1
|
Aroua LM, Alminderej FM, Almuhaylan HR, Alosaimi AH, Medini F, Mohammed HA, Almahmoud SA, Khan RA, Mekni NH. Benzimidazole(s): synthons, bioactive lead structures, total synthesis, and the profiling of major bioactive categories. RSC Adv 2025; 15:7571-7608. [PMID: 40161353 PMCID: PMC11951861 DOI: 10.1039/d4ra08864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 04/02/2025] Open
Abstract
Benzimidazole, a fused bicyclic compound with benzene and pentacyclic 1,3-diazole moeities, has a simple aromatic heterocyclic structure. The moiety has become an indispensable anchor for the development of new pharmacologically active products, and has yielded several therapeutic agents with anticancer, antihypertensive, antimicrobial, antifungal and antiulcer effects. Benzimidazoles, as synthetically feasible and pharmacophoric synthons, have been relentlessly pursued for the preparation of new analogues and derivatives, and they have successfully developed into some of the most sought-after and vital pharmacophores for drug discovery. The use of varied substituents and differing patterns around the benzimidazole nucleus has provided a wide spectrum of biological activities. In addition, the benzimidazole moiety constitutes a building block for the production of several drugs, drug candidates, new chemical entities, and lead molecules. The importance of this nucleus for bioactivity, e.g., antibacterial, antitubercular, antidiabetic, anticancer, antifungal, anti-inflammatory, analgesic, antioxidant, antihistaminic, and antimalarial activity, has led us to take note and provide an overview of the synthetic development approaches for various benzimidazole derivatives together with their biological actions. This review is projected to further assist in the design and development of new benzimidazole-based compounds for new and optimized pharmacologically active products towards new drug-development strategies.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Abdulelah H Alosaimi
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Faten Medini
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cedria, Carthage University 2050 Tunis Tunisia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Nejib H Mekni
- Laboratory of Bio-Organic, Structural and Polymer Chemistry (LR99ES14), Department of Chemistry, Faculty of Sciences, University of Tunis El-Manar El-Manar 2092 Tunis Tunisia
- Department of Fundamental Science, High Institute of Medical Technologies of Tunis, El Manar University Tunis 1006 Tunisia
| |
Collapse
|
2
|
Luo D, Luo R, Wang W, Deng R, Wang S, Ma X, Pu C, Liu Y, Zhang H, Yu S, Huang Q, Yang L, Tong Y, Zheng Y, Li R. Discovery of L15 as a novel Vif PROTAC degrader with antiviral activity against HIV-1. Bioorg Med Chem Lett 2024; 111:129880. [PMID: 38996941 DOI: 10.1016/j.bmcl.2024.129880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Viral infectivity factor (Vif) has been recognized as a new therapeutic target for human immunodeficiency virus-1 (HIV-1) infected patients. In our previous work, we have synthesized a novel class of Vif inhibitors with 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold, which show obvious activity in HIV-1 infected cells and are also effective against drug-resistant strains. Proteolytic targeting chimera (PROTAC) utilizes the ubiquitin-proteasome system to degrade target proteins, which is well established in the field of cancer, but the antiviral PROTAC molecules are rarely reported. In order to explore the effectiveness of PROTAC in the antiviral area, we designed and synthesized a series of degrader of HIV-1 Vif based on 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold. Among them, L15 can degrade Vif protein obviously in a dose-dependent manner and shows certain antivirus activity. Meanwhile, molecular dynamics simulation indicated that the ternary complex formed by L15, Vif, and E3 ligase adopted a reasonable binding mode and maintained a stable interaction. This provided a molecular basis and prerequisite for the selective degradation of the Vif protein by L15. This study reports the HIV-1 Vif PROTAC for the first time and represents the proof-of-concept of PROTACs-based antiviral drug discovery in the field of HIV/ acquired immune deficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ronghua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weilin Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Rui Deng
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Shirui Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610504, China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Hongjia Zhang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Su Yu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Qing Huang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Liumeng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Tong
- West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China.
| | - Yongtang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China.
| |
Collapse
|
3
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
4
|
Gai Y, Duan S, Wang S, Liu K, Yu X, Yang C, Li G, Zhou Y, Yu B, Wu J, Wang C, Yu X. Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction. Viruses 2024; 16:490. [PMID: 38675833 PMCID: PMC11053914 DOI: 10.3390/v16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFβ E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFβ interaction based on the sequences of Vif mutants with higher affinity for CBFβ screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 μM and 55.1 μM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFβ. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFβ over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFβ interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Xin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
5
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
6
|
Natarajan R, Kumar P, Subramani A, Siraperuman A, Angamuthu P, Bhandare RR, Shaik AB. A Critical Review on Therapeutic Potential of Benzimidazole Derivatives: A Privileged Scaffold. Med Chem 2024; 20:311-351. [PMID: 37946342 DOI: 10.2174/0115734064253813231025093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).
Collapse
Affiliation(s)
- Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Padma Kumar
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Arunkumar Subramani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, lndia
| | - Amuthalakshmi Siraperuman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Prabakaran Angamuthu
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
7
|
Çelik İ, Acar Çevik U, Küçükoğlu K, Nadaroglu H, Bostancı HE, Işık A, Özkay Y, Kaplancıklı ZA. Design, synthesis, and molecular docking studies of benzimidazole-1,3,4-triazole hybrids as carbonic anhydrase I and II inhibitors. Chem Biol Drug Des 2024; 103:e14351. [PMID: 37697918 DOI: 10.1111/cbdd.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
In this study, with an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of 10 novel 2-(4-(4-ethyl-5-(2-(substitutedphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3-yl)-phenyl)-5,6-dimethyl-1H-benzimidazole (5a-5j) derivatives and characterized by 1 H-NMR, 13 C-NMR, and HRMS. These compounds were evaluated for their inhibitory activity against hCA I and hCA II. All the compounds exhibited good hCA I and hCA II inhibitory activities with IC50 values in range of 1.288 μM-3.122 μM. Among all these compounds, compound 5e, with an IC50 value of 1.288 μM is the most active against carbonic hCA I. Compound 5h with an IC50 value of 1.532 μM is the most active against carbonic hCA-II. Compounds 5a-5j were also evaluated for their cytotoxic effects on the L929 mouse fibroblast (normal) cell line. The compounds were also analyzed for their antioxidant capacity by TAS, FRAP, and DPPH activity. Enzyme inhibition kinetics showed all compounds 5a-5j to inhibit the enzyme by non-competitive. The most active compound 5e for hCA I and compound 5h for hCA-II were subjected to molecular docking, which revealed their binding interactions with the enzyme's active site, confirming the experimental findings.
Collapse
Affiliation(s)
- İsmail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Kaan Küçükoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Selçuk University, Konya, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, ErzurumVocational Training School, Ataturk University, Erzurum, Turkey
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
8
|
Chung NT, Dung VC, Duc DX. Recent achievements in the synthesis of benzimidazole derivatives. RSC Adv 2023; 13:32734-32771. [PMID: 37942457 PMCID: PMC10628531 DOI: 10.1039/d3ra05960j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Benzimidazoles are a class of heterocyclic compounds in which a benzene ring is fused to the 4 and 5 positions of an imidazole ring. Benzimidazole refers to the parent compound, while benzimidazoles are a class of heterocyclic compounds having similar ring structures, but different substituents. Benzimidazole derivatives possess a wide range of bioactivities including antimicrobial, anthelmintic, antiviral, anticancer, and antihypertensive activities. Many compounds possessing a benzimidazole skeleton have been employed as drugs in the market. The application of benzimidazoles in other fields has also been documented. The synthesis of benzimidazole derivatives has attracted much attention from chemists and numerous articles on the synthesis of this class of heterocyclic compound have been reported over the years. The condensation between 1,2-benzenediamine and aldehydes has received intensive interest, while many novel methods have been developed. In this article, we will give a comprehensive review of studies on the synthesis of benzimidazole, which date back to 2013. We have also tried to describe reaction mechanisms as much as we can. The work might be useful for chemists who work in the synthesis of heterocycles or drug chemistry.
Collapse
Affiliation(s)
- Nguyen Thi Chung
- Department of Chemistry, Institute of Education, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| | - Vo Cong Dung
- Centre for Education Accreditation, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| | - Dau Xuan Duc
- Department of Chemistry, Institute of Education, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| |
Collapse
|
9
|
Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:918. [PMID: 37513830 PMCID: PMC10386429 DOI: 10.3390/ph16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A series of 2-(1H-indol-2-yl)-3-acrylonitrile derivatives, 2a-x, 3, 4a-b, 5a-d, 6a-b, and 7, were synthesized as potential antitumor and antimicrobial agents. The structures of the prepared compounds were evaluated based on elemental analysis, IR, 1H- and 13NMR, as well as MS spectra. X-ray crystal analysis of the representative 2-(1H-indol-2-yl)-3-acrylonitrile 2l showed that the acrylonitrile double bond was Z-configured. All compounds were screened at the National Cancer Institute (USA) for their activities against a panel of approximately 60 human tumor cell lines and the relationship between structure and in vitro antitumor activity is discussed. Compounds of interest 2l and 5a-d showed significant growth inhibition potency against various tumor cell lines with the mean midpoint GI50 values of all tests in the range of 0.38-7.91 μM. The prominent compound with remarkable activity (GI50 = 0.0244-5.06 μM) and high potency (TGI = 0.0866-0.938 μM) against some cell lines of leukemia (HL-60(TB)), non-small cell lung cancer (NCI-H522), colon cancer (COLO 205), CNS cancer (SF-539, SNB-75), ovarian cancer ((OVCAR-3), renal cancer (A498, RXF 393), and breast cancer (MDA-MB-468) was 3-[4-(dimethylamino)phenyl]-2-(1-methyl-1H-indol-2-yl)acrylonitrile (5c). Moreover, the selected 2-(1H-indol-2-yl)-3-acrylonitriles 2a-c and 2e-x were evaluated for their antibacterial and antifungal activities against Gram-positive and Gram-negative pathogens as well as Candida albicans. Among them, 2-(1H-indol-2-yl)-3-(1H-pyrrol-2-yl)acrylonitrile (2x) showed the most potent antimicrobial activity and therefore it can be considered as a lead structure for further development of antimicrobial agents. Finally, molecular docking studies as well as drug-likeness and ADME profile prediction were carried out.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Małgorzata Jarosiewicz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
10
|
Quazi S, Rashid MT, Malik JA, Gavas S. The Discovery of Novel Antimicrobial Agents through the Application of Isocyanide-Based Multicomponent Reactions. Antibiotics (Basel) 2023; 12:antibiotics12050849. [PMID: 37237752 DOI: 10.3390/antibiotics12050849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Multicomponent reactions (MCR) have been used to synthesize a wide range of analogs from several classes of heterocyclic compounds, with multifaceted medicinal uses. The synthesis of highly functionalized molecules in a single pot is a unique property of MCR, allowing researchers to quickly assemble libraries of compounds of biological interest and uncover novel leads as possible therapeutic agents. Isocyanide-based multicomponent reactions have proven to be extremely effective at swiftly specifying members of compound libraries, particularly in the discovery of drugs. The understanding of structure-activity correlations that drive the development of new goods and technology requires structural variety in these libraries. In today's world, antibiotic resistance is a major ongoing problem that poses risks to public health. The implementation of isocyanide-based multicomponent reactions upholds a significant potential in this regard. By utilizing such reactions, new antimicrobial compounds can be discovered and subsequently used to fight against such concerns. This study discusses the recent developments in antimicrobial medication discovery using isocyanide-based multicomponent reactions (IMCRs). Furthermore, the article emphasizes the potential of IMCRs (Isocyanide-based multicomponent based reactions) in the near future.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, Karnataka, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | | | - Javid Ahmad Malik
- Department of Zoology, Guru Ghasidas University, Bilaspur 495009, Chhattisgarh, India
| | | |
Collapse
|
11
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Bao Q, Zhou J. Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem 2023; 250:115188. [PMID: 36773550 DOI: 10.1016/j.ejmech.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.
Collapse
Affiliation(s)
- Qiqi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
13
|
Aroua LM, Alosaimi AH, Alminderej FM, Messaoudi S, Mohammed HA, Almahmoud SA, Chigurupati S, Albadri AEAE, Mekni NH. Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity. Pharmaceutics 2023; 15:457. [PMID: 36839780 PMCID: PMC9963656 DOI: 10.3390/pharmaceutics15020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 μM), 3e (IC50 = 20.7 ± 0.06 μM), and 3g (IC50 = 22.33 ± 0.12 μM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 μM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 μM), 3e (IC50 = 21.97 ± 0.19 μM), and 3g (IC50 = 23.01 ± 0.12 μM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 μM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Abdulelah H. Alosaimi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Nejib H. Mekni
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- High Institute of Medical Technologies of Tunis, El Manar University, Tunis 1006, Tunisia
| |
Collapse
|
14
|
Anandaraj P, Ramesh R, Malecki JG. Direct Synthesis of Benzimidazoles by Pd(II) N^N^S-Pincer Type Complexes via Acceptorless Dehydrogenative Coupling of Alcohols with Diamines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Deng C, Yan H, Wang J, Liu BS, Liu K, Shi YM. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
3D-QSAR study, docking molecular and simulation dynamic on series of benzimidazole derivatives as anti-cancer agents. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Küçükoğlu K, Acar Çevik U, Nadaroglu H, Celik I, Işık A, Bostancı HE, Özkay Y, Kaplancıklı ZA. Design, synthesis and molecular docking studies of novel benzimidazole-1,3,4-oxadiazole hybrids for their carbonic anhydrase inhibitory and antioxidant effects. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Acharya PT, Bhavsar ZA, Jethava DJ, Rajani DP, Pithawala E, Patel HD. Synthesis, characterization, biological evaluation and computational study of benzimidazole hybrid thiosemicarbazide derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prachi T. Acharya
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Zeel A. Bhavsar
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Divya J. Jethava
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center Surat Gujarat India
| | - Edwin Pithawala
- Department of Microbiology and Biotechnology, Khyati Institute of Science, Palodia Ahmedabad Gujarat India
| | | |
Collapse
|
19
|
Zare Fekri L, Nateghi-Sabet M, Nikpassand M. Application of Fe 3O 4@SiO 2-Propyl@dapsone-copper Complex Nanoparticles as a Magnetically Recoverable Catalyst for the Synthesis of Azo-linked and bis- Benzo[d]imidazoles. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2078138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Leila Zare Fekri
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | | | | |
Collapse
|
20
|
Biological evaluation of novel bicyclic heteroaromatic benzazole derived acrylonitriles: synthesis, antiproliferative and antibacterial activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Vishnuvardhan M, Pradeep M, Gangadhar T. Easy and Efficient Microwave-Assisted Synthesis of 1,2,3-Triazolyl-Tethered 2-Pyridinylbenzimidiazoles and Their Antimicrobial Activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mohire SS, Yadav GD. Bimetallic Cu–Ni Nanometal Supported over Mesocellular Silica Foam As a Novel Catalyst for One-Pot Synthesis of Benzimidazole in DMF As a Bifunctional Reagent. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shalaka S. Mohire
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| |
Collapse
|
23
|
Aromatic disulfides as potential inhibitors against interaction between deaminase APOBEC3G and HIV infectivity factor. Acta Biochim Biophys Sin (Shanghai) 2022; 54:725-735. [PMID: 35920198 PMCID: PMC9828099 DOI: 10.3724/abbs.2022049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
APOBEC3G (A3G) is a member of cytosine deaminase family with a variety of innate immune functions. It displays activities against retrovirus and retrotransposon by inhibition of virus infectivity factor (Vif)-deficient HIV-1 replication. The interaction between A3G N-terminal domain and Vif directs the cellular Cullin 5 E3-ubiquitin ligase complex to ubiquitinate A3G, and leads to A3G proteasomal degradation, which is a potential target for anti-HIV drug. Currently, there are very few reports about stable small molecules targeting the interaction between A3G and Vif. In this study, we screened two series of small molecules containing carbamyl sulfamide bond or disulfide bond as bridges of two different aromatic rings. Five asymmetrical disulfides were successfully identified against interaction between A3G and Vif with the IC 50 values close to or smaller than 1 μM, especially, not through covalently binding with A3G or Vif. They restore the A3G expression in the presence of Vif by inhibiting Vif-induced A3G ubiquitination and degradation. This study opens a way to the discovery of new anti-HIV drugs.
Collapse
|
24
|
Bano K, Kisan DA, Panda TK. Facile Synthesis of Benzimidazole and Benzothiazole Compounds Mediated by Zinc Precatalyst Supported by Iminopyrrole‐Morpholine Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kulsum Bano
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 INDIA
| | - Devadkar Ajitrao Kisan
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 Hyderabad INDIA
| | - Tarun K. Panda
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 Hyderabad INDIA
| |
Collapse
|
25
|
Krishnendu P R, Koyiparambath VP, Bhaskar V, Arjun B, Zachariah SM. Formulating The Structural Aspects Of Various Benzimidazole Cognates. Curr Top Med Chem 2021; 22:473-492. [PMID: 34852738 DOI: 10.2174/1568026621666211201122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives are widely used in clinical practice as potential beneficial specialists. Recently, the neuroprotective effect of derivatives of benzimidazole moiety has also shown positive outcomes. OBJECTIVE To develop favourable molecules for various neurodegenerative disorders using the versatile chemical behaviour of the benzimidazole scaffold. METHODS About 25 articles were collected that discussed various benzimidazole derivatives and categorized them under various subheadings based on the targets such as BACE 1, JNK, MAO, choline esterase enzyme, oxidative stress, mitochondrial dysfunction in which they act. The structural aspects of various benzimidazole derivatives were also studied. CONCLUSION To manage various neurodegenerative disorders, a multitargeted approach will be the most hopeful stratagem. Some benzimidazole derivatives can be considered for future studies, which are mentioned in the discussed articles.
Collapse
Affiliation(s)
- Krishnendu P R
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - B Arjun
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| |
Collapse
|
26
|
Unsal Tan O, Zengin M. Insights into the chemistry and therapeutic potential of acrylonitrile derivatives. Arch Pharm (Weinheim) 2021; 355:e2100383. [PMID: 34763365 DOI: 10.1002/ardp.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Acrylonitrile is a fascinating scaffold widely found in many natural products, drugs, and drug candidates with various biological activities. Several drug molecules such as entacapone, rilpivirine, teriflunomide, and so forth, bearing an acrylonitrile moiety have been marketed. In this review, diverse synthetic strategies for constructing desired acrylonitriles are discussed, and the different biological activities and medicinal significance of various acrylonitrile derivatives are critically evaluated. The information gathered is expected to provide rational guidance for the development of clinically useful agents from acrylonitriles.
Collapse
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
27
|
Chen Y, Zhang Y, Chen S, Liu W, Lin Y, Zhang H, Yu F. NSAIDs Sensitize Melanoma Cells to MEK Inhibition and Inhibit Metastasis and Relapse by Inducing Degradation of AXL. Pigment Cell Melanoma Res 2021; 35:238-251. [PMID: 34748282 DOI: 10.1111/pcmr.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Melanoma is highly heterogeneous with diverse genomic alterations and partial therapeutic responses. Emergence of drug-resistant tumor cell clones accompanied with high AXL expression level is one of the major challenges for anti-tumor clinical care. Recent studies have demonstrated that high AXL expression in melanoma cells mediated drug-resistance, epithelial-mesenchymal transition (EMT) and elevated survival of cancer stem cells (CSCs). Given that we have identified several non-steroidal anti-inflammatory drugs (NSAIDs) including Aspirin potently induce the degradation of AXL, we questioned whether NSAIDs could counteract the AXL-mediated neoplastic phenotypes. Here we found NSAIDs downregulate PKA activity via the PGE2 /EP2/cAMP/PKA signaling pathway and interrupt the PKA-dependent interaction between CDC37 and HSP90, resulting in an incorrect AXL protein folding and finally AXL degradation through the ubiquitination-proteasome system (UPS) pathway. Furthermore, NSAIDs not only sensitized the MEK inhibitor treatment, but also reduced EMT and relapse mediate by AXL in tumor tissue. Our findings suggest that the combination of inhibitors and NSAIDs, especially Aspirin, could be a simple but efficient modality to treat melanoma in which AXL is a key factor for drug-resistance, metastasis, and relapse.
Collapse
Affiliation(s)
- Yingshi Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Siqi Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiwei Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Fei Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Nomula V, Rao SN. KO tBu-BF 3.OEt 2 mediated synthesis of quinazolin-4( 3H)-ones from 2-substituted amides with nitriles and aldehydes. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vishnuvardhan Nomula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of scientific and innovative research(AcSIR), Ghaziabad, India
| | - Sadu Nageswara Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
29
|
3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105131. [PMID: 34243074 PMCID: PMC8241580 DOI: 10.1016/j.bioorg.2021.105131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 01/25/2023]
Abstract
Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.
Collapse
|
30
|
Aroua LM, Almuhaylan HR, Alminderej FM, Messaoudi S, Chigurupati S, Al-Mahmoud S, Mohammed HA. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg Chem 2021; 114:105073. [PMID: 34153810 DOI: 10.1016/j.bioorg.2021.105073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022]
Abstract
Synthetic routes to a series of benzoylarylbenzimidazol 3a-h have been derived from 3,4-diaminobenzophenone and an appropriate arylaldehyde in the presence of ammonium chloride or a mixture of ammonium chloride and sodium metabisulfite as catalyst. The antioxidant activity of targeted compounds 3a-h has been measured by four different methods and the overall antioxidant evaluation of the compounds indicated the significant MCA, FRAP, and (DPPH-SA) of the compounds except for the compound 3h. In vitro antidiabetic assay of α-amylase and α-glucosidase suggest a good to excellent activity for most tested compounds. The target benzimidazole 3f containing hydroxyl motif at para-position of phenyl revealed an important activity inhibitor against α- amylase (IC50 = 12.09 ± 0.38 µM) and α-glucosidase (IC50 = 11.02 ± 0.04 µM) comparable to the reference drug acarbose. The results of the anti hyperglycemic activity were supported by means of in silico molecular docking calculations showing strong binding affinity of compounds 3a-h with human pancreatic α-amylase (HPA) and human lysosomal acid-α-glucosidase (HLAG) active sites that confirm a good to excellent activity for most of tested compounds.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Laboratory of Organic Structural Chemistry and Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar I 2092, Tunis, Tunisia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia.
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Suliman Al-Mahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
31
|
Zhong X, Luo R, Yan G, Ran K, Shan H, Yang J, Liu Y, Yu S, Pu C, Zheng Y, Li R. Lead optimization to improve the antiviral potency of 2-aminobenzamide derivatives targeting HIV-1 Vif-A3G axis. Eur J Med Chem 2021; 224:113680. [PMID: 34245947 DOI: 10.1016/j.ejmech.2021.113680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/27/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023]
Abstract
The viral infectivity factor (Vif)-apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) axis has been recognized as a valid target for developing novel small-molecule therapies for acquired immune deficiency syndrome (AIDS) or for enhancing innate immunity against viruses. Our previous work reported the novel Vif antagonist 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide (2) with strong antiviral activity. In this work, through optimizations of ring C of 2, we discovered the more potent compound 6m with an EC50 of 0.07 μM in non-permissive H9 cells, reflecting an approximately 5-fold enhancement of antiviral activity compared to that of 2. Western blotting indicated that 6m more strongly suppressed the defensive protein Vif than 2 at the same concentration. Furthermore, 6m suppressed the replication of various clinical drug-resistant HIV strains (FI, NRTI, NNRTI, IN and PI) with relatively high efficacy. These results suggested that compound 6m is a more potent candidate for treating AIDS.
Collapse
Affiliation(s)
- Xinxin Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ronghua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China
| | - Guoyi Yan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475001, PR China
| | - Kai Ran
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huifang Shan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jie Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Su Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China.
| | - Rui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
32
|
Mehta PK, Neupane LN, Park SH, Lee KH. Ratiometric fluorescent detection of silver nanoparticles in aqueous samples using peptide-based fluorogenic probes with aggregation-induced emission characteristics. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125041. [PMID: 33858083 DOI: 10.1016/j.jhazmat.2021.125041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The quantification of silver nanoparticles and Ag+ contamination in the aquatic ecosystem has attracted considerable interest. Benzoimidazolyl-cyanovinylene (1) was synthesized as an aggregation-induced emission fluorophore, and a fluorescent peptidyl probe (2 and 3) bearing this fluorophore was developed. The fluorescent peptidyl probes coordinated with Ag+ selectively among various metal ions, leading to a ratiometric response to Ag+ in pure aqueous solutions. Furthermore, an "in situ" protocol was developed to quantify AgNPs using 2 with H2O2 as an oxidizing reagent. The fluorescent detection method for Ag+ and AgNPs showed promising detection properties such as high selectivity, high sensitivity, fast response, visible light excitation, well-operations in pure aqueous solution, and large fluorescent signal change. The detection limits of Ag+ (0.64 ppb) and AgNPs (1.1 ppb) were significantly low. According to the binding mode study, Ag+ induced the formation of a 2:1 complex between 2 and Ag+ and the chirality of the peptide part of the probe was not critical for this process. The formation of aggregates of the probe triggered by Ag+ from AgNPs induced a significant change in fluorescence. Furthermore, the amounts of spiked AgNPs in groundwater and tap water were quantified using the fluorescent detection method with 2.
Collapse
Affiliation(s)
- Pramod Kumar Mehta
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Lok Nath Neupane
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| | - Keun-Hyeung Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea.
| |
Collapse
|
33
|
AHMAD NASEEM, AZAD MOHAMMADIRFAN, KHAN ABDULRAHMAN, AZAD IQBAL. BENZIMIDAZOLE AS A PROMISING ANTIVIRAL HETEROCYCLIC SCAFFOLD: A REVIEW. JOURNAL OF SCIENCE AND ARTS 2021. [DOI: 10.46939/j.sci.arts-21.1-b05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Heterocyclic derivatives are unavoidable in many fields of natural disciplines. These derivatives play numerous significant roles in research, medication, and nature. Nitrogenous heterocyclic derivatives extremely are the main target of concern in synthetic chemistry to ensue active natural products with pharmaceuticals and agrochemicals interest. Benzimidazole skeleton is another example of some active heterocyclic moiety that significantly contributes in the numerous bioactive of essential compounds. Benzimidazole skeleton is studied as a prominent moiety of biologically active compounds with various activities including antimicrobial, antiprotozoal, anticancer, antiviral, acetylcholinesterase, antihistaminic, anti-inflammatory, antimalarial, analgesic, anti-HIV and antitubercular. Therefore, in this review we summarize the various antiviral activities of several benzimidazole derivatives and outline the correlation among the structures of different benzimidazoles scaffold with their therapeutic significance.
Collapse
Affiliation(s)
- NASEEM AHMAD
- Integral University, Department of Chemistry, 226026 Lucknow, India
| | - MOHAMMAD IRFAN AZAD
- Jamia Millia Islamia, Department of Chemistry, Jamia Nagar, 110025 New Delhi, India
| | | | - IQBAL AZAD
- Integral University, Department of Chemistry, 226026 Lucknow, India
| |
Collapse
|
34
|
Ahmad MU, Rafiq M, Zahra B, Islam M, Ashraf M, Al-Rashida M, Khan A, Hussain J, Shafiq Z, Al-Harrasi A. Synthesis of benzimidazole based hydrazones as non-sugar based α-glucosidase inhibitors: Structure activity relation and molecular docking. Drug Dev Res 2021; 82:1033-1043. [PMID: 33665884 DOI: 10.1002/ddr.21807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/11/2022]
Abstract
In search for α-glucosidase inhibitors used in the treatment of diabetes mellitus, a series of unique benzimidazole based hydrazones derivatives were synthesized (5a-5p), which were then investigated for their in vitro α-glucosidase inhibitory potential. The compounds of interest were characterized by modern spectroscopic approaches including CHN, 1 HNM R, 13 CN MR and FTIR. The structure of compound 5n was distinctively authenticated through single crystal X-ray study. All compounds depicted potent enzyme inhibitory potential with IC50 values in the range of 2.25 ± 0.01 to 81.16 ± 0.12 μM except 5n that showed IC50 value of 182.75 ± 0.13 μM. A limited structure-activity correlation demonstrated that substitutions of isatin, aldehydes and ketone in hydrazones moiety had remarkable contribution in the overall activity and that was further supported by molecular docking studies carried out in elucidating the mechanism of binding interaction of these compounds in the catalytic site of α-glucosidase.
Collapse
Affiliation(s)
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Bakhtawar Zahra
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhamamd Islam
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.,Jadeed Group of Companies, 53-C, Satellite Town, Chandni Chowk, Murree Road, Rawalpindi, Pakistan
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
35
|
Yang W, Zhao Y, Zhou Z, Li L, Cui L, Luo H. Preparation of 1,2-substituted benzimidazoles via a copper-catalyzed three component coupling reaction. RSC Adv 2021; 11:8701-8707. [PMID: 35423384 PMCID: PMC8695204 DOI: 10.1039/d1ra00650a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
1,2-Substituted benzimidazoles were prepared by simply stirring a mixture of copper catalysts, N-substituted o-phenylenediamines, sulfonyl azides and terminal alkynes. Particularly, the intermediate N-sulfonylketenimine occurred with two nucleophilic addition and the sulfonyl group was eliminated via cyclization. In a way, sulfonyl azides and copper catalysts activated the terminal alkynes to synthesize benzimidazoles.
Collapse
Affiliation(s)
- Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
36
|
Zare Fekri L, Nateghi‐Sabet M. Synthesis of new azo‐dispersive dyes with benzo[d]imidazole moiety and new bis benzo[d]imidazoles using DABCO‐diacetate as a green media. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Fouad MA, Abdel-Hamid H, Ayoup MS. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv 2020; 10:42644-42681. [PMID: 35514898 PMCID: PMC9058431 DOI: 10.1039/d0ra07501a] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Multicomponent reactions (MCRs) are powerful synthetic tools in which more than two starting materials couple with each other to form multi-functionalized compounds in a one-pot process, the so-called "tandem", "domino" or "cascade" reaction, or utilizing an additional step without changing the solvent, the so-called a sequential-addition procedure, to limit the number of synthetic steps, while increasing the complexity and the molecular diversity, which are highly step-economical reactions. The Ugi reaction, one of the most common multicomponent reactions, has recently fascinated chemists with the high diversity brought by its four- or three-component-based isonitrile. The Ugi reaction has been introduced in organic synthesis as a novel, efficient and useful tool for the preparation of libraries of multifunctional peptides, natural products, and heterocyclic compounds with stereochemistry control. In this review, we highlight the recent advances of the Ugi reaction in the last two decades from 2000-2019, mainly in the synthesis of linear or cyclic peptides, heterocyclic compounds with versatile ring sizes, and natural products, as well as the enantioselective Ugi reactions. Meanwhile, the applications of these compounds in pharmaceutical trials are also discussed.
Collapse
Affiliation(s)
- Manar Ahmed Fouad
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
38
|
Duan S, Wang S, Song Y, Gao N, Meng L, Gai Y, Zhang Y, Wang S, Wang C, Yu B, Wu J, Yu X. A novel HIV-1 inhibitor that blocks viral replication and rescues APOBEC3s by interrupting vif/CBFβ interaction. J Biol Chem 2020; 295:14592-14605. [PMID: 32817167 PMCID: PMC7586213 DOI: 10.1074/jbc.ra120.013404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
HIV remains a health challenge worldwide, partly because of the continued development of resistance to drugs. Therefore, it is urgent to find new HIV inhibitors and targets. Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3) are important host restriction factors that inhibit HIV-1 replication by their cytidine deaminase activity. HIV-1 viral infectivity factor (Vif) promotes proteasomal degradation of APOBEC3 proteins by recruiting the E3 ubiquitin ligase complex, in which core-binding factor β (CBFβ) is a necessary molecular chaperone. Interrupting the interaction between Vif and CBFβ can release APOBEC3 proteins to inhibit HIV-1 replication and may be useful for developing new drug targets for HIV-1. In this study, we identified a potent small molecule inhibitor CBFβ/Vif-3 (CV-3) of HIV-1 replication by employing structure-based virtual screening using the crystal structure of Vif and CBFβ (PDB: 4N9F) and validated CV-3's antiviral activity. We found that CV-3 specifically inhibited HIV-1 replication (IC50 = 8.16 µm; 50% cytotoxic concentration >100 µm) in nonpermissive lymphocytes. Furthermore, CV-3 treatment rescued APOBEC3 family members (human APOBEC3G (hA3G), hA3C, and hA3F) in the presence of Vif and enabled hA3G packaging into HIV-1 virions, which resulted in Gly-to-Ala hypermutations in viral genomes. Finally, we used FRET to demonstrate that CV-3 inhibited the interaction between Vif and CBFβ by simultaneously forming hydrogen bonds with residues Gln-67, Ile-102, and Arg-131 of CBFβ. These findings demonstrate that CV-3 can effectively inhibit HIV-1 by blocking the interaction between Vif and CBFβ and that this interaction can serve as a new target for developing HIV-1 inhibitors.
Collapse
Affiliation(s)
- Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ying Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
39
|
Importance of Fluorine in Benzazole Compounds. Molecules 2020; 25:molecules25204677. [PMID: 33066333 PMCID: PMC7587361 DOI: 10.3390/molecules25204677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorine-containing heterocycles continue to receive considerable attention due to their unique properties. In medicinal chemistry, the incorporation of fluorine in small molecules imparts a significant enhancement their biological activities compared to non-fluorinated molecules. In this short review, we will highlight the importance of incorporating fluorine as a basic appendage in benzothiazole and benzimidazole skeletons. The chemistry and pharmacological activities of heterocycles containing fluorine during the past years are compiled and discussed.
Collapse
|
40
|
Gokanapalli A, Motakatla VKR, Peddiahgari VGR. Benzimidazole bearing Pd–PEPPSI complexes catalyzed direct C2‐arylation/heteroarylation of
N
‐substituted benzimidazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anusha Gokanapalli
- Department of Chemistry Yogi Vemana University Kadapa‐516005 Andhra Pradesh India
| | | | | |
Collapse
|
41
|
Darweesh AF, Abd El-Fatah NA, Abdelhamid IA, Elwahy AHM, Salem ME. Investigation of the reactivity of (1 H-benzo[ d]imidazol-2-yl)acetonitrile and (benzo[ d]thiazol-2-yl)acetonitrile as precursors for novel bis(benzo[4,5]imidazo[1,2- a]pyridines) and bis(benzo[4,5]thiazolo[3,2- a]pyridines). SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1784436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmed F. Darweesh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mostafa E. Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
42
|
Marinescu M, Cinteză LO, Marton GI, Chifiriuc MC, Popa M, Stănculescu I, Zălaru CM, Stavarache CE. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chem 2020; 14:45. [PMID: 32724899 PMCID: PMC7382033 DOI: 10.1186/s13065-020-00697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
The tri-component synthesis of novel chiral benzimidazole Mannich bases, by reaction between benzimidazole, aqueous 30% formaldehyde and an amine, the biological evaluation and DFT studies of the new compounds are reported here. The 1H-NMR, 13C-NMR, FTIR spectra and elemental analysis confirm the structures of the new compounds. All synthesized compounds were screened by qualitative and quantitative methods for their in vitro antibacterial activity against 4 bacterial strains. DFT studies were accomplished using GAMESS 2012 software and HOMO-LUMO analysis allowed the calculation of electronic and structural parameters of the chiral Mannich bases. The geometry of 1-methylpiperazine, the cumulated Mullikan atomic charges of the two heteroatoms and of the methyl, and the value of the global electrophilicity index (ω = 0.0527) of the M-1 molecule is correlated with its good antimicrobial activity. It was found that the presence of saturated heterocycles from the amine molecule, 1-methyl piperazine and morpholine, respectively, contributes to an increased biological activity, compared to aromatic amino analogs, diphenylamino-, 4-nitroamino- and 4-aminobenzoic acid. The planarity of the molecules, specific bond lengths and localization of HOMO-LUMO orbitals is responsible for the best biological activities of the compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Ludmila Otilia Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - George Iuliu Marton
- Faculty of Applied Chemistry and Materials Science, University "Politehnica" of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ioana Stănculescu
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - Christina-Marie Zălaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Cristina-Elena Stavarache
- Institute of Organic Chemistry "C.D. Nenitzescu" of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| |
Collapse
|
43
|
Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles. Arch Pharm (Weinheim) 2020; 353:e2000090. [DOI: 10.1002/ardp.202000090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
|
44
|
TLC-Bioautography as a fast and cheap screening method for the detection of α-chymotrypsin inhibitors in crude plant extracts. J Biotechnol 2020; 313:11-17. [DOI: 10.1016/j.jbiotec.2020.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/22/2023]
|
45
|
Radwan MO, Takaya D, Koga R, Iwamaru K, Tateishi H, Ali TF, Takaori-Kondo A, Otsuka M, Honma T, Fujita M. Interruption of Vif/Elongin C interaction: In silico and experimental elucidation of the underlying molecular mechanism of benzimidazole-based APOBEC3G stabilizers. Bioorg Med Chem 2020; 28:115409. [DOI: 10.1016/j.bmc.2020.115409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/26/2022]
|
46
|
Bharathi M, Indira S, Vinoth G, Mahalakshmi T, Induja E, Shanmuga Bharathi K. Green synthesis of benzimidazole derivatives under ultrasound irradiation using Cu-Schiff base complexes embedded over MCM-41 as efficient and reusable catalysts. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1730335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Bharathi
- Department of Chemistry, Periyar University, Salem, India
| | - S. Indira
- Department of Chemistry, Periyar University, Salem, India
| | - G. Vinoth
- Department of Chemistry, Periyar University, Salem, India
| | - T. Mahalakshmi
- Department of Chemistry, Periyar University, Salem, India
| | - E. Induja
- Department of Chemistry, Periyar University, Salem, India
| | | |
Collapse
|
47
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Sirim MM, Krishna VS, Sriram D, Unsal Tan O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur J Med Chem 2020; 188:112010. [DOI: 10.1016/j.ejmech.2019.112010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023]
|
49
|
Rafiq M, Khalid M, Tahir MN, Ahmad MU, Khan MU, Naseer MM, Braga AAC, Muhammad S, Shafiq Z. Synthesis, XRD, spectral (IR, UV–Vis, NMR) characterization and quantum chemical exploration of benzoimidazole‐based hydrazones: A synergistic experimental‐computational analysis. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Muhammad Rafiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan‐64200 Pakistan
| | | | - Muhammad Umair Ahmad
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Usman Khan
- Department of Applied ChemistryGovernment College University Faisalabad 38000 Pakistan
| | | | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Avenida Professor LineuPrestes, 748 São Paulo 05508‐000 Brazil
| | - Shabbir Muhammad
- Department of Physics, College of ScienceKing Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| | - Zahid Shafiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
50
|
Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|