticancer evaluation revealed that all the screened derivatives possess mild anticancer potential. The in-silico ADME studies revealed that all the compounds were found to be drug-like.
Collapse
|
11
|
Molecular manipulation of the 1,5,6,7-tetrahydro-4H-indazol-4-one scaffold to obtain new human neutrophil elastase (HNE) inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Impact of Molecular Symmetry/Asymmetry on Insulin-Sensitizing Treatments for Type 2 Diabetes. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the advantages and disadvantages of asymmetrical thiazolidinediones as insulin-sensitizers have been well-studied, the relevance of symmetry and asymmetry for thiazolidinediones and biguanides has scarcely been explored. Regarding symmetrical molecules, only one thiazolidinedione and no biguanides have been evaluated and proposed as an antihyperglycemic agent for treating type 2 diabetes. Since molecular structure defines physicochemical, pharmacological, and toxicological properties, it is important to gain greater insights into poorly investigated patterns. For example, compounds with intrinsic antioxidant properties commonly have low toxicity. Additionally, the molecular symmetry and asymmetry of ligands are each associated with affinity for certain types of receptors. An advantageous response obtained in one therapeutic application may imply a poor or even adverse effect in another. Within the context of general patterns, each compound must be assessed individually. The current review aimed to summarize the available evidence for the advantages and disadvantages of utilizing symmetrical and asymmetrical thiazolidinediones and biguanides as insulin sensitizers in patients with type 2 diabetes. Other applications of these same compounds are also examined as well as the various uses of additional symmetrical molecules. More research is needed to exploit the potential of symmetrical molecules as insulin sensitizers.
Collapse
|
13
|
Cantini N, Crocetti L, Guerrini G, Vergelli C, Schepetkin IA, Pallecchi M, Bartolucci G, Quinn MT, Teodori E, Giovannoni MP. 1,5,6,7-Tetrahydro-4H-indazol-4-ones as human neutrophil elastase (HNE) inhibitors. Bioorg Med Chem Lett 2021; 52:128380. [PMID: 34563669 DOI: 10.1016/j.bmcl.2021.128380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 01/05/2023]
Abstract
Human neutrophil elastase (HNE) is a serine protease that is expressed in polymorphonuclear neutrophils. It has been recognized as an important therapeutic target for treating inflammatory diseases, especially related to the respiratory system, but also for various types of cancer. Thus, compounds able to inhibit HNE are of great interest in medicinal chemistry. In the present paper, we report the synthesis and biological evaluation of a new series of HNE inhibitors with an innovative 1,5,6,7-tetrahydro-4H-indazol-4-one core that was developed as a molecular modification of our previously reported indazole-based HNE inhibitors. Since the 1,5,6,7-tetrahydro-4H-indazol-4-one scaffold can occur in two possible tautomeric forms, the acylation/alkylation reactions resulted in a mixture of the two isomers, often widely unbalanced in favor of one form. Using analytical techniques and NMR spectroscopy, we characterized and separated the isomer pairs and confirmed the compounds used in biological testing. Analysis of the compounds for HNE inhibitory activity showed that they were potent inhibitors, with Ki values in the low nanomolar range (6-35 nM). They also had reasonable stability in aqueous buffer, with half-lives over 1 h. Overall, our results indicate that the 1,5,6,7-tetrahydro-4H-indazol-4-one core is suitable for the synthesis of potent HNE inhibitors that could be useful in the development of new therapeutics for treating diseases involving excessive HNE activity.
Collapse
Affiliation(s)
- Niccolo Cantini
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Gabriella Guerrini
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Vergelli
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Marco Pallecchi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Elisabetta Teodori
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Huang Y, Wu J, Chen X, Tong D, Zhou J, Wu F, Zhang H, Yang Y, Ma G, Du A. A Zinc Metalloprotease nas-33 Is Required for Molting and Survival in Parasitic Nematode Haemonchus contortus. Front Cell Dev Biol 2021; 9:695003. [PMID: 34327203 PMCID: PMC8313830 DOI: 10.3389/fcell.2021.695003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Molting is of great importance for the survival and development of nematodes. Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed as novel anthelmintic targets due to their multiple roles in biological processes of parasitic nematodes. In this study, we report a well conserved nas-33 gene in nematodes of clade V and elucidate how this gene is involved in the molting process of the free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval stages of these worms, particularly in the molting process. Knockdown of this gene results in marked molecular changes of genes involved in cuticle synthesis and ecdysis, compromised shedding of the old cuticle, and reduced worm viability in H. contortus. The crucial role of nas-33 in molting is closely associated with a G protein beta subunit (GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle, compromises the connection between the cuticle and hypodermis, and leads to an increased number of sick and dead worms, indicating essentiality of this module in nematode development and survival. These findings reveal the functional role of nas-33 in nematode molting process and identify astacins as novel anthelmintic targets for parasitic nematodes of socioeconomic significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Amin KM, Hegazy GH, George RF, Ibrahim NR, Mohamed NM. Design, synthesis, and pharmacological characterization of some 2-substituted-3-phenyl-quinazolin-4(3H)-one derivatives as phosphodiesterase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100051. [PMID: 33977557 DOI: 10.1002/ardp.202100051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Some 3-phenyl-quinazolin-4(3H)-one-2-thioethers (3a-e, 5a,b, 7a-e, 9a-d, 10a-d, and 12) along with 2-aminoquinazoline derivatives 13a-c were prepared and screened for their in vitro phosphodiesterase (PDE) inhibitory activity. Some compounds such as 7d,e, 9a,b,d, 10a,d, and 13b exhibited promising activity as compared with the non-selective PDE inhibitor IBMX. This inhibitory activity was validated by molecular docking in the active site of PDE7A and PDE4 to investigate their selectivity. Furthermore, the most active compound 10d (IC50 = 1.15 μM) was tested in vivo using behavioral tests. Compound 10d was able to pass the blood-brain barrier and improve scopolamine-induced cognitive deficits. Therefore, this core can be considered as a promising scaffold for further optimization to obtain new compounds with better PDE7A selective inhibition.
Collapse
Affiliation(s)
- Kamilia M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gehan H Hegazy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla R Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| |
Collapse
|
16
|
Bireddy SR, Konkala VS, Godugu C, Dubey PK. A Review on the Synthesis and Biological Studies of 2,4-Thiazolidinedione Derivatives. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200221123633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,4-Thiazolidinediones are versatile scaffolds with a unique structural feature of hydrogen
bonding donor and the hydrogen bonding acceptor region. This review deals with the synthesis of
various bio-active 2,4-thiazolidinedione derivatives. It is presented on the basis of the linker variations
at 3rd & 5th positions of 2,4-thizolidinediones. Biological evaluations of various derivatives thus
prepared and toxicity studies on the respective products as given by various researchers/ Research
groups have been described.
Collapse
Affiliation(s)
- Srinivasa Reddy Bireddy
- Department of Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad-500 075, India
| | - Veera Swamy Konkala
- Department of Chemistry, Jawaharlal Nehru Technological University, College of Engineering, Kukatpally, Hyderabad- 500 085, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Educational Research Balanagar, Hyderabad-500 037, India
| | - Pramod Kumar Dubey
- Department of Chemistry, Jawaharlal Nehru Technological University, College of Engineering, Kukatpally, Hyderabad- 500 085, India
| |
Collapse
|
17
|
Thari FZ, Tachallait H, El Alaoui NE, Talha A, Arshad S, Álvarez E, Karrouchi K, Bougrin K. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na 3PO 4 in aqueous media. ULTRASONICS SONOCHEMISTRY 2020; 68:105222. [PMID: 32585575 DOI: 10.1016/j.ultsonch.2020.105222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
A rapid and green method for the synthesis of novel N-thiazolidine-2,4-dione isoxazoline derivatives 5 from N-allyl-5-arylidenethiazolidine-2,4-diones 3 as dipolarophiles with arylnitrile oxides via 1,3-dipolar cycloaddition reaction. The corresponding N-allyl substituted dipolarophiles were prepared by one-pot method from thiazolidine-2,4-dione with aldehydes using Knoevenagel condensation followed by N-allylation of thiazolidine-2,4-dione in NaOH aqueous solution under sonication. In addition, the isoxazoline derivatives 5 were synthesized by regioselective and chemoselective 1,3-dipolar cycloaddition using inexpensive and mild NaCl/Oxone/Na3PO4 as a Cl source, oxidant and/or catalyst under ultrasonic irradiation in EtOH/H2O (v/v, 2:1) as green solvent. All synthesized products are furnished in good yields in the short reaction time, and then their structures were confirmed by NMR, mass spectrometry and X-ray crystallography analysis.
Collapse
Affiliation(s)
- Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Hamza Tachallait
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Nour-Eddine El Alaoui
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Aicha Talha
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| |
Collapse
|
18
|
Roosta A, Alizadeh A, Rezaiyehraad R, Khanpour M. Efficient and Chemoselective Procedure for Conversion of Rhodanine Derivatives into 1,3‐Thiazolidine‐2,4‐diones via 1,3‐Dipolar Cycloaddition Reaction and Rearrangement Sequences. ChemistrySelect 2020. [DOI: 10.1002/slct.202003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atefeh Roosta
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Abdolali Alizadeh
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Reze Rezaiyehraad
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Mojtaba Khanpour
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
19
|
Huang G, Solano CM, Melendez J, Yu-Alfonzo S, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem 2020; 209:112889. [PMID: 33045660 DOI: 10.1016/j.ejmech.2020.112889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 μM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of β-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Sabrina Yu-Alfonzo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
20
|
A Novel Series of [1,2,4]Triazolo[4,3-a]Pyridine Sulfonamides as Potential Antimalarial Agents: In Silico Studies, Synthesis and In Vitro Evaluation. Molecules 2020; 25:molecules25194485. [PMID: 33007887 PMCID: PMC7582516 DOI: 10.3390/molecules25194485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
For the development of new and potent antimalarial drugs, we designed the virtual library with three points of randomization of novel [1,2,4]triazolo[4,3-a]pyridines bearing a sulfonamide fragment. The library of 1561 compounds has been investigated by both virtual screening and molecular docking methods using falcipain-2 as a target enzyme. 25 chosen hits were synthesized and evaluated for their antimalarial activity in vitro against Plasmodium falciparum. 3-Ethyl-N-(3-fluorobenzyl)-N-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine-6-sulfonamide and 2-(3-chlorobenzyl)-8-(piperidin-1-ylsulfonyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one showed in vitro good antimalarial activity with inhibitory concentration IC50 = 2.24 and 4.98 μM, respectively. This new series of compounds may serve as a starting point for future antimalarial drug discovery programs.
Collapse
|
21
|
Manikala VK, Rao VM. Synthesis and Anticancer Activity of (E)-5-[(1-Aryl-1H-1,2,3-triazol-4-yl)methylene]thiazolidine-2,4-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020050206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Synthesis of a novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones as promising anti-breast cancer agents. Bioorg Chem 2020; 96:103569. [PMID: 31978680 DOI: 10.1016/j.bioorg.2020.103569] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023]
Abstract
A novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones 4-16 has been designed and synthesized. Preliminary screening of these compounds for their anti-breast cancer activity revealed that compounds 5, 7, and 9 possess the highest anti-cancer activities. The anti-tumor effects of compounds 5, 7, and 9 were evaluated against human breast cancer cell lines (MCF-7 and MDA-MB-231) and human breast cancer cells. They were also evaluated against normal non-cancerous breast cells, isolated from the same patients, to conclude about their use in a potential targeted therapy. Using MTT uptake method, these three compounds 5, 7, and 9 blunt the proliferation of these cancer cells in a dose-dependent manner with an IC50 of 1.27, 1.50 and 1.31 µM respectively. Interestingly, using flow cytometry analysis these three compounds significantly mediated apoptosis of human breast cancer cells without affecting the survival of normal non-cancerous breast cells that were isolated from the same patients. Mechanistically, these compounds blunt the proliferation of MCF-7 breast cancer cells by robustly decreasing the phosphorylation of AKT, mTOR and the expression of VEGF and HIF-1α. Most importantly, compounds 5, 7, and 9 without affecting the phosphorylation and expression of these crucial cellular factors in normal non-cancerous breast cells that were isolated from the same patients. Additionally, using Western blot analysis the three compounds significantly (P < 0.05) decreased the expression of the anti-apoptotic Bcl-2 members (Bcl-2, Bcl-XL and Mcl-1) and increased the expression of the pro-apoptotic Bcl-2 members (Bak, Bax and Bim) in MCF-7, MDA-MB-231 and human breast cancer cells making these breast cancer cells susceptible for apoptosis induction. Taken together, these data provide great evidences for the inhibitory activity of these compounds against breast cancer cells without affecting the normal breast cells.
Collapse
|
23
|
Synthesis and Antimicrobial Activity of a New Series of Thiazolidine-2,4-diones Carboxamide and Amino Acid Derivatives. Molecules 2019; 25:molecules25010105. [PMID: 31892119 PMCID: PMC6983134 DOI: 10.3390/molecules25010105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
Novel thiazolidine-2,4-dione carboxamide and amino acid derivatives were synthesized in excellent yield using OxymaPure/N,N'-diisopropylcarbodimide coupling methodology and were characterized by chromatographic and spectrometric methods, and elemental analysis. The antimicrobial and antifungal activity of these derivatives was evaluated against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), two-Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and one fungal isolate (Candida albicans). Interestingly, several samples demonstrated weak to moderate antibacterial activity against Gram-negative bacteria, as well as antifungal activity. However, only one compound namely, 2-(5-(3-methoxybenzylidene)-2,4-dioxothiazolidin-3-yl)acetic acid, showed antibacterial activity against Gram-positive bacteria, particularly S. aureus.
Collapse
|
24
|
Musyoka T, Bishop ÖT. South African Abietane Diterpenoids and Their Analogs as Potential Antimalarials: Novel Insights from Hybrid Computational Approaches. Molecules 2019; 24:E4036. [PMID: 31703388 PMCID: PMC6891524 DOI: 10.3390/molecules24224036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
The hemoglobin degradation process in Plasmodium parasites is vital for nutrient acquisition required for their growth and proliferation. In P. falciparum, falcipains (FP-2 and FP-3) are the major hemoglobinases, and remain attractive antimalarial drug targets. Other Plasmodium species also possess highly homologous proteins to FP-2 and FP-3. Although several inhibitors have been designed against these proteins, none has been commercialized due to associated toxicity on human cathepsins (Cat-K, Cat-L and Cat-S). Despite the two enzyme groups sharing a common structural fold and catalytic mechanism, distinct active site variations have been identified, and can be exploited for drug development. Here, we utilize in silico approaches to screen 628 compounds from the South African natural sources to identify potential hits that can selectively inhibit the plasmodial proteases. Using docking studies, seven abietane diterpenoids, binding strongly to the plasmodial proteases, and three additional analogs from PubChem were identified. Important residues involved in ligand stabilization were identified for all potential hits through binding pose analysis and their energetic contribution determined by binding free energy calculations. The identified compounds present important scaffolds that could be further developed as plasmodial protease inhibitors. Previous laboratory assays showed the effect of the seven diterpenoids as antimalarials. Here, for the first time, we demonstrate that their possible mechanism of action could be by interacting with falcipains and their plasmodial homologs. Dynamic residue network (DRN) analysis on the plasmodial proteases identified functionally important residues, including a region with high betweenness centrality, which had previously been proposed as a potential allosteric site in FP-2.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
25
|
Alberca LN, Chuguransky SR, Álvarez CL, Talevi A, Salas-Sarduy E. In silico Guided Drug Repurposing: Discovery of New Competitive and Non-competitive Inhibitors of Falcipain-2. Front Chem 2019; 7:534. [PMID: 31448257 PMCID: PMC6691349 DOI: 10.3389/fchem.2019.00534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is among the leading causes of death worldwide. The emergence of Plasmodium falciparum resistant strains with reduced sensitivity to the first line combination therapy and suboptimal responses to insecticides used for Anopheles vector management have led to renewed interest in novel therapeutic options. Here, we report the development and validation of an ensemble of ligand-based computational models capable of identifying falcipain-2 inhibitors, and their subsequent application in the virtual screening of DrugBank and Sweetlead libraries. Among four hits submitted to enzymatic assays, two (odanacatib, an abandoned investigational treatment for osteoporosis and bone metastasis, and the antibiotic methacycline) confirmed inhibitory effects on falcipain-2, with Ki of 98.2 nM and 84.4 μM. Interestingly, Methacycline proved to be a non-competitive inhibitor (α = 1.42) of falcipain-2. The effects of both hits on falcipain-2 hemoglobinase activity and on the development of P. falciparum were also studied.
Collapse
Affiliation(s)
- Lucas N Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sara R Chuguransky
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cora L Álvarez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Farmacia y Bioquímica, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde", Universidad Nacional de San Martín, CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Stoye A, Juillard A, Tang AH, Legac J, Gut J, White KL, Charman SA, Rosenthal PJ, Grau GER, Hunt NH, Payne RJ. Falcipain Inhibitors Based on the Natural Product Gallinamide A Are Potent in Vitro and in Vivo Antimalarials. J Med Chem 2019; 62:5562-5578. [PMID: 31062592 DOI: 10.1021/acs.jmedchem.9b00504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of analogues of the cyanobacterium-derived depsipeptide natural product gallinamide A were designed and prepared using a highly efficient and convergent synthetic route. Analogues were shown to exhibit potent inhibitory activity against the Plasmodium falciparum cysteine proteases falcipain 2 and falcipain 3 and against cultured chloroquine-sensitive (3D7) and chloroquine-resistant (W2) strains of P. falciparum. Three lead compounds were selected for evaluation of in vivo efficacy against Plasmodium berghei infection in mice on the basis of their improved blood, plasma, and microsomal stability profiles compared with the parent natural product. One of the lead analogues cured P. berghei-infected mice in the Peters 4 day-suppressive test when administered 25 mg kg-1 intraperitoneally daily for 4 days. The compound was also capable of clearing parasites in established infections at 50 mg kg-1 intraperitoneally daily for 4 days and exhibited moderate activity when administered as four oral doses of 100 mg kg-1.
Collapse
Affiliation(s)
- Alexander Stoye
- School of Chemistry , Building F11, The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Annette Juillard
- School of Medical Sciences, Sydney Medical School , Building K25, The University of Sydney , Medical Foundation, Sydney , New South Wales 2006 , Australia
| | - Arthur H Tang
- School of Chemistry , Building F11, The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Jennifer Legac
- Department of Medicine, San Francisco General Hospital , University of California , San Francisco , California 94143 , United States
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital , University of California , San Francisco , California 94143 , United States
| | - Karen L White
- Centre for Drug Candidate Optimisation , Monash University , Victoria 3052 , Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation , Monash University , Victoria 3052 , Australia
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital , University of California , San Francisco , California 94143 , United States
| | - Georges E R Grau
- School of Medical Sciences, Sydney Medical School , Building K25, The University of Sydney , Medical Foundation, Sydney , New South Wales 2006 , Australia
| | - Nicholas H Hunt
- School of Medical Sciences, Sydney Medical School , Building K25, The University of Sydney , Medical Foundation, Sydney , New South Wales 2006 , Australia
| | - Richard J Payne
- School of Chemistry , Building F11, The University of Sydney , Sydney , New South Wales 2006 , Australia
| |
Collapse
|
27
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
28
|
Oderinlo OO, Tukulula M, Isaacs M, Hoppe HC, Taylor D, Smith VJ, Khanye SD. New thiazolidine-2,4-dione derivatives combined with organometallic ferrocene: Synthesis, structure and antiparasitic activity. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research; Rhodes University; Grahamstown 6140 South Africa
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedicinal Research; Rhodes University; Grahamstown 6140 South Africa
- Department of Biochemistry and Microbiology; Rhodes University; Grahamstown 6140 South Africa
| | - Dale Taylor
- Division of Clinical Pharmacology, Department of Medicine; University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Vincent J. Smith
- Department of Chemistry; Rhodes University; Grahamstown 6140 South Africa
- Centre for Chemico- and Biomedicinal Research; Rhodes University; Grahamstown 6140 South Africa
| | - Setshaba D. Khanye
- Department of Chemistry; Rhodes University; Grahamstown 6140 South Africa
- Centre for Chemico- and Biomedicinal Research; Rhodes University; Grahamstown 6140 South Africa
| |
Collapse
|
29
|
Naim MJ, Alam O, Alam MJ, Hassan MQ, Siddiqui N, Naidu V, Alam MI. Design, synthesis and molecular docking of thiazolidinedione based benzene sulphonamide derivatives containing pyrazole core as potential anti-diabetic agents. Bioorg Chem 2018; 76:98-112. [DOI: 10.1016/j.bioorg.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
|
30
|
Kumar P, Kadyan K, Duhan M, Sindhu J, Singh V, Saharan BS. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents. Chem Cent J 2017; 11:115. [PMID: 29138944 PMCID: PMC5686033 DOI: 10.1186/s13065-017-0344-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acyl hydrazones are an important class of heterocyclic compounds promising pharmacological characteristics. Malaria is a life-threatening mosquito-borne blood disease caused by a plasmodium parasite. In some places, malaria can be treated and controlled with early diagnosis. However, some countries lack the resources to do this effectively. RESULTS The present work involves the design and synthesis of some novel acyl hydrazone based molecular hybrids of 1,4-dihydropyridine and pyrazole (5a-g). These molecular hybrids were synthesised by condensation of 1,4-dihydropyridin-4-yl-phenoxyacetohydrazides with differently substituted pyrazole carbaldehyde. The final compound (5) showed two conformations (the major, E, s-cis and the minor, E, s-trans) as revealed by NMR spectral data and further supported by the energy calculations (MOPAC2016 using PM7 method). All the synthesised compounds were screened for their in vitro antimalarial activities against chloroquine-sensitive malaria parasite Plasmodium falciparum (3D7) and antimicrobial activity against Gram positive bacteria i.e. Bacillus cereus, Gram negative bacteria i.e. Escherichia coli and antifungal activity against one fungus i.e. Aspergillus niger [corrected]. All these compounds were found more potent than chloroquine and clotrimazole, the standard drugs. CONCLUSIONS In vitro antiplasmodial IC50 value of the most potent compound 5d was found to be 4.40 nM which is even less than all the three reference drugs chloroquine (18.7 nM), pyrimethamine (11 nM) and artimisinin (6 nM). In silico binding study of compound 5d with plasmodial cysteine protease falcipain-2 indicated the inhibition of falcipain-2 as the probable reason for the antimalarial potency of compound 5d. All the compounds had shown good to excellent antimicrobial and antifungal activities.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| | - Kulbir Kadyan
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | | | - Vineeta Singh
- National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | | |
Collapse
|
31
|
Okombo J, Chibale K. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery. Acc Chem Res 2017. [PMID: 28636311 PMCID: PMC5518282 DOI: 10.1021/acs.accounts.6b00631] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine protease-mediated hydrolysis of hemoglobin. We further expound on the recombinant enzyme assays, heme fractionation experiments, and genomic and chemoproteomic methods that we employed to identify Plasmodium falciparum falcipain 2 (PfFP2), hemozoin formation, phosphatidylinositol 4-kinase (PfPI4K) and Mycobacterium tuberculosis cytochrome bc1 complex as the targets of the antimalarial chalcones, pyrido[1,2-a]benzimidazoles, aminopyridines, and antimycobacterial pyrrolo[3,4-c]pyridine-1,3(2H)-diones, respectively. In conclusion, we argue for the expansion of chemical space through exploitation of privileged natural product scaffolds and diversity-oriented synthesis, as well as the broadening of druggable spaces by exploiting available protein crystal structures, -omics data, and bioinformatics infrastructure to explore hitherto untargeted spaces like lipid metabolism and protein kinases in P. falciparum. Finally, we audit the merits of both target-based and whole-cell phenotypic screening in steering antimalarial and antituberculosis chemical matter toward populating drug discovery pipelines with new lead molecules.
Collapse
Affiliation(s)
- John Okombo
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Drug Discovery and Development Centre (H3D), Department of Chemistry
and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
32
|
Naim MJ, Alam MJ, Ahmad S, Nawaz F, Shrivastava N, Sahu M, Alam O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur J Med Chem 2017; 129:218-250. [DOI: 10.1016/j.ejmech.2017.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
|
33
|
Mague JT, Mohamed SK, Akkurt M, El-Kashef H, Lebegue N, Albayati MR. (5 Z)-3-(2-Oxopropyl)-5-(3,4,5-trimethoxybenzylidene)-1,3-thiazolidine-2,4-dione. IUCRDATA 2016. [DOI: 10.1107/s2414314616019593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the crystal of the title molecule, C16H17NO6S, there are three sets of intermolecular C—H...O hydrogen bonds, as well as two sets of intermolecular C—H...π(ring) interactions. In addition, the thiazolidene rings participate in offset π–π stacking interactions [centroid–centroid distance = 3.685 (1) Å]. These generate small channels running parallel to theaaxis with approximate cross-sections of 3.7 × 8.1 Å.
Collapse
|
34
|
Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem 2016; 109:157-72. [PMID: 26774923 DOI: 10.1016/j.ejmech.2015.12.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 01/29/2023]
|
35
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
36
|
Devender N, Gunjan S, Chhabra S, Singh K, Pasam VR, Shukla SK, Sharma A, Jaiswal S, Singh SK, Kumar Y, Lal J, Trivedi AK, Tripathi R, Tripathi RP. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. Eur J Med Chem 2015; 109:187-98. [PMID: 26774925 DOI: 10.1016/j.ejmech.2015.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/06/2015] [Accepted: 12/20/2015] [Indexed: 01/05/2023]
Abstract
In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity.
Collapse
Affiliation(s)
- Nalmala Devender
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Sarika Gunjan
- Parasitology Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Stuti Chhabra
- Biochemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kartikey Singh
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Venkata Reddy Pasam
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrument Facility Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India.
| | - Abhisheak Sharma
- Pharmacokinetics & Metabolism Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Sunil Kumar Singh
- Parasitology Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Renu Tripathi
- Parasitology Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
37
|
Khamidullina L, Obydennov K, Slepukhin P, Morzherin Y. Crystal structure of (2 Z)-2-{(5 Z)-5-[3-fluoro-2-(4-phenylpiperidin-1-yl)benzylidene]-4-oxo-3-( p-tolyl)-1,3-thiazolidin-2-ylidene}- N-( p-tolyl)ethanethioamide dimethyl sulfoxide monosolvate. Acta Crystallogr E Crystallogr Commun 2015; 71:o745-6. [PMID: 26594454 PMCID: PMC4647368 DOI: 10.1107/s2056989015016850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 05/28/2023]
Abstract
The title compound, C37H34FN3OS2·C2H6OS, was obtained by the Knoevenagel condensation. The thiazolidine ring is essentially planar (r.m.s. deviation = 0.025 Å) and forms dihedral angles of 4.2 (3), 68.60 (14) and 39.57 (15)° with the attached thioamide group, p-tolyl group benzene ring and fluoro-substituted benzene ring, respectively. The exocyclic double bonds are in a Z configuration. In the crystal, the dimethyl sulfoxide solvent molecule is connected to the main molecule via an N—H⋯O hydrogen bond. Weak C—H⋯O hydrogen bonds link the components of the structure into a two-dimensional network parallel to (10-1). Weak intramolecular C—H⋯S hydrogen bonds are also observed. The crystal is an inversion twin with a ratio of twin components 0.78 (2):0.22 (6).
Collapse
|