1
|
Jia L, Liu Y, Fu B, Tian Y, Meng X. Liquidambaric acid as a non-competitive α-glucosidase inhibitor: multi-level evidence from enzyme kinetics, molecular docking, molecular dynamics simulations, and a Drosophila hyperglycaemic model. J Enzyme Inhib Med Chem 2025; 40:2497486. [PMID: 40302183 PMCID: PMC12044908 DOI: 10.1080/14756366.2025.2497486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Liquidambaric acid, a pentacyclic triterpenoid from Liquidambar formosana Hance, was evaluated as a novel α-glucosidase inhibitor for type 2 diabetes mellitus (T2DM) management. Enzyme kinetic assays revealed its potent non-competitive inhibition (IC50 = 0.12 mM). Molecular docking showed stable hydrogen bonding at an allosteric site, altering enzyme conformation, while 100 ns molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complex. In vivo, a Drosophila melanogaster hyperglycaemic model demonstrated significant glucose reduction, confirming its hypoglycaemic potential. ADMET analysis predicted favourable bioavailability and low toxicity, supporting its development as a safe therapeutic agent. These findings integrate enzyme kinetics, molecular modelling, MD simulations, and in vivo validation, highlighting liquidambaric acid's potential as a multifunctional and cost-effective agent for T2DM management.
Collapse
Affiliation(s)
- Liwei Jia
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Bo Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| |
Collapse
|
2
|
Aydın G, Çoban CÇ, Kurbanoğlu Nİ, Türk M, Baran A. Acquiring stereospecific new pseudosugars: Obtaining rac-decahydro-1,4-epoxynaphthalene-2,3,5,6,7,8-hexaols from the Diels-Alder reaction and investigating their biological effects. Bioorg Chem 2025; 154:108078. [PMID: 39733512 DOI: 10.1016/j.bioorg.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
In this study, Diels-Alder reaction was performed to sulfolene and endo/exo-diacetate compounds. After a series of reactions, new conduritol A and F analogs containing oxo-bridge and naphthalene rings in their structures were synthesized. To the starting compound, bromination, elimination, singlet oxygen reaction, acetylation, selective oxidation with osmium tetroxide (OsO4), and m-chloroperbenzoic acid (m-CPBA), re-acetylation, and finally hydrolysis of the compounds by NH3(g)/MeOH reactions were carried out. 1H NMR, 13C NMR, IR, and elemental analysis elucidated the structures of all synthesized compounds. The α, β-glucosidase, and α-amylase inhibitory potentials of the new polycyclitols, conduritol A and F analogs, were examined for biological activity. Also, enzyme kinetic studies of well-active compounds were carried out. Compound 30 showed the best inhibition activity against α, β-glucosidase, and α-amylase enzymes. Compound 28a showed the best activity against L929 and Capan-1 cell lines, and compound 22 showed the best activity against the A549 fibroblast cell line. Moreover, hemolysis (ASTM F756 standard) and genotoxicity test results were recorded.
Collapse
Affiliation(s)
- Gökay Aydın
- Vocational School of Healty Services, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Canan Çakır Çoban
- Karadeniz Technical University Academic Data Management System, 61080, Trabzon, Turkey
| | - N İzzet Kurbanoğlu
- Sakarya University, Faculty of Education Department of Mathematics and Science Education, 54050 Sakarya, Turkey
| | - Mustafa Türk
- Bioengineering Department, Faculty of Engineering and Architecture, Kırıkkale University, Kırıkkale 71451, Turkey
| | - Arif Baran
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department, 54050, Sakarya, Turkey.
| |
Collapse
|
3
|
Cele N, Awolade P, Seboletswe P, Khubone L, Olofinsan K, Islam MS, Jordaan A, Warner DF, Singh P. Synthesis,Antidiabetic and Antitubercular Evaluation of Quinoline-pyrazolopyrimidine hybrids and Quinoline-4-Arylamines. ChemistryOpen 2024; 13:e202400014. [PMID: 38506589 PMCID: PMC11633360 DOI: 10.1002/open.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Two libraries of quinoline-based hybrids 1-(7-chloroquinolin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and 7-chloro-N-phenylquinolin-4-amine were synthesized and evaluated for their α-glucosidase inhibitory and antioxidant properties. Compounds with 4-methylpiperidine and para-trifluoromethoxy groups, respectively, showed the most promising α-glucosidase inhibition activity with IC50=46.70 and 40.84 μM, compared to the reference inhibitor, acarbose (IC50=51.73 μM). Structure-activity relationship analysis suggested that the cyclic secondary amine pendants and para-phenyl substituents account for the variable enzyme inhibition. Antioxidant profiling further revealed that compounds with an N-methylpiperazine and N-ethylpiperazine ring, respectively, have good DPPH scavenging abilities with IC50=0.18, 0.58 and 0.93 mM, as compared to ascorbic acid (IC50=0.05 mM), while the best DPPH scavenger is NO2-substituted compound (IC50=0.08 mM). Also, compound with N-(2-hydroxyethyl)piperazine moiety emerged as the best NO radical scavenger with IC50=0.28 mM. Molecular docking studies showed that the present compounds are orthosteric inhibitors with their quinoline, pyrimidine, and 4-amino units as crucial pharmacophores furnishing α-glucosidase binding at the catalytic site. Taken together, these compounds exhibit dual potentials; i. e., potent α-glucosidase inhibitors and excellent free radical scavengers. Hence, they may serve as structural templates in the search for agents to manage Type 2 diabetes mellitus. Finally, in preliminary assays investigating the anti-tubercular potential of these compounds, two pyrazolopyrimidine series compounds and a 7-chloro-N-phenylquinolin-4-amine hybrid showed sub-10 μM whole-cell activities against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Nosipho Cele
- School of Chemistry and PhysicsUniversity of KwaZulu-Natal, P/Bag X54001, WestvilleDurbanSouth Africa
| | - Paul Awolade
- School of Chemistry and PhysicsUniversity of KwaZulu-Natal, P/Bag X54001, WestvilleDurbanSouth Africa
| | - Pule Seboletswe
- School of Chemistry and PhysicsUniversity of KwaZulu-Natal, P/Bag X54001, WestvilleDurbanSouth Africa
| | - Lungisani Khubone
- School of Chemistry and PhysicsUniversity of KwaZulu-Natal, P/Bag X54001, WestvilleDurbanSouth Africa
| | - Kolawole Olofinsan
- Department of BiochemistrySchool of Life SciencesUniversity of Kwazulu-Natal, WestvilleDurbanSouth Africa
| | - Md. Shahidul Islam
- Department of BiochemistrySchool of Life SciencesUniversity of Kwazulu-Natal, WestvilleDurbanSouth Africa
| | - Audrey Jordaan
- Molecular Mycobacteriology Research UnitDepartment of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownObservatory7925South Africa
| | - Digby F. Warner
- Molecular Mycobacteriology Research UnitDepartment of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownObservatory7925South Africa
| | - Parvesh Singh
- School of Chemistry and PhysicsUniversity of KwaZulu-Natal, P/Bag X54001, WestvilleDurbanSouth Africa
| |
Collapse
|
4
|
Sevimli E, Seyhan G, Akkaya D, Sarı S, Barut B, Köksoy B. Effective α-glycosidase inhibitors based on polyphenolic benzothiazole heterocycles. Bioorg Chem 2024; 147:107366. [PMID: 38636435 DOI: 10.1016/j.bioorg.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
α-Glycosidase inhibition is one of the main approaches to treat Diabetes mellitus. Polyphenolic moieties are known to be responsible for yielding exhibit potent α-glycosidase inhibitory effects. In addition, compounds containing benzothiazole and Schiff base functionalities were previously reported to show α-glycosidase inhibition. In this paper, the synthesis of seven new phloroglucinol-containing benzothiazole Schiff base derivatives through the reaction of 6-substituted-2-aminobenzothiazole compounds with 2,4,6-trihydroxybenzaldehyde using acetic acid as a catalyst was reported. The synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR, and elemental analysis. The synthesized compounds were evaluated for their inhibitory effects on α-glycosidase, compounds 3f and 3g were found to show significant inhibitory properties when compared to the positive control. The IC50 values of 3f and 3g were calculated as 24.05 ± 2.28 and 18.51 ± 1.19 µM, respectively. Kinetic studies revealed that compounds 3f and 3g exhibited uncompetitive mode of inhibition against α-glycosidase. Molecular modeling predicted druglikeness for the title compounds and underpinned the importance of phloroglucinol hydroxyls for interacting with the key residues of α-glycosidase.
Collapse
Affiliation(s)
- Esra Sevimli
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Suat Sarı
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Baybars Köksoy
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye.
| |
Collapse
|
5
|
Wang XX, Wang RJ, Ji HL, Liu XY, Zhang NY, Wang KM, Chen K, Liu PP, Meng N, Jiang CS. Design, synthesis, and evaluation of novel ferrostatin derivatives for the prevention of HG-induced VEC ferroptosis. RSC Med Chem 2024; 15:1198-1209. [PMID: 38665835 PMCID: PMC11042167 DOI: 10.1039/d4md00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Ferroptosis is a nonapoptotic, iron-catalyzed form of regulated cell death. It has been shown that high glucose (HG) could induce ferroptosis in vascular endothelial cells (VECs), consequently contributing to the development of various diseases. This study synthesized and evaluated a series of novel ferrostatin-1 (Fer-1) derivatives fused with a benzohydrazide moiety to prevent HG-induced VEC ferroptosis. Several promising compounds showed similar or improved inhibitory effects compared to positive control Fer-1. The most effective candidate 12 exhibited better protection against erastin-induced ferroptosis and high glucose-induced ferroptosis in VECs. Mechanistic studies revealed that compound 12 prevented mitochondrial damage, reduced intracellular ROS accumulation, upregulated the expression of GPX4, and decreased the amounts of ferrous ion, LPO and MDA in VECs. However, compound 12 still exhibited undesirable microsomal stability like Fer-1, suggesting the need for further optimization. Overall, the present findings highlight ferroptosis inhibitor 12 as a potential lead compound for treating ferroptosis-associated vascular diseases.
Collapse
Affiliation(s)
- Xin-Xin Wang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Run-Jie Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University Harbin 150040 China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Xiao-Yu Liu
- Evaluation Center of the New Drug, Shandong Academy of Pharmaceutical Sciences Jinan 250101 China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kai Chen
- Evaluation Center of the New Drug, Shandong Academy of Pharmaceutical Sciences Jinan 250101 China
| | - Ping-Ping Liu
- Department of Gynaecology and Obstetrics, 960th Hospital of PLA Jinan 250000 China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
6
|
Kumar Surve S, Birmule PR, Sankpal SA, Patil SB, Kalalawe VG, Salunke‐Gawali S, Hangirgekar S. Synthesis of Novel Methylsulfonylacrylimidamide via Click Chemistry Approach, Computational Analysis and α‐ Glucosidase Inhibition Activity. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202302112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractA series of Novel Methylsulfonylacrylimidamide analogs (4 a–4 h) were designed, synthesized, and screened for their α‐glucosidase inhibitory activity. The results indicated that some of the synthesized derivatives displayed inhibitory activities against α‐glucosidase with IC50 values ranging from 10.35±0.15 to 60.39±1.77 μM when compared to standard drug acarbose (IC50 832.22±2.00 μM). Among the synthesized derivatives, compounds 4 f and 4 h with a Di cyclohexyl and dioctyl substitution in the acrylimidamide displayed the most significant inhibitory activity with the IC50 value of 14.54±0.19 μM and 10.35±0.15 μM. The inhibitory action of compounds 4 f and 4 h against α‐glucosidase was studied by enzyme kinetic and molecular docking. In vitro, cytotoxicity showed that 4 f and 4 h exhibited low cytotoxicity against human cell lines. The ADME study suggested that most compounds will likely be orally active as they obeyed Lipinski's rule of five. Our studies showed that these derivatives could be considered a new class of α‐glucosidase inhibitors.
Collapse
Affiliation(s)
- Santosh Kumar Surve
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra India
| | - Pramod R. Birmule
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra India
| | - Sandeep A. Sankpal
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra India
| | - Sandeep B. Patil
- Department of Pharmacology Dr. Shivajirao Kadam College of Pharmacy Kasbe, Digraj, Sangli 416305 Maharashtra India
| | | | - Sunita Salunke‐Gawali
- Department of Chemistry Savitribai Phule Pune University Pune 411007 Maharashtra India
| | - Shankar Hangirgekar
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra India
| |
Collapse
|
7
|
Shayegan N, Haghipour S, Tanideh N, Moazzam A, Mojtabavi S, Faramarzi MA, Irajie C, Parizad S, Ansari S, Larijani B, Hosseini S, Iraji A, Mahdavi M. Synthesis, in vitro α-glucosidase inhibitory activities, and molecular dynamic simulations of novel 4-hydroxyquinolinone-hydrazones as potential antidiabetic agents. Sci Rep 2023; 13:6304. [PMID: 37072431 PMCID: PMC10113378 DOI: 10.1038/s41598-023-32889-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
In the present study, new structural variants of 4-hydroxyquinolinone-hydrazones were designed and synthesized. The structure elucidation of the synthetic derivatives 6a-o was carried out using different spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, and elemental analysis, and their α-glucosidase inhibitory activity was also determined. The synthetic molecules 6a-o exhibited good α-glucosidase inhibition with IC50 values ranging between 93.5 ± 0.6 to 575.6 ± 0.4 µM as compared to the standard acarbose (IC50 = 752.0 ± 2.0 µM). Structure-activity relationships of this series were established which is mainly based on the position and nature of the substituent on the benzylidene ring. A kinetic study of the active compounds 6l and 6m as the most potent derivatives were also carried out to confirm the mode of inhibition. The binding interactions of the most active compounds within the active site of the enzyme were determined by molecular docking and molecular dynamic simulations.
Collapse
Affiliation(s)
- Nahal Shayegan
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Haghipour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Parizad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Ansari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samanehsadat Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Iqbal H, Akhtar T, Haroon M, Aktaş A, Tahir E, Ehsan M. Synthesis of Thiazole-Chalcone Hybrid Molecules: Antioxidant, Alpha(α)-Amylase Inhibition and Docking Studies. Chem Biodivers 2023; 20:e202201134. [PMID: 37052518 DOI: 10.1002/cbdv.202201134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
The molecular hybrid approach is very significant to combat various drug-resistant disorders. A simple, convenient, and cost-effective synthesis of thiazole-based chalcones is accomplished, using a molecular hybrid approach, in two steps. The compound 1-(2-phenylthiazol-4-yl)ethanone (3) was used as the main intermediate for the synthesis of 3-(arylidene)-1-(2-phenylthiazol-4-yl)prop-2-en-1-ones (4a-f). Thin layer chromatography was used to testify the formation and purity of all synthesized compounds. Further structural confirmation of all compounds was achieved via different spectroscopic techniques (UV, FT-IR, 1 H- and 13 C-NMR) and elemental analysis. All synthesized compounds were tested for their α-amylase inhibition and antioxidant potential. The cytotoxic property of compounds was also tested with in vitro haemolytic assay. All tested compounds showed moderate to excellent α-amylase inhibition and antioxidant activity. All tested compounds are found safe to use due to their less toxicity when compared to the standard Triton X. The molecular docking simulation study of all synthesized compounds was also conducted to examine the best binding interactions with human pancreatic α-amylase (pdb: 4 W93) using AutodockVina. The molecular docking results authenticated the in vitro amylase inhibition results, i.e., 3-(3-Methoxyphenyl)-1-(2-phenylthiazol-4-yl)prop-2-en-1-one (4e) exhibited lowest IC50 value 54.09±0.11 μM with a binding energy of -7.898 kcal/mol.
Collapse
Affiliation(s)
- Hafsa Iqbal
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
- Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur, Affiliated with Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Aydın Aktaş
- Inonu University, Vocational School of Health Service, 44280-, Malatya, Türkiye
| | - Ehsaan Tahir
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250-, Mirpur (AJK, Pakistan
| | - Muhammad Ehsan
- Bionano-Chemistry Lab, Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
9
|
Zala AR, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P. Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
10
|
Acar Çevik U, Celik I, Paşayeva L, Fatullayev H, Bostancı HE, Özkay Y, Kaplancıklı ZA. New benzimidazole-oxadiazole derivatives: Synthesis, α-glucosidase, α-amylase activity, and molecular modeling studies as potential antidiabetic agents. Arch Pharm (Weinheim) 2023; 356:e2200663. [PMID: 36760015 DOI: 10.1002/ardp.202200663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Benzimidazole-1,3,4-oxadiazole derivatives (5a-z) were synthesized and characterized with different spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The synthesized analogs were examined against α-glucosidase and α-amylase enzymes to determine their antidiabetic potential. Compounds 5g and 5q showed the most activity with 35.04 ± 1.28 and 47.60 ± 2.16 µg/mL when compared with the reference drug acarbose (IC50 = 54.63 ± 1.95 µg/mL). Compounds 5g, 5o, 5s, and 5x were screened against the α-amylase enzyme and were found to show excellent potential, with IC50 values ranging from 22.39 ± 1.40 to 32.07 ± 1.55 µg/mL, when compared with the standard acarbose (IC50 = 46.21 ± 1.49 µg/mL). The antioxidant activities of the effective compounds (5o, 5g, 5s, 5x, and 5q) were evaluated by TAS methods. A molecular docking research study was conducted to identify the active site and explain the functions of the active chemicals. To investigate the most likely binding mode of the substances 5g, 5o, 5q, 5s, and 5x, a molecular dynamics simulation was also carried out.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leyla Paşayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hayrani E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
11
|
Fan M, Yang W, Peng Z, He Y, Wang G. Chromone-based benzohydrazide derivatives as potential α-glucosidase inhibitor: Synthesis, biological evaluation and molecular docking study. Bioorg Chem 2023; 131:106276. [PMID: 36434950 DOI: 10.1016/j.bioorg.2022.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In order to find new α-glucosidase inhibitors with high efficiency and low toxicity, novel chromone-based benzohydrazide derivatives 6a-6s were synthesized and characterized through 1H NMR, 13C NMR, and HRMS. All the new synthesized compounds were tested for inhibitory activities against α-glucosidase. Compounds 6a-6s with IC50 values ranging from 4.51 ± 0.09 to 27.21 ± 0.83 μM, showed a potential α-glucosidase inhibitory activity as compared to the positive control (acarbose: IC50 = 790.40 ± 0.91 μM). Compound 6i exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 4.51 ± 0.09 μM. Theinteractionbetween α-glucosidase and 6i was further confirmed by enzyme kinetic, fluorescence quenching, circular dichroism, and molecular docking study. In vivo experiment showed that 6i could suppress the rise of blood glucose levels after sucrose loading. The cytotoxicity result indicated that 6i exhibited low cytotoxicity in vitro.
Collapse
Affiliation(s)
- Meiyan Fan
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
12
|
Zala AR, Rajani DP, Kumari P. Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. J Biochem Mol Toxicol 2023; 37:e23231. [PMID: 36181335 DOI: 10.1002/jbt.23231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
A series of novel piperazine based cinnamic acid bearing coumarin derivatives were designed and synthesized by piperazine based cinnamic acids esterification with 4-hydroxycoumarin and characterized by various spectral techniques like infrared, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass. The novel bioactive compounds (7a-7m) screen their potential against different bacterial and fungal strains. Compound 7g (minimum inhibitory concentration [MIC] = 12.5 µg/ml) exhibited potent antibacterial activity against Escherichia coli strain. Compounds 7d, 7f, 7g, 7k, 7l, and 7m showed potent antibacterial activity against all bacterial strains. Compounds 7a, 7g, 7h, 7k, 7l, and 7m exhibited potent antifungal activity against all fungal strains. Furthermore, a molecular docking study revealed that compounds 7d, 7f, 7g, and 7k could bind to the active site of E. coli DNA gyrase subunit B protein and form hydrogen bonding with crucial amino acid residues Arg136 in the active sites. Comprehensively, our study recommends that 7d, 7f, 7g, and 7k could be a promising lead for developing more efficient antimicrobial drug candidates and DNA gyrase inhibitors.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat, India
| | | | - Premlata Kumari
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
13
|
Jamil W, Shaikh J, Yousuf M, Taha M, Khan KM, Shah SAA. Synthesis, anti-diabetic and in silico QSAR analysis of flavone hydrazide Schiff base derivatives. J Biomol Struct Dyn 2022; 40:12723-12738. [PMID: 34514955 DOI: 10.1080/07391102.2021.1975565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study reports synthesis of flavone hydrazide Schiff base derivatives with diverse functionalities for the cure of diabetic mellitus and their a-glucosidase inhibitor and in silico studies. In this regard, Flavone derivatives 1-20 has synthesized and characterized by various spectroscopic techniques. These compounds showed significant potential towards a-glucosidase enzyme inhibition activity and found to be many fold better active than the standard Acarbose (IC50 = 39.45 ± 0.11 µM). The IC50values ranges 1.02-38.1 µM. Among these, compounds 1(IC50 = 4.6 ± 0.23 µM), 2(IC50 = 1.02 ± 0.2 µM), 3(IC50 = 7.1 ± 0.11 µM), 4(IC50 = 8.3 ± 0.34 µM), 5(IC50 = 7.4 ± 0.15 µM), 6(IC50 = 8.5 ± 0.27 µM) and 18 (IC50 = 1.09 ± 0.26 µM) showed highest activity. It was revealed that the analogues having -OH substitution have higher activity than their look likes. The molecular docking analysis revealed that these molecules have high potential to interact with the protein molecule and have high ability to bind with the enzyme. Furthermore, in silico pharmacokinetics, physicochemical studies were also performed for these derivatives. The bioavailability radar analysis explored that of all these compounds have excellent bioavailability for five (5) descriptors, however, the sixth descriptor of instauration is slightly increased in all compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waqas Jamil
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, Pakistan
| | - Javeria Shaikh
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, Pakistan
| | - Maria Yousuf
- Dow College of Biotechnology, Department of Bioinformatics, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor D. E, Malaysia
| |
Collapse
|
14
|
Al-Ghulikah HA, Mughal EU, Elkaeed EB, Naeem N, Nazir Y, Alzahrani AYA, Sadiq A, Shah SWA. Discovery of Chalcone Derivatives as Potential α-Glucosidase and Cholinesterase Inhibitors: Effect of Hyperglycemia in Paving a Path to Dementia. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Alam A, Ali M, Latif A, Rehman NU, Saher S, Zainab, Faryal, Khan A, Ullah S, Ullah O, Halim SA, Sani F, Al-Harrasi A, Ahmad M. Novel Bis-Schiff’s base derivatives of 4-nitroacetophenone as potent α-glucosidase agents: Design, synthesis and in silico approach. Bioorg Chem 2022; 128:106058. [DOI: 10.1016/j.bioorg.2022.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
|
16
|
Design, Synthesis, Crystal Structure, In Vitro and In Silico Evaluation of New N'-Benzylidene-4-tert-butylbenzohydrazide Derivatives as Potent Urease Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206906. [PMID: 36296497 PMCID: PMC9608490 DOI: 10.3390/molecules27206906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
Hydrazides play a vital role in making biologically active compounds in various fields of chemistry. These determine antioxidant, antidepressant, antimalarial, anti-inflammatory, antiglycating, and antimicrobial activity. In the present study, twenty-three new N' benzylidene-4-(tert-butyl)benzohydrazide derivatives (4-26) were synthesized by the condensation of aromatic aldehydes and commercially available 4-(tert-butyl)benzoic acid. All the target compounds were successfully synthesized from good to excellent yield; all synthesized derivatives were characterized via spectroscopic techniques such as HREI-MS and 1H-NMR. Synthesized compounds were evaluated for in vitro urease inhibition. All synthesized derivatives demonstrated good inhibitory activities in the range of IC50 = 13.33 ± 0.58-251.74 ± 6.82 µM as compared with standard thiourea having IC50 = 21.14 ± 0.425 µM. Two compounds, 6 and 25, were found to be more active than standard. SAR revealed that electron donating groups in phenyl ring have more influence on enzyme inhibition. However, to gain insight into the participation of different substituents in synthesized derivatives on the binding interactions with urease enzyme, in silico (computer simulation) molecular modeling analysis was carried out.
Collapse
|
17
|
Khan SA, Khan A, Zia K, Shawish I, Barakat A, Ul-Haq Z. Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. Int J Mol Sci 2022; 23:ijms231810315. [PMID: 36142242 PMCID: PMC9498999 DOI: 10.3390/ijms231810315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
During the past two decades, the world has witnessed the emergence of various SARS-CoV-2 variants with distinct mutational profiles influencing the global health, economy, and clinical aspects of the COVID-19 pandemic. These variants or mutants have raised major concerns regarding the protection provided by neutralizing monoclonal antibodies and vaccination, rates of virus transmission, and/or the risk of reinfection. The newly emerged Omicron, a genetically distinct lineage of SARS-CoV-2, continues its spread in the face of rising vaccine-induced immunity while maintaining its replication fitness. Efforts have been made to improve the therapeutic interventions and the FDA has issued Emergency Use Authorization for a few monoclonal antibodies and drug treatments for COVID-19. However, the current situation of rapidly spreading Omicron and its lineages demands the need for effective therapeutic interventions to reduce the COVID-19 pandemic. Several experimental studies have indicated that the FDA-approved monoclonal antibodies are less effective than antiviral drugs against the Omicron variant. Thus, in this study, we aim to identify antiviral compounds against the Spike protein of Omicron, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor and facilitates virus invasion. Initially, docking-based virtual screening of the in-house database was performed to extract the potential hit compounds against the Spike protein. The obtained hits were optimized by DFT calculations to determine the electronic properties and molecular reactivity of the compounds. Further, MD simulation studies were carried out to evaluate the dynamics of protein–ligand interactions at an atomistic level in a time-dependent manner. Collectively, five compounds (AKS-01, AKS-02, AKS-03, AKS-04, and AKS-05) with diverse scaffolds were identified as potential hits against the Spike protein of Omicron. Our study paves the way for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (A.B.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (A.B.); (Z.U.-H.)
| |
Collapse
|
18
|
Synthesis, α-glucosidase inhibition and molecular docking studies of natural product 2-(2-phenyethyl)chromone analogues. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Docking study, molecular dynamic, synthesis, anti-α-glucosidase assessment, and ADMET prediction of new benzimidazole-Schiff base derivatives. Sci Rep 2022; 12:14870. [PMID: 36050498 PMCID: PMC9437094 DOI: 10.1038/s41598-022-18896-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
The control of postprandial hyperglycemia is an important target in the treatment of type 2 diabetes mellitus (T2DM). As a result, targeting α-glucosidase as the most important enzyme in the breakdown of carbohydrates to glucose that leads to an increase in postprandial hyperglycemia is one of the treatment processes of T2DM. In the present work, a new class of benzimidazole-Schiff base hybrids 8a–p has been developed based on the potent reported α-glucosidase inhibitors. These compounds were synthesized by sample recantations, characterized by 1H-NMR, 13C-NMR, FT-IR, and CHNS elemental analysis, and evaluated against α-glucosidase. All new compounds, with the exception of inactive compound 8g, showed excellent inhibitory activities (60.1 ± 3.6–287.1 ± 7.4 µM) in comparison to acarbose as the positive control (750.0 ± 10.5). Kinetic study of the most potent compound 8p showed a competitive type of inhibition (Ki value = 60 µM). In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the title new compounds over the active site of α-glucosidase. In silico druglikeness analysis and ADMET prediction of the most potent compounds demonstrated that these compounds were druglikeness and had satisfactory ADMET profile.
Collapse
|
20
|
Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA, Naeem N, Al-Rooqi MM, Ahmed SA, Shah SWA, Sadiq A. Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS OMEGA 2022; 7:30215-30232. [PMID: 36061741 PMCID: PMC9435035 DOI: 10.1021/acsomega.2c03328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
In the present study, a series of 2,3-dihydro-1,5-benzothiazepine derivatives 1B-14B has been synthesized sand characterized by various spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using in vitro and in vivo mechanism-based assays. The tested compounds 1B-14B exhibited in vitro inhibitory potential against α-glucosidase with IC50 = 2.62 ± 0.16 to 10.11 ± 0.32 μM as compared to the standard drug acarbose (IC50 = 37.38 ± 1.37 μM). Kinetic studies of the most active derivatives 2B and 3B illustrated competitive inhibitions. Based on the α-glucosidase inhibitory effect, the compounds 2B, 3B, 6B, 7B, 12B, 13B, and 14B were chosen in vivo for further evaluation of antidiabetic activity in streptozotocin-induced diabetic Wistar rats. All these evaluated compounds demonstrated significant antidiabetic activity and were found to be nontoxic in nature. Moreover, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of the α-glucosidase enzyme (PDB ID 3AJ7). Additionally, quantitative structure-activity relationship (QSAR) studies were performed based on the α-glucosidase inhibitory assay. The value of correlation coefficient (r) 0.9553 shows that there was a good correlation between the 1B-14B structures and selected properties. There is a correlation between the experimental and theoretical results. Thus, these novel compounds could serve as potential candidates to become leads for the development of new drugs provoking an anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | | | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Hanan A. Al-Ghulikah
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| |
Collapse
|
21
|
Yang Y, He J, Jiang Z, Du X, Chen F, Wang J, Ni H. Characterization of the inhibition of aldose reductase with
p
‐coumaric acid ethyl ester. J Food Biochem 2022; 46:e14370. [DOI: 10.1111/jfbc.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yuanfan Yang
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Junzhu He
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Xiping Du
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson South Carolina USA
| | - Jinling Wang
- School of Forestry Northeast Forestry University Harbin China
| | - Hui Ni
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| |
Collapse
|
22
|
Pedrood K, Rezaei Z, Khavaninzadeh K, Larijani B, Iraji A, Hosseini S, Mojtabavi S, Dianatpour M, Rastegar H, Faramarzi MA, Hamedifar H, Hajimiri MH, Mahdavi M. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors. BMC Chem 2022; 16:57. [PMID: 35909126 PMCID: PMC9341091 DOI: 10.1186/s13065-022-00848-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 03/19/2024] Open
Abstract
A novel series of diphenylquinoxaline-6-carbohydrazide hybrids 7a-o were rationally designed and synthesized as anti-diabetic agents. All synthesized compounds 7a-o were screened as possible α-glucosidase inhibitors and exhibited good inhibitory activity with IC50 values in the range of 110.6 ± 6.0 to 453.0 ± 4.7 µM in comparison with acarbose as the positive control (750.0 ± 10.5 µM). An exception in this trend came back to a compound 7k with IC50 value > 750 µM. Furthermore, the most potent derivative 7e bearing 3-fluorophenyl moiety was further explored by kinetic studies and showed the competitive type of inhibition. Additionally, the molecular docking of all derivatives was performed to get an insight into the binding mode of these derivatives within the active site of the enzyme. In silico assessments exhibited that 7e was well occupied in the binding pocket of the enzyme through favorable interactions with residues, correlating to the experimental results.
Collapse
Affiliation(s)
- Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Khavaninzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Mojibade Balogun M, Shamim S, Mohammed Khan K, Mahdavi M, Salar U, Adebayo Oladosu I, Mohammadi‐Khanaposhtani M, Ali Faramarzi M, Olufunke Moronkola D, Taha M, Rahim F, Perveen S. Synthesis and Evaluation of 6‐Ethoxy‐2‐mercaptobenzothiazole Scaffolds as Potential
α
‐Glucosidase Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Modinat Mojibade Balogun
- H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Department of Chemistry University of Ibadan Ibadan Nigeria
| | - Shahbaz Shamim
- H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC) Imam Abdulrahman Bin Faisal University P.O. Box 31441 Dammam Saudi Arabia
| | - Mohammad Mahdavi
- Endocrinology & Metabolism Research Institute Tehran University of Medical Sciences Tehran Iran
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | | | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | - Muhammad Taha
- Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC) Imam Abdulrahman Bin Faisal University P.O. Box 31441 Dammam Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry Hazara University Mansehra 21300, Khyber Pakhtunkhwa Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui Karachi 75280 Pakistan
| |
Collapse
|
24
|
Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 126:105910. [PMID: 35653899 DOI: 10.1016/j.bioorg.2022.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
The irregular use of antibiotics has created a natural selection pressure for bacteria to adapt resistance. Bacterial resistance caused by metallo-β-lactamases (MβLs) has been the most prevalent in terms of posing a threat to human health. The New Delhi metallo-β-lactamase-1 (NDM-1) has been shown to be capable of hydrolyzing almost all β-lactams. In this work, eight aromatic Schiff bases 1-8 were prepared and identified by enzyme kinetic assays to be the potent inhibitors of NDM-1 (except 4). These molecules exhibited a more than 95 % inhibition, and an IC50 value in the range of 0.13-19 μM on the target enzyme, and 3 was found to be the most effective inhibitor (IC50 = 130 nM). Analysis of structure-activity relationship revealed that the o-hydroxy phenyl improved the inhibitory activity of Schiff bases on NDM-1. The inhibition mode assays including isothermal titration calorimetry (ITC) disclosed that both compounds 3 and 5 exhibited a reversibly mixed inhibition on NDM-1, with a Ki value of 1.9 and 10.8 μM, respectively. Antibacterial activity tests indicated that a dose of 64 μg·mL-1 Schiff bases resulted in 2-128-fold reduction in MICs of cefazolin on E. coli producing NDM-1 (except 4). Cytotoxicity assays showed that both Schiff bases 3 and 5 have low cytotoxicity on the mouse fibroblast (L929) cells at a concentration of up to 400 μM. Docking studies suggested that the hydroxyl group interacts with Gln123 and Glu152 of NDM-1, and the amino groups interact with the backbone amide groups of Glu152 and Asp223. This study provided a novel scaffold for the development of NDM-1 inhibitors.
Collapse
|
25
|
Khan S, Buğday N, UrRehman A, Ul Haq I, Yaşar S, Özdemir İ. Synthesis, Molecular Docking and Biological Evaluation of 5‐Alkyl (aryl)‐2‐isobutylthiazole Derivatives: As α‐amylase, α‐Glucosidase, and Protein Kinase Inhibitors. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Nesrin Buğday
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
| | - Asim UrRehman
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| |
Collapse
|
26
|
Dege N, Özge Ö, Avcı D, Başoğlu A, Sönmez F, Yaman M, Tamer Ö, Atalay Y, Zengin Kurt B. Concentration effects on optical properties, DFT, crystal characterization and α-glucosidase activity studies: Novel Zn(II) complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120072. [PMID: 34175761 DOI: 10.1016/j.saa.2021.120072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
A novel Zn(II) complex of 6-ClpicH and picH was synthesized and its structure was determined by XRD technique. The detailed experimental optical susceptibility and band gap, refractive index, linear polarizability, optical and electrical conductivity parameters in various concentrations were investigated by means of the UV-Vis spectroscopic data. The optical band gap, refractive index (n), linear optical susceptibility (χ(1)), third-order nonlinear optical susceptibility (χ(3)), second- and third-order nonlinear optical (β and γ) parameters were examined by using DFT/M06-L and ωB97XD/6-311++G(d,p) levels. The IC50 value of Zn(II) complex against α-glucosidase was also obtained at 0.44 mM. The experimental band gap of the Zn(II) complex at 13, 33, 44 and 94 µM concentrations in ethanol were found to be 4.38, 4.37, 4.35 and 4.28 eV, respectively. The third-order NLO susceptibility χ(3) parameter at 94 µM concentration corresponding to the photon energies of 4.6 and 5.7 eV in the UV-Vis region were observed at 206.6 × 10-13 and 294.3 × 10-13 esu, respectively. Besides, the theoretical χ(3) values were obtained at 50.58 × 10-13 and 20.37 × 10-13 esu by using M06-L level. These results indicate that Zn(II) complex could be an effective third-order NLO candidate material. In brief, the detailed theoretical and experimental structural, spectral and optical properties of the Zn(II) complex were presented comparatively.
Collapse
Affiliation(s)
- Necmi Dege
- Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey
| | - Özgen Özge
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187 Sakarya, Turkey
| | - Davut Avcı
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187 Sakarya, Turkey.
| | - Adil Başoğlu
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187 Sakarya, Turkey.
| | - Fatih Sönmez
- Sakarya University of Applied Sciences, Pamukova Vocational High School, 54055 Sakarya, Turkey
| | - Mavişe Yaman
- Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey
| | - Ömer Tamer
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187 Sakarya, Turkey
| | - Yusuf Atalay
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187 Sakarya, Turkey
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey
| |
Collapse
|
27
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
28
|
Thi Thu HN, Minh QP, Van CP, Van TN, Van KP, Thanh TN, Le Thi Tu A, Litaudon M, The SN. Cytotoxic and α-Glucosidase Inhibitory Xanthones from Garcinia mckeaniana Leaves and Molecular Docking Study. Chem Biodivers 2021; 18:e2100396. [PMID: 34529335 DOI: 10.1002/cbdv.202100396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
A new racemic xanthone, garmckeanin A (1), and eight known analogs 2-9 were isolated from the ethyl acetate (AcOEt) extract of the Vietnamese Garcinia mckeaniana leaves. Their structures were determined by MS and NMR spectral analyses and compared with the literature. The AcOEt extract showed good cytotoxicity against cancer cell lines KB, Lu, Hep-G2 and MCF7, with IC50 values of 5.40-8.76 μg/mL, and it also possessed α-glucosidase inhibitory activity, with an IC50 value of 9.17 μg/mL. Garmckeanin A (1) exhibited inhibition of all cancer cell lines, with an IC50 value of 7.3-0.9 μM. Allanxanthone C (5) successfully controlled KB growth, with an IC50 value of 0.54 μM, higher than that of the positive control, ellipticine (IC50 1.22 μM). Norathyriol (8) was a promising α-glucosidase inhibitor, with an IC50 value of 0.07 μM, much higher than that of the positive control, acarbose (IC50 161.0 μM). The interactions of the potential α-glucosidase inhibitors with the C- and N-terminal domains of human intestinal α-glucosidase were also investigated by molecular docking study. The results indicated that bannaxanthone D (2), garcinone E (4), bannaxanthone E (6), and norathyriol (8) exhibit higher binding affinity to the C-terminal than to the N-terminal domain through essential residues in the active sites. In particular, compound 8 could be assumed to be the most potent mixed inhibitor.
Collapse
Affiliation(s)
- Ha Nguyen Thi Thu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam.,Graduate University of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Quan Pham Minh
- Graduate University of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam.,Institute of Natural Products Chemistry (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Cuong Pham Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Tuyen Nguyen Van
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Kiem Phan Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Tra Nguyen Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam.,Graduate University of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Anh Le Thi Tu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| | - Marc Litaudon
- Institute of Chemistry of Natural Substances, CNRS-ICSN, UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, France
| | - Son Ninh The
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 100000, Vietnam
| |
Collapse
|
29
|
Zhang ZP, Xue WY, Hu JX, Xiong DC, Wu YF, Ye XS. Novel carbohydrate-triazole derivatives as potential α-glucosidase inhibitors. Chin J Nat Med 2021; 18:729-737. [PMID: 33039052 DOI: 10.1016/s1875-5364(20)60013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 10/23/2022]
Abstract
A series of novel pyrano[2, 3-d]trizaole compounds were synthesized and their α-glucosidase inhibitory activities were evaluated by in vitro enzyme assay. The experimental data demonstrated that compound 10f showed up to 10-fold higher inhibition (IC5074.0 ± 1.3 μmol·L-1) than acarbose. The molecular docking revealed that compound 10f could bind to α-glucosidase via the hydrophobic, π-π stacking, and hydrogen bonding interactions. The results may benefit further structural modifications to find new and potent α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Zi-Pei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jian-Xing Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Fen Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
30
|
Malik NP, Naz M, Ashiq U, Jamal RA, Gul S, Saleem F, Khan KM, Yousuf S. Oxamide Derivatives as Potent
α
‐Glucosidase Inhibitors: Design, Synthesis,
In Vitro
Inhibitory Screening and
In Silico
Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202101709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Maira Naz
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Uzma Ashiq
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Rifat A. Jamal
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Sana Gul
- Department of Chemistry Federal Urdu University of Art Science and Technology Karachi Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Khalid M. Khan
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC) Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
31
|
Ullah H, Ullah H, Taha M, Khan F, Rahim F, Uddin I, Sarfraz M, Shah SAA, Aziz A, Mubeen S. Synthesis, In Vitro α-Amylase Activity, and Molecular Docking
Study of New Benzimidazole Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg Chem 2021; 114:105046. [PMID: 34126575 DOI: 10.1016/j.bioorg.2021.105046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND A hybrid molecule of different biologically active substances can improve affinity and efficiency compared to a standard drug. Hence based on this fact, we predict that a combination of fluorine, oxadiazole, sulfur, etc., may enhance α-glucosidase inhibition activity compared to a standard drug. METHODS A series of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives (2a-2i) were synthesized and characterized using spectroscopic techniques such as 1HNMR and LC-MS. In order to evaluate its bioactivity, in vitro α-amylase and α-glycosidase inhibitory activity were performed. In vivo study was carried using a genetic model, Drosophila melanogaster, for assessing the antihyperglycemic effects. RESULTS The compounds 2a-2i demonstrated α-amylase inhibitory activity in the range of IC50 = 40.00-80.00 μg/ml as compare to standard acarbose (IC50 = 34.71 μg/ml). Compounds 2a-2i demonstrated α-glucosidase inhibitory activity in the range of IC50 = 46.01-81.65 μg/ml as compared to standard acarbose (IC50 = 34.72 μg/ml). Docking studies on a target protein, N-terminal subunit of human Maltase-glucoamylase (PDB:2QMJ) was carried and the compounds were found to dock into the active site of the enzyme (Fig. 1). The predicted binding energies of the compounds were calculated. The in vitro studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. Whereas in vivo study indicates that 2b, 2g, and 2i could lower glucose levels in the Drosophila, but then 17-30% reduced capacity than acarbose and may be overcome by adjusting their dosage. CONCLUSIONS The in vitro and in vivo studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. This study has recognized that compounds like 2b, 2g, and 2i may be considered potential candidates for further developing a novel class of antidiabetic agents.
Collapse
|
33
|
Lee HA, Kim MJ, Han JS. Alleviating effects of lupeol on postprandial hyperglycemia in diabetic mice. Toxicol Res (Camb) 2021; 10:495-500. [PMID: 34141163 DOI: 10.1093/toxres/tfab019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the inhibition activities of lupeol on carbohydrate digesting enzymes and its ability to improve postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. α-Glucosidase and α-amylase inhibitory assays were executed using a chromogenic method. The effect of lupeol on hyperglycemia after a meal was measured by postprandial blood glucose in STZ-induced diabetic and normal mice. The mice were treated orally with soluble starch (2 g/kg BW) alone (control) or with lupeol (10 mg/kg BW) or acarbose (10 mg/kg BW) dissolved in water. Blood samples were taken from tail veins at 0, 30, 60, and 120 min and blood glucose was measured by a glucometer. Lupeol showed noticeable inhibitory activities on α-glucosidase and α-amylase. The half-maximal inhibitory concentrations (IC50) of lupeol on α-glucosidase and α-amylase were 46.23 ± 9.03 and 84.13 ± 6.82 μM, respectively, which were more significantly effective than those of acarbose, which is a positive control. Increase in postprandial blood glucose level was more significantly lowered in the lupeol-administered group than in the control group of both STZ-induced diabetic and normal mice. In addition, the area under the curve was significantly declined with lupeol administration in the STZ-induced diabetic mice. These findings suggest that lupeol can help lower the postprandial hyperglycemia by inhibiting carbohydrate-digesting enzymes.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Jung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
34
|
Taha M, Alshamrani FJ, Rahim F, Anouar EH, Uddin N, Chigurupati S, Almandil NB, Farooq RK, Iqbal N, Aldubayan M, Venugopal V, Khan KM. Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101401. [DOI: 10.1016/j.jksus.2021.101401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
|
35
|
Hussain S, Taha M, Rahim F, Hayat S, Zaman K, Iqbal N, Selvaraj M, Sajid M, Bangesh MA, Khan F, Khan KM, Uddin N, Shah SAA, Ali M. Synthesis of benzimidazole derivatives as potent inhibitors for α-amylase and their molecular docking study in management of type-II diabetes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Antioxidative and α-glucosidase inhibitory constituents of Polyscias guilfoylei: experimental and computational assessments. Mol Divers 2021; 26:229-243. [PMID: 33765238 DOI: 10.1007/s11030-021-10206-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Searching for bioactive agents from medicinal plants, eleven constituents were isolated from Polyscias guilfoylei stem for the first time, including a nucleoside uracil (1), two sterols β-sitosterol (2) and daucosterol (3), a saponin androseptoside A (4), two lignans (+)-pinoresinol (5) and (+)-syringaresinol (6), four phenolic acids protocatechuic acid (7), methyl protocatechuate (8), caffeic acid (9), and 5-O-caffeoylquinic acid (10), and a flavonoid quercitrin (11). Metabolites 1, 4, and 6-11 have never been observed in genus Polyscias before. Phenolic compounds 7 and 9 possessed the respective IC50 values of 21.33 and 13.88 µg/mL in DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidative assay, as compared with that of the positive control resveratrol (IC50 = 13.21 µg/mL). From density functional theory (DFT) calculated approach, the DPPH free radical scavenging capacity of two compounds 7 and 9 can be explained by the role of OH groups at carbons C-3 and C-4. Antioxidative actions of these two potential agents are followed HAT (H atom transfer) mechanism by OH bond disruption in gas, but SPLET (sequential proton loss electron transfer) mechanism in solvents water and methanol. Compared to 4-OH group, 3-OH group showed better bond disruption enthalpies and better kinetic energies since it reacted with HOO• and DPPH radicals. Sterols 2-3 and flavonoid 11 induced the IC50 values of < 2.0 µg/mL better than the positive control acarbose (IC50 = 184.0 µg/mL) in α-glucosidase inhibitory assay. Their interactions with human intestinal C- and N-terminal domains of α-glucosidase were explored using molecular docking study. The obtained results proved that compounds 2, 3, and 11 bind relatively stronger with the C-terminal domain than to the N-terminal domain through pivotal residues in the binding site and could be hypothesized as mixed inhibitors.
Collapse
|
37
|
Shaheen A, Ashiq U, Jamal RA, Khan KM, Gul S, Yousuf S, Ali ST. Design and Synthesis of Fluoroquinolone Derivatives as Potent α‐Glucosidase Inhibitors: In Vitro Inhibitory Screening with In Silico Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202003956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Aasia Shaheen
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Uzma Ashiq
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Rifat Ara Jamal
- Department of Chemistry University of Karachi Karachi 75270 Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy Institute for Research and Medical Consultations (IRMC) Imam Abdulrahman Bin Faisal University, P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Sana Gul
- Department of Chemistry Federal Urdu University of Art, Science and Technology Karachi Pakistan
| | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Syed Tahir Ali
- Department of Chemistry Federal Urdu University of Art, Science and Technology Karachi Pakistan
| |
Collapse
|
38
|
Synthesis, in vitro, and in silico studies of newly functionalized quinazolinone analogs for the identification of potent α-glucosidase inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02159-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, Lal S, Kumar A, Kumar S, Hussain K. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2020; 40:4933-4953. [PMID: 33357037 DOI: 10.1080/07391102.2020.1863861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present manuscript describes the synthesis, α-amylase inhibition, in silico studies and in-depth quantitative structure-activity relationship (QSAR) of a library of aroyl hydrazones based on benzothiazole skeleton. All the compounds of the developed library are characterized by various spectral techniques. α-Amylase inhibitory potential of all compounds has been explored, where compound 7n exhibits remarkable α-amylase inhibition of 87.5% at 50 µg/mL. Robust QSAR models are made by using the balance of correlation method in CORAL software. The chemical structures at different concentration with optimal descriptors are represented by SMILES. A data set of 66 SMILES of 22 hydrazones at three distinct concentrations are prepared. The significance of the index of ideality of correlation (IIC) with applicability domain (AD) is also studied at depth. A QSAR model with best Rvalidation2 = 0.8587 for split 1 is considered as a leading model. The outliers and promoters of increase and decrease of endpoint are also extracted. The binding modes of the most active compound, that is, 7n in the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) are also explored by in silico molecular docking studies. Compound 7n displays high resemblance in binding mode and pose with the standard drug acarbose. Molecular dynamics simulations performed on protein-ligand complex for 100 ns, the protein gets stabilised after 20 ns and remained below 2 Å for the remaining simulation. Moreover, the deviation observed in RMSF during simulation for each amino acid residue with respect to Cα carbon atom is insignificant.
Collapse
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, India
| | - Sudhir Kumar
- Department of MBB&B, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, India
| |
Collapse
|
40
|
Maurya AK, Mulpuru V, Mishra N. Discovery of Novel Coumarin Analogs against the α-Glucosidase Protein Target of Diabetes Mellitus: Pharmacophore-Based QSAR, Docking, and Molecular Dynamics Simulation Studies. ACS OMEGA 2020; 5:32234-32249. [PMID: 33376861 PMCID: PMC7758891 DOI: 10.1021/acsomega.0c03871] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 05/13/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease, the third killer of mankind. The finding of potent drugs against diabetes remains challenging. In the present study, coumarin derivatives with known biological activity against diabetic protein have been used to predict functional groups' positions on coumarin derivatives. α-Glucosidase is a brush border membrane-bound lysosomal enzyme from the hydrolase enzyme family. It plays an important role in the metabolism of glycoproteins. Inhibitors of lysosomal α-glucosidase can reduce postprandial hyperglycemia. Due to this, lysosomal α-glucosidase is a good therapeutic target for drugs. A total of 116 coumarin derivatives with IC50 values against lysosomal α-glucosidase were selected for a CADD (computer-aided drug design) approach to identify more potent drugs. Pharmacophore modeling and atom-based 3-QSAR of 116 active compounds against lysosomal α-glucosidase were performed and identified positions and types of groups to increase activity. We performed molecular docking of 116 coumarin derivatives against the lysosomal α-glucosidase enzyme, and three compounds (isorutarine, 10_, and 36) resulted in a docking score of -7.64, -7.12, and -6.86 kcal/mol. The molecular dynamics simulation of the above three molecules and protein complex performed for 100 ns supported the interaction stability of isorutarine, 10_, and 36 with the lysosomal binding site α-glucosidase.
Collapse
|
41
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
|
43
|
Synthesis, spectral properties, α-glucosidase inhibition, second-order and third-order NLO parameters and DFT calculations of Cr(III) and V(IV) complexes of 3-methylpicolinic acid. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Taha M, Uddin N, Ali M, Anouar EH, Rahim F, Khan G, Farooq RK, Gollapalli M, Iqbal N, Farooq M, Khan KM. Inhibition potential of phenyl linked benzimidazole-triazolothiadiazole modular hybrids against β-glucuronidase and their interactions thereof. Int J Biol Macromol 2020; 161:355-363. [DOI: 10.1016/j.ijbiomac.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
45
|
Singh K, bala I, Kataria R. Crystal structure, Hirshfeld surface and DFT based NBO, NLO, ECT and MEP of benzothiazole based hydrazone. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Biological evaluation and pharmacokinetic profiling of a coumarin-benzothiazole hybrid as a new scaffold for human gliomas. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Uddin I, Ullah H, Bibi A, Taha M, Khan F, Rahim F, Wadood A, Ahmad N, Khan AA, Ahmad F, Rehman ZU, Khan KM. Synthesis, in vitro alpha glucosidase, urease activities and molecular docking study of bis-indole bearing Schiff base analogs. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Kawde AN, Taha M, Alansari RS, Almandil NB, Anouar EH, Uddin N, Rahim F, Chigurupati S, Nawaz M, Hayat S, Ibrahim M, Elakurthy PK, Vijayan V, Morsy M, Ibrahim H, Baig N, Khan KM. Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. Int J Biol Macromol 2020; 154:217-232. [PMID: 32173438 DOI: 10.1016/j.ijbiomac.2020.03.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
α-Glucosidase and α-amylase are enzymes which are associated with diabetic II. These enzymes break macromolecules of sugar into monosugar molecules which is soluble in body, hence increase the sugar level in blood. There is need to develop economical and save inhibitors to prevent them from breaking sugar macromolecules to soluble molecules which will control the level of sugar in blood. Therefore, we synthesized indole-based derivatives (1-18) and evaluated as dual inhibitor for α-glucosidase and α-amylase. These chemical scaffolds were built with variation in aryl ring which were found active with good to moderate activity for α-glucosidase having IC50 value ranging from 13.99 ± 0.10 to 59.09 ± 0.30 μM when compared with standard acarbose with IC50 of 11.29 ± 0.10 μM; for α-amylase IC50 value ranging from 13.14 ± 0.10 to 58.99 ± 0.30 μM when compared with the standard acarbose with IC50 of 11.12 ± 0.10 μM. Structure activity relationship (SAR) has been established for all compounds. Enzymatic kinetic study and molecular docking study have been carried out to investigate the binding interactions α-glucosidase and α-amylase enzyme.
Collapse
Affiliation(s)
- Abdel-Nasser Kawde
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Raneem Saud Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shawkat Hayat
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Mohamad Ibrahim
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | | | | | - Mohamed Morsy
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hossieny Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nadeem Baig
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
49
|
|
50
|
Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Kurt BZ. Synthesis, DFT calculations and molecular docking study of mixed ligand metal complexes containing 4,4′-dimethyl-2,2′-bipyridyl as α-glucosidase inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|