1
|
Zhao Y, Gai C, Yu S, Song Y, Gu B, Luo Q, Wang X, Hu Q, Liu W, Liu D, Wang Z. Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice. Antioxid Redox Signal 2025; 42:512-528. [PMID: 39869050 DOI: 10.1089/ars.2024.0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Aims: Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Results: Overexpression of miR-9-5p in HI mice or H2O2-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1. This was mediated, in part, through the ability of this miR-9-5p to bind and regulate the transcriptional activity of zinc finger and BTB domain-containing protein 20 (ZBTB20). Further study suggested that the knockdown of ZBTB20 exerts neuroprotection by inhibiting Nrf2/Keap1 interaction to promote the translocation of Nrf2 from the cytoplasm to the nucleus and the consequent expression of antioxidant proteins. Notably, the protective effects of miR-9-5p overexpression against HI-induced mitochondrial damage were reversed by the Nrf2 inhibitor ML385. Finally, the utilization of liposomes for the delivery of miR-9-5p (miR-9-5p@Lip) presents a promising therapeutic strategy for the treatment of HI injury. Innovation: miR-9-5p is a potential therapeutic agent for ischemic stroke through its modulation of the ZBTB20/Nrf2/Keap1 signaling pathway, influencing mitochondrial function and antioxidant response. Furthermore, the use of liposomal delivery for miR-9-5p offers a promising therapeutic strategy for HI injury. Conclusion: Overexpression of miR-9-5p protects against cerebral HI injury by modulating mitochondrial function through the ZBTB20/Nrf2/Keap1 signaling pathway. Antioxid. Redox Signal. 42, 512-528. [Figure: see text].
Collapse
Affiliation(s)
- Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xixi Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Quan Hu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, People's Republic of China
| | - Weiyang Liu
- Jinan Xicheng Experimental High School, Jinan, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
2
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
3
|
Galvani F, Cammarota M, Vacondio F, Rivara S, Boscia F. Protective Activity of Melatonin Combinations and Melatonin-Based Hybrid Molecules in Neurodegenerative Diseases. J Pineal Res 2024; 76:e70008. [PMID: 39582467 PMCID: PMC11586835 DOI: 10.1111/jpi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The identification of protective agents for the treatment of neurodegenerative diseases is the mainstay therapeutic goal to modify the disease course and arrest the irreversible disability progression. Pharmacological therapies synergistically targeting multiple pathogenic pathways, including oxidative stress, mitochondrial dysfunction, and inflammation, are prime candidates for neuroprotection. Combination or synergistic therapy with melatonin, whose decline correlates with altered sleep/wake cycle and impaired glymphatic "waste clearance" system in neurodegenerative diseases, has a great therapeutic potential to treat inflammatory neurodegenerative states. Despite the protective outcomes observed in preclinical studies, mild or poor outcomes were observed in clinical settings, suggesting that melatonin combinations promoting synergistic actions at appropriate doses might be more suitable to treat multifactorial neurodegenerative disorders. In this review, we first summarize the key melatonin actions and pathways contributing to cell protection and its therapeutic implication in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We remark the major controversies in the field, mostly generated by the lack of a common consensus for the optimal dosing, molecular targets, and toxicity. Then, we review the literature investigating the efficacy of melatonin combinations with approved or investigational neuroprotective agents and of melatonin-containing hybrid molecules, both in vitro and in animal models of AD, PD, and MS, as well as the efficacy of add-on melatonin in clinical settings. We highlight the rationale for such melatonin combinations with a focus on the comparison with single-agent treatment and on the assays in which an additive or a synergistic effect has been achieved. We conclude that a better characterization of the mechanisms underlying such melatonin synergistic actions under neuroinflammation at appropriate doses needs to be tackled to advance successful clinical translation of neuroprotective melatonin combination therapies or melatonin-based hybrid molecules.
Collapse
Affiliation(s)
| | - Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| | | | - Silvia Rivara
- Department of Food and DrugUniversity of ParmaParmaItaly
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| |
Collapse
|
4
|
Drakontaeidi A, Pontiki E. Multi-Target-Directed Cinnamic Acid Hybrids Targeting Alzheimer's Disease. Int J Mol Sci 2024; 25:582. [PMID: 38203753 PMCID: PMC10778916 DOI: 10.3390/ijms25010582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Progressive cognitive decline in Alzheimer's disease (AD) is a growing challenge. Present therapies are based on acetylcholinesterase inhibition providing only temporary relief. Promising alternatives include butyrylcholinesterase (BuChE) inhibitors, multi-target ligands (MTDLs) that address the multi-factorial nature of AD, and compounds that target oxidative stress and inflammation. Cinnamate derivatives, known for their neuroprotective properties, show potential when combined with established AD agents, demonstrating improved efficacy. They are being positioned as potential AD therapeutic leads due to their ability to inhibit Aβ accumulation and provide neuroprotection. This article highlights the remarkable potential of cinnamic acid as a basic structure that is easily adaptable and combinable to different active groups in the struggle against Alzheimer's disease. Compounds with a methoxy substitution at the para-position of cinnamic acid display increased efficacy, whereas electron-withdrawing groups are generally more effective. The effect of the molecular volume is worthy of further investigation.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Singh YP, Kumar H. Tryptamine: A privileged scaffold for the management of Alzheimer's disease. Drug Dev Res 2023; 84:1578-1594. [PMID: 37675624 DOI: 10.1002/ddr.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aβ modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aβ aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.
Collapse
Affiliation(s)
- Yash P Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
- Department of Technical Education Vocational and Industrial Training, Sunder Nagar, Himachal Pradesh, India
| |
Collapse
|
6
|
Elkamhawy A, Oh NK, Gouda NA, Abdellattif MH, Alshammari SO, Abourehab MAS, Alshammari QA, Belal A, Kim M, Al-Karmalawy AA, Lee K. Novel Hybrid Indole-Based Caffeic Acid Amide Derivatives as Potent Free Radical Scavenging Agents: Rational Design, Synthesis, Spectroscopic Characterization, In Silico and In Vitro Investigations. Metabolites 2023; 13:metabo13020141. [PMID: 36837759 PMCID: PMC9966950 DOI: 10.3390/metabo13020141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antioxidant small molecules can prevent or delay the oxidative damage caused by free radicals. Herein, a structure-based hybridization of two natural antioxidants (caffeic acid and melatonin) afforded a novel hybrid series of indole-based amide analogues which was synthesized with potential antioxidant properties. A multiple-step scheme of in vitro radical scavenging assays was carried out to evaluate the antioxidant activity of the synthesized compounds. The results of the DPPH assay demonstrated that the indole-based caffeic acid amides are more active free radical scavenging agents than their benzamide analogues. Compared to Trolox, a water-soluble analogue of vitamin E, compounds 3a, 3f, 3h, 3j, and 3m were found to have excellent DPPH radical scavenging activities with IC50 values of 95.81 ± 1.01, 136.8 ± 1.04, 86.77 ± 1.03, 50.98 ± 1.05, and 67.64 ± 1.02 µM. Three compounds out of five (3f, 3j, and 3m) showed a higher capacity to neutralize the radical cation ABTS•+ more than Trolox with IC50 values of 14.48 ± 0.68, 19.49 ± 0.54, and 14.92 ± 0.30 µM, respectively. Compound 3j presented the highest antioxidant activity with a FRAP value of 4774.37 ± 137.20 μM Trolox eq/mM sample. In a similar way to the FRAP assay, the best antioxidant activity against the peroxyl radicals was demonstrated by compound 3j (10,714.21 ± 817.76 μM Trolox eq/mM sample). Taken together, compound 3j was validated as a lead hybrid molecule that could be optimized to maximize its antioxidant potency for the treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
- College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Na Kyoung Oh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Turaba Branch P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saud O. Alshammari
- Department of Plant Chemistry and Natural Products, Faculty of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Qamar A. Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
- Correspondence: (A.A.A.-K.); (K.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
- Correspondence: (A.A.A.-K.); (K.L.)
| |
Collapse
|
7
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
8
|
Moreira NCDS, Tamarozzi ER, Lima JEBDF, Piassi LDO, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel Dual AChE and ROCK2 Inhibitor Induces Neurogenesis via PTEN/AKT Pathway in Alzheimer's Disease Model. Int J Mol Sci 2022; 23:ijms232314788. [PMID: 36499116 PMCID: PMC9737254 DOI: 10.3390/ijms232314788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by β-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.
Collapse
Affiliation(s)
| | - Elvira Regina Tamarozzi
- Department of Biotechnology, School of Arts, Sciences and Humanities—USP, São Paulo 03828-000, Brazil
| | | | - Larissa de Oliveira Piassi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-900, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-901, Brazil
- Correspondence: ; Tel.: +55-16-3315-3827
| |
Collapse
|
9
|
Sepehri S, Saeedi M, Larijani B, Mahdavi M. Recent developments in the design and synthesis of benzylpyridinium salts: Mimicking donepezil hydrochloride in the treatment of Alzheimer's disease. Front Chem 2022; 10:936240. [PMID: 36226120 PMCID: PMC9549744 DOI: 10.3389/fchem.2022.936240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Alzheimer's disease (AD) is an advanced and irreversible degenerative disease of the brain, recognized as the key reason for dementia among elderly people. The disease is related to the reduced level of acetylcholine (ACh) in the brain that interferes with memory, learning, emotional, and behavior responses. Deficits in cholinergic neurotransmission are responsible for the creation and progression of numerous neurochemical and neurological illnesses such as AD. Aim: Herein, focusing on the fact that benzylpyridinium salts mimic the structure of donepezil hydrochlorideas a FDA-approved drug in the treatment of AD, their synthetic approaches and inhibitory activity against cholinesterases (ChEs) were discussed. Also, molecular docking results and structure-activity relationship (SAR) as the most significant concept in drug design and development were considered to introduce potential lead compounds. Key scientific concepts: AChE plays a chief role in the end of nerve impulse transmission at the cholinergic synapses. In this respect, the inhibition of AChE has been recognized as a key factor in the treatment of AD, Parkinson's disease, senile dementia, myasthenia gravis, and ataxia. A few drugs such as donepezil hydrochloride are prescribed for the improvement of cognitive dysfunction and memory loss caused by AD. Donepezil hydrochloride is a piperidine-containing compound, identified as a well-known member of the second generation of AChE inhibitors. It was established to treat AD when it was assumed that the disease is associated with a central cholinergic loss in the early 1980s. In this review, synthesis and anti-ChE activity of a library of benzylpyridinium salts were reported and discussed based on SAR studies looking for the most potent substituents and moieties, which are responsible for inducing the desired activity even more potent than donepezil. It was found that linking heterocyclic moieties to the benzylpyridinium salts leads to the potent ChE inhibitors. In this respect, this review focused on the recent reports on benzylpyridinium salts and addressed the structural features and SARs to get an in-depth understanding of the potential of this biologically improved scaffold in the drug discovery of AD.
Collapse
Affiliation(s)
- Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
George N, Jawaid Akhtar M, Al Balushi KA, Alam Khan S. Rational drug design strategies for the development of promising multi-target directed indole hybrids as Anti-Alzheimer agents. Bioorg Chem 2022; 127:105941. [PMID: 35714473 DOI: 10.1016/j.bioorg.2022.105941] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder that leads to dementia i.e., progressive memory loss accompanied with worsening of thinking ability of an individual. The cause of AD is not fully understood but it progresses with age where brain cells gradually die over time. According to the World Health Organization (WHO), currently 50 million people worldwide are affected by dementia and 60-70% of the cases belong to AD. Cumulative research over the past few decades have shown that molecules that act at a single target possess limited efficacy since these investigational drugs are not able to act against complex pathologies and thus do not provide permanent cure. Designing of multi-target directed ligands (MTDLs) appears to be more beneficial and a rational approach to treat chronic complex diseases including neurodegenerative diseases. Recently, MTDLs are being extensively researched by the medicinal chemists for the development of drugs for the treatment of various multifactorial diseases. Indole is one of the privileged scaffolds which is considered as an essential mediator between the gut-brain axis because of its neuroprotective, anti-inflammatory, β-amyloid anti-aggregation and antioxidant activities. Herein, we have reviewed the potential of some indole-hybrids acting at multiple targets in the pathogenesis of AD. We have reviewed research articles from the year 2014-2021 from various scientific databases and highlighted the synthetic strategies, mechanisms of neuroprotection, toxicity, structure activity relationships and molecular docking studies of various indole-hybrid derivatives. This literature review of published data on indole derivatives indicated that developing indole hybrids have improved the pharmacokinetic profile with lower toxicity, provided synergistic effect, helped to develop more potent compounds and prevented drug-drug interactions. It is evident that this class of compounds have potential to inhibit multiple enzymes targets involved in the pathogenesis of AD and therefore indole hybrids as MTDLs may play an important role in the development of anti-AD molecules.
Collapse
Affiliation(s)
- Namy George
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Md Jawaid Akhtar
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Khalid A Al Balushi
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman.
| |
Collapse
|
11
|
Lu X, Liu Y, Qin N, Du C, Hu Y, Chen Y, Sun H. Discovery of tryptophan‐tetrahydroisoquinoline derivatives as multifunctional agents for treatment of Alzheimer's disease. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Lu
- School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Nan Qin
- Department of Natural Medicinal Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry China Pharmaceutical University Nanjing 211198 China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
| |
Collapse
|
12
|
Roy J, Wong KY, Aquili L, Uddin MS, Heng BC, Tipoe GL, Wong KH, Fung ML, Lim LW. Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 2022; 65:100986. [PMID: 35167824 DOI: 10.1016/j.yfrne.2022.100986] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Melatonin and novel melatonin-based therapies such as melatonin-containing hybrid molecules, melatonin analogues, and melatonin derivatives have been investigated as potential therapeutics against Alzheimer's disease (AD) pathogenesis. In this review, we examine the developmental trends of melatonin therapies for AD from 1997 to 2021. We then highlight the neuroprotective mechanisms of melatonin therapy derived from preclinical studies. These mechanisms include the alleviation of amyloid-related burden, neurofibrillary tangle accumulation, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, and impaired neuroplasticity and neurotransmission. We further illustrate the beneficial effects of melatonin on behavior in animal models of AD. Next, we discuss the clinical effects of melatonin on sleep, cognition, behavior, psychiatric symptoms, electroencephalography findings, and molecular biomarkers in patients with mild cognitive impairment and AD. We then explore the effectiveness of novel melatonin-based therapies. Lastly, we discuss the limitations of current melatonin therapies for AD and suggest two emerging research themes for future study.
Collapse
Affiliation(s)
- Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Boon Chin Heng
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Peking University School of Stomatology, Beijing, China
| | - George Lim Tipoe
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Elkamhawy A, Woo J, Gouda NA, Kim J, Nada H, Roh EJ, Park KD, Cho J, Lee K. Melatonin Analogues Potently Inhibit MAO-B and Protect PC12 Cells against Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101604. [PMID: 34679739 PMCID: PMC8533333 DOI: 10.3390/antiox10101604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) metabolizes dopamine and plays an important role in oxidative stress by altering the redox state of neuronal and glial cells. MAO-B inhibitors are a promising therapeutical approach for Parkinson’s disease (PD). Herein, 24 melatonin analogues (3a–x) were synthesized as novel MAO-B inhibitors with the potential to counteract oxidative stress in neuronal PC12 cells. Structure elucidation, characterization, and purity of the synthesized compounds were performed using 1H-NMR, 13C-NMR, HRMS, and HPLC. At 10 µM, 12 compounds showed >50% MAO-B inhibition. Among them, compounds 3n, 3r, and 3u–w showed >70% inhibition of MAO-B and IC50 values of 1.41, 0.91, 1.20, 0.66, and 2.41 µM, respectively. When compared with the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 3n, 3r, 3u, and 3v demonstrated better selectivity indices (SI > 71, 109, 83, and 151, respectively). Furthermore, compounds 3n and 3r exhibited safe neurotoxicity profiles in PC12 cells and reversed 6-OHDA- and rotenone-induced neuronal oxidative stress. Both compounds significantly up-regulated the expression of the anti-oxidant enzyme, heme oxygenase (HO)-1. Treatment with Zn(II)-protoporphyrin IX (ZnPP), a selective HO-1 inhibitor, abolished the neuroprotective effects of the tested compounds, suggesting a critical role of HO-1 up-regulation. Both compounds increased the nuclear translocation of Nrf2, which is a key regulator of the antioxidative response. Taken together, these data show that compounds 3n and 3r could be further exploited for their multi-targeted role in oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| |
Collapse
|
14
|
Roy J, Tsui KC, Ng J, Fung ML, Lim LW. Regulation of Melatonin and Neurotransmission in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136841. [PMID: 34202125 PMCID: PMC8268832 DOI: 10.3390/ijms22136841] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder associated with age, and is characterized by pathological markers such as amyloid-beta plaques and neurofibrillary tangles. Symptoms of AD include cognitive impairments, anxiety and depression. It has also been shown that individuals with AD have impaired neurotransmission, which may result from the accumulation of amyloid plaques and neurofibrillary tangles. Preclinical studies showed that melatonin, a monoaminergic neurotransmitter released from the pineal gland, is able to ameliorate AD pathologies and restore cognitive impairments. Theoretically, inhibition of the pathological progression of AD by melatonin treatment should also restore the impaired neurotransmission. This review aims to explore the impact of AD on neurotransmission, and whether and how melatonin can enhance neurotransmission via improving AD pathology.
Collapse
|
15
|
Ghafary S, Ghobadian R, Mahdavi M, Nadri H, Moradi A, Akbarzadeh T, Najafi Z, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase. Daru 2020; 28:463-477. [PMID: 32372339 PMCID: PMC7704987 DOI: 10.1007/s40199-020-00346-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Acetylcholine deficiencies in hippocampus and cortex, aggregation of β-amyloid, and β-secretase over activity have been introduced as main reasons in pathogenesis of Alzheimer's disease. METHODS Colorimetric Ellman's method was used for determination of IC50 value in AChE and BChE inhibitory activity. The kinetic studies, neuroprotective and β-secretase inhibitory activities, evaluation of inhibitory potency on β-amyloid (Aβ) aggregations induced by AChE, and docking study were performed for prediction of the mechanism of action. RESULT AND DISCUSSION A new series of cinnamic acids-tryptamine hybrid was designed, synthesized, and evaluated as dual cholinesterase inhibitors. These compounds demonstrated in-vitro inhibitory activities against acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE). Among of these synthesized compounds, (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(3,4-dimethoxyphenyl)acrylamide (5q) demonstrated the most potent AChE inhibitory activity (IC50 = 11.51 μM) and (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(2-chlorophenyl)acrylamide (5b) were the best anti-BChE (IC50 = 1.95 μM) compounds. In addition, the molecular modeling and kinetic studies depicted 5q and 5b were mixed type inhibitor and bound with both the peripheral anionic site (PAS) and catalytic sites (CAS) of AChE and BChE. Moreover, compound 5q showed mild neuroprotective in PC12 cell line and weak β-secretase inhibitory activities. This compound also inhibited aggregation of β-amyloid (Aβ) in self-induced peptide aggregation test at concentration of 10 μM. CONCLUSION It is worth noting that both the kinetic study and the molecular modeling of 5q and 5b depicted that these compounds simultaneously interacted with both the catalytic active site and the peripheral anionic site of AChE and BChE. These findings match with those resulted data from the enzyme inhibition assay. Graphical abstract A new series of cinnamic-derived acids-tryptamine hybrid derivatives were designed, synthesized and evaluated as butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors and neuroprotective agents. Compound 5b and 5q, as the more potent compounds, interacted with both the peripheral site and the choline binding site having mixed type inhibition. Results suggested that derivatives have a therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Ghobadian
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Moreira NCDS, Lima JEBDF, Chierrito TPC, Carvalho I, Sakamoto-Hojo ET. Novel Hybrid Acetylcholinesterase Inhibitors Induce Differentiation and Neuritogenesis in Neuronal Cells in vitro Through Activation of the AKT Pathway. J Alzheimers Dis 2020; 78:353-370. [PMID: 32986667 DOI: 10.3233/jad-200425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive loss of episodic memory associated with amyloid-β peptide aggregation and the abnormal phosphorylation of the tau protein, leading to the loss of cholinergic function. Acetylcholinesterase (AChE) inhibitors are the main class of drugs used in AD therapy. OBJECTIVE The aim of the current study was to evaluate the potential of two tacrine-donepezil hybrid molecules (TA8Amino and TAHB3), which are AChE inhibitors, to induce neurodifferentiation and neuritogenesis in SH-SY5Y cells. METHODS The experiments were carried out to characterize neurodifferentiation, cellular changes related to responses to oxidative stress and pathways of cell survival in response to drug treatments. RESULTS The results indicated that the compounds did not present cytotoxic effects in SH-SY5Y or HepG2 cells. TA8Amino and TAHB3 induced neurodifferentiation and neuritogenesis in SH-SY5Y cells. These cells showed increased levels of intracellular and mitochondrial reactive oxygen species; the induction of oxidative stress was also demonstrated by an increase in SOD1 expression in TA8Amino and TAHB3-treated cells. Cells treated with the compounds showed an increase in PTEN(Ser380/Thr382/383) and AKT(Ser473) expression, suggesting the involvement of the AKT pathway. CONCLUSION Our results demonstrated that TA8Amino and TAHB3 present advantages as potential drugs for AD therapy and that they are capable of inducing neurodifferentiation and neuritogenesis.
Collapse
Affiliation(s)
| | | | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Ghafary S, Nadri H, Mahdavi M, Moradi A, Akbarzadeh T, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Anticholinesterase Activity of Cinnamic Acids Derivatives: In Vitro, In Vivo Biological Evaluation, and Docking Study. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666191224094049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Acetylcholine deficiency in the hippocampus and cortex, aggregation of
amyloid-beta, and beta-secretase overactivity have been introduced as the main reasons in the
formation of Alzheimer’s disease.
Objective:
A new series of cinnamic derived acids linked to 1-benzyl-1,2,3-triazole moiety were
designed, synthesized, and evaluated for their acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) inhibitory activities.
Methods:
Colorimetric Ellman’s method was used for the determination of IC50% of AchE and
BuChE inhibitory activity. The kinetic studies, neuroprotective activity, BACE1 inhibitory activity,
evaluation of inhibitory potency on Aβ1-42 self-aggregation induced by AchE, and docking study
were performed for studying the mechanism of action.
Results:
Some of the synthesized compounds, compound 7b-4 ((E)-3-(3,4-dimethoxyphenyl)-N-((1-
(4-fluorobenzyl)-1H-1,2,3-triazole-4-yl) methyl) acrylamide) depicted the most potent
acetylcholinesterase inhibitory activities ( IC50 = 5.27 μM ) and compound 7a-1 (N- ( (1- benzyl-
1H- 1, 2, 3- triazole - 4-yl) methyl) cinnamamide) demonstrated the most potent
butyrylcholinesterase inhibitory activities (IC50 = 1.75 μM). Compound 7b-4 showed
neuroprotective and β-secretase (BACE1) inhibitory activitiy. In vivo studies of compound 7b-4 in
Scopolamine-induced dysfunction confirmed memory improvement.
Conculusion:
It should be noted that molecular modeling (compounds 7b-4 and 7a-1) and kinetic
studies (compounds 7a-1 and 7b-4) showed that these synthesis compounds interacted
simultaneously with both the catalytic site (CS) and peripheral anionic site (PAS) of AChE and
BuChE.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Suwanttananuruk P, Jiaranaikulwanitch J, Waiwut P, Vajragupta O. Lead discovery of a guanidinyl tryptophan derivative on amyloid cascade inhibition. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractAmyloid cascade, one of pathogenic pathways of Alzheimer’s disease (AD), was focused as one of drug discovery targets. In this study, β-secretase (BACE1) inhibitors were designed aiming at the development of multifunctional compounds targeting amyloid pathogenic cascade. Tryptophan was used as a core structure due to its properties of the central nervous system (CNS) penetration and BACE1 inhibition activity. Three amino acid residues and guanidine were selected as linkers to connect the tryptophan core structure and the extended aromatic moieties. The distance between the aromatic systems of the core structure and the extended moieties was kept at the optimal length for amyloid-β (Aβ) peptide binding to inhibit its fibrillation and aggregation. Sixteen designed compounds were evaluated in silico. Eight hit compounds of TSR and TGN series containing serine and guanidine linkers, respectively, were identified and synthesized based on docking results. TSR2 and TGN2 were found to exert strong actions as BACE1 (IC50 24.18 µM and 22.35 µM) and amyloid aggregation inhibitors (IC50 37.06 µM and 36.12 µM). Only TGN2 demonstrated a neuroprotective effect in SH-SY5Y cells by significantly reducing Aβ-induced cell death at a concentration of 2.62 µM. These results support the validity of multifunctional approaches to inhibition of the β-amyloid cascade.
Collapse
Affiliation(s)
- Piyapan Suwanttananuruk
- Center of Excellence for Innovation in Drug Design and Discovery and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Jutamas Jiaranaikulwanitch
- Center of Excellence for Innovation in Drug Design and Discovery and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Opa Vajragupta
- Center of Excellence for Innovation in Drug Design and Discovery and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Wang SY, Shi XC, Laborda P. Indole-based melatonin analogues: Synthetic approaches and biological activity. Eur J Med Chem 2020; 185:111847. [DOI: 10.1016/j.ejmech.2019.111847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
21
|
Kaur A, Narang SS, Kaur A, Mann S, Priyadarshi N, Goyal B, Singhal NK, Goyal D. Multifunctional Mono-Triazole Derivatives Inhibit Aβ42 Aggregation and Cu2+-Mediated Aβ42 Aggregation and Protect Against Aβ42-Induced Cytotoxicity. Chem Res Toxicol 2019; 32:1824-1839. [DOI: 10.1021/acs.chemrestox.9b00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| |
Collapse
|
22
|
van Greunen DG, Johan van der Westhuizen C, Cordier W, Nell M, Stander A, Steenkamp V, Panayides JL, Riley DL. Novel N-benzylpiperidine carboxamide derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 179:680-693. [PMID: 31280020 DOI: 10.1016/j.ejmech.2019.06.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
A series of fifteen acetylcholinesterase inhibitors were designed and synthesised based upon the previously identified lead compound 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-inden-2-yl 1-benzylpiperidine-4-carboxylate (5) which showed good inhibitory activity (IC50 0.03 ± 0.07 μM) against acetylcholinesterase. A series of compounds were prepared wherein the ester linker in the original lead compound was exchanged for a more metabolically stable amide linker and the indanone moiety was exchanged for a range of aryl and aromatic heterocycles. The two most active analogues 1-benzyl-N-(5,6-dimethoxy-8H-indeno[1,2-d]thiazol-2-yl)piperidine-4-carboxamide (28) and 1-benzyl-N-(1-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) piperidine-4-carboxamide (20) afforded in vitro IC50 values of 0.41 ± 1.25 and 5.94 ± 1.08 μM, respectively. In silico screening predicts that 20 will be a blood brain-barrier permeant, and molecular dynamic simulations are indicative of a close correlation between the binding of 20 and the Food and Drug Administration-approved cholinesterase inhibitor donepezil (1).
Collapse
Affiliation(s)
- Divan G van Greunen
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, South Africa
| | - C Johan van der Westhuizen
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, South Africa
| | - Werner Cordier
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Bophelo Road, Pretoria, South Africa
| | - Margo Nell
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Bophelo Road, Pretoria, South Africa
| | - Andre Stander
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Lynnwood Road, Pretoria, South Africa
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Bophelo Road, Pretoria, South Africa
| | - Jenny-Lee Panayides
- Pioneering Health Sciences, CSIR Biosciences, Meiring Naudé Road, Pretoria, South Africa.
| | - Darren L Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, South Africa.
| |
Collapse
|
23
|
Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s disease. Bioorg Chem 2019; 87:572-584. [DOI: 10.1016/j.bioorg.2019.03.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
|
24
|
Beriwal N, Namgyal T, Sangay P, Al Quraan AM. Role of immune-pineal axis in neurodegenerative diseases, unraveling novel hybrid dark hormone therapies. Heliyon 2019; 5:e01190. [PMID: 30775579 PMCID: PMC6360340 DOI: 10.1016/j.heliyon.2019.e01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
The anti-oxidant effects of melatonin and the immune-pineal axis are well established. However, how they play a role in the pathogenesis of neurodegenerative diseases is not well elucidated. A better understanding of this neuro-immuno-endocrinological link can help in the development of novel therapies with higher efficacy to alleviate symptomatology, slow disease progression and improve the quality of life. Recent studies have shown that the immune-pineal axis acts as an immunological buffer, neurohormonal switch and it also intricately links the pathogenesis of neurodegenerative diseases (like Multiple sclerosis, Alzheimer's disease, Parkinson's disease) and inflammation at a molecular level. Furthermore, alteration in circadian melatonin production is seen in neurodegenerative diseases. This review will summarise the mechanics by which the immune-pineal axis and neuro-immuno-endocrinological disturbances affect the pathogenesis and progression of neurodegenerative diseases. It will also explore, how this understanding will help in the development of novel hybrid melatonin hormone therapies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nitya Beriwal
- Department of Research, California Institute of Behavioral Neurosciences and Psychology, 4751, Mangels Boulevard, Fairfield, 94534, CA, USA
| | | | | | | |
Collapse
|
25
|
Ghafary S, Najafi Z, Mohammadi-Khanaposhtani M, Nadri H, Edraki N, Ayashi N, Larijani B, Amini M, Mahdavi M. Novel cinnamic acid-tryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study. Arch Pharm (Weinheim) 2018; 351:e1800115. [PMID: 30284339 DOI: 10.1002/ardp.201800115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 11/11/2022]
Abstract
A novel series of cinnamic acid-tryptamine hybrids was designed, synthesized, and evaluated as cholinesterase inhibitors. Anticholinesterase assays showed that all of the synthesized compounds displayed a clearly selective inhibition of butyrylcholinesterase (BChE), but only a moderate inhibitory effect toward acetylcholinesterase (AChE) was detected. Among these cinnamic acid-tryptamine hybrids, compound 7d was found to be the most potent inhibitor of BChE with an IC50 value of 0.55 ± 0.04 μM. This compound showed a 14-fold higher inhibitory potency than the standard drug donepezil (IC50 = 7.79 ± 0.81 μM) and inhibited BChE through a mixed-type inhibition mode. Moreover, a docking study revealed that compound 7d binds to both the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of BChE. Also, compound 7d was evaluated against β-secretase, which exhibited low activity (inhibition percentage: 38%).
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Department of Medicinal Chemistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Ayashi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
27
|
Zhao Y, Ye F, Xu J, Liao Q, Chen L, Zhang W, Sun H, Liu W, Feng F, Qu W. Design, synthesis and evaluation of novel bivalent β-carboline derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2018; 26:3812-3824. [PMID: 29960728 DOI: 10.1016/j.bmc.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
Abstract
To develop potent multi-target ligands against Alzheimer's disease (AD), a series of novel bivalent β-carboline derivatives were designed, synthesized, and evaluated. In vitro studies revealed these compounds exhibited good multifunctional activities. In particular, compounds 8f and 8g showed the good selectivity potency on BuChE inhibition (IC50 = 1.7 and 2.7 μM, respectively), Aβ1-42 disaggregation and neuroprotection. Compared with the positive control resveratrol, 8f and 8g showed better activity in inhibiting Aβ1-42 aggregation, with inhibitory rate 82.7% and 85.7% at 25 μM, respectively. Moreover, compounds 8e, 8f and 8g displayed excellent neuroprotective activity by ameliorating the impairment induced by H2O2, okadaic acid (OA) and Aβ1-42 without cytotoxicity in SH-SY5Y cells. Thus, the present study evidently showed that compounds 8f and 8g are potent multi-functional agents against AD and might serve as promising lead candidates for further development.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghong Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Weijia Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| | - Wei Qu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Mezeiova E, Spilovska K, Nepovimova E, Gorecki L, Soukup O, Dolezal R, Malinak D, Janockova J, Jun D, Kuca K, Korabecny J. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem 2018. [PMID: 29529892 PMCID: PMC6009928 DOI: 10.1080/14756366.2018.1443326] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease is debilitating neurodegenerative disorder in the elderly. Current therapy relies on administration of acetylcholinesterase inhibitors (AChEIs) -donepezil, rivastigmine, galantamine, and N-methyl-d-aspartate receptor antagonist memantine. However, their therapeutic effect is only short-term and stabilizes cognitive functions for up to 2 years. Given this drawback together with other pathological hallmarks of the disease taken into consideration, novel approaches have recently emerged to better cope with AD onset or its progression. One such strategy implies broadening the biological profile of AChEIs into so-called multi-target directed ligands (MTDLs). In this review article, we made comprehensive literature survey emphasising on donepezil template which was structurally converted into plethora of MTLDs preserving anti-cholinesterase effect and, at the same time, escalating the anti-oxidant potential, which was reported as a crucial role in the pathogenesis of the Alzheimer’s disease.
Collapse
Affiliation(s)
- Eva Mezeiova
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,b National Institute of Mental Health , Klecany , Czech Republic
| | - Katarina Spilovska
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,b National Institute of Mental Health , Klecany , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Lukas Gorecki
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic
| | - Ondrej Soukup
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,b National Institute of Mental Health , Klecany , Czech Republic
| | - Rafael Dolezal
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - David Malinak
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jana Janockova
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Daniel Jun
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic
| | - Kamil Kuca
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic
| |
Collapse
|
29
|
Berté TE, Dalmagro AP, Zimath PL, Gonçalves AE, Meyre-Silva C, Bürger C, Weber CJ, Dos Santos DA, Cechinel-Filho V, de Souza MM. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer's disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 2018; 132:5-11. [PMID: 29355563 DOI: 10.1016/j.steroids.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive impairment and cholinergic neuronal death, characteristic of the effect of time on biochemical neuronal function. The use of medicinal plants as an alternative form of prevention, or even as a possible treatment of AD, is therefore interesting areas of research, since the standard drugs have many side effects. Taraxerol (TRX) is a triterpene that has been isolated from several plant species, and its various pharmacological properties have already been identified, such the acetylcholinesterase (AChE) inhibition activity in vitro. There is a lack of information in literature that confirms the effect of TRX in an animal AD-like model. Seeking to fill this gap in the literature, in the present work we assessed the effect of TRX on AChE activity in the animals' encephalon and hippocampus. We also investigated the effect of TRX (1.77 µM/side, 0.5 μL) isolated from leaves of Eugenia umbelliflora Berg. on aversive memory impairments induced by scopolamine (2 µg/side, 0.5 µL) infused into rat hippocampus, and the effect of TRX (0.89 and 1.77 µM/side, 0.5 μL) on aversive memory impairments induced by streptozotocin (STZ) (2.5 mg/mL, 2.0 µL) infused i.c.v. into mice, using the step-down inhibitory avoidance task. We found that TRX significantly inhibited AChE activity in the animal's hippocampus. Furthermore, TRX significantly improved scopolamine and STZ-induced memory impairment. Taking together, these results confirms its AChE activity inhibition in animals and indicate that TRX has anti-amnesic activity that may hold significant therapeutic value in alleviating certain memory impairments observed in AD.
Collapse
Affiliation(s)
- Talita Elisa Berté
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil.
| | - Priscila Laiz Zimath
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Elisa Gonçalves
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Christiane Meyre-Silva
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Cristiani Bürger
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Carla J Weber
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Diogo Adolfo Dos Santos
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Valdir Cechinel-Filho
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Márcia M de Souza
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| |
Collapse
|
30
|
Alisi IO, Uzairu A, Abechi SE, Idris SO. Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. J Adv Res 2018; 12:47-54. [PMID: 30050693 PMCID: PMC6057485 DOI: 10.1016/j.jare.2018.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 11/05/2022] Open
Abstract
The prevalence of degenerative diseases in recent time has triggered extensive research on their control. This condition could be prevented if the body has an efficient antioxidant mechanism to scavenge the free radicals which are their main causes. Curcumin and its derivatives are widely employed as antioxidants. The free radical scavenging activities of curcumin and its derivatives have been explored in this research by the application of quantitative structure activity relationship (QSAR). The entire data set was optimized at the density functional theory (DFT) level using the Becke's three-parameter Lee-Yang-Parr hybrid functional (B3LYP) in combination with the 6-311G∗ basis set. The training set was subjected to QSAR studies by genetic function algorithm (GFA). Five predictive QSAR models were developed and statistically subjected to both internal and external validations. Also the applicability domain of the developed model was accessed by the leverage approach. Furthermore, the variation inflation factor, (VIF), mean effect (MF) and the degree of contribution (DC) of each descriptor in the resulting model were calculated. The developed models met all the standard requirements for acceptability upon validation with highly impressive results (R=0.965,R2=0.931,Q2(RCV2)=0.887,Rpred2=0.844,cRp2=0.842s=0.226,rmsep=0.362). Based on the results of this research, the most crucial descriptor that influence the free radical scavenge of the curcumins is the nsssN (count of atom-type E-state: >N-) descriptor with DC and MF values of 12.980 and 0.965 respectively.
Collapse
Affiliation(s)
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | | | - Sulaiman Ola Idris
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| |
Collapse
|
31
|
Sun G, Wang J, Guo X, Lei M, Zhang Y, Wang X, Shen X, Hu L. Design, synthesis and biological evaluation of LX2343 derivatives as neuroprotective agents for the treatment of Alzheimer's disease. Eur J Med Chem 2018; 145:622-633. [PMID: 29339255 DOI: 10.1016/j.ejmech.2017.12.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/12/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
Abstract
A series of LX2343 derivatives were designed, synthesized and evaluated as neuroprotective agents for Alzheimer's disease (AD) in vitro. Most of the compounds displayed potent neuroprotective activities. Especially for compound A6, exhibited a remarkable EC50 value of 0.22 μM. Further investigation demonstrated that compound A6 can significantly reduce Aβ production and increase Aβ clearance, and alleviate Tau hyperphosphorylation. Most importantly, compound A6 could ameliorate learning and memory impairments in APP/PS1 transgenic mice. The present study evidently showed that compound A6 is a potent neuroprotective agent and might serve as a promising lead candidate for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Guanglong Sun
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaodan Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Lei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xu Shen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
32
|
Pandolfi F, De Vita D, Bortolami M, Coluccia A, Di Santo R, Costi R, Andrisano V, Alabiso F, Bergamini C, Fato R, Bartolini M, Scipione L. New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation. Eur J Med Chem 2017; 141:197-210. [PMID: 29031067 DOI: 10.1016/j.ejmech.2017.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A new series of pyridine derivatives with carbamic or amidic function has been designed and synthesized to act as cholinesterase inhibitors. The synthesized compounds were tested toward EeAChE and hAChE and toward eqBChE and hBChE. The carbamate 8 was the most potent hAChE inhibitor (IC50 = 0.153 ± 0.016 μM) while the carbamate 11 was the most potent inhibitor of hBChE (IC50 = 0.828 ± 0.067 μM). A molecular docking study indicated that the carbamate 8 was able to bind AChE by interacting with both CAS and PAS, in agreement with the mixed inhibition mechanism. Furthermore, the carbamates 8, 9 and 11 were able to inhibit Aβ42 self-aggregation and possessed quite low toxicity against human astrocytoma T67 and HeLa cell lines, being the carbamate 8 the less toxic compound on both cell lines.
Collapse
Affiliation(s)
- Fabiana Pandolfi
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Daniela De Vita
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Martina Bortolami
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Antonio Coluccia
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Roberto Di Santo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Roberta Costi
- Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Francesco Alabiso
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy.
| | - Luigi Scipione
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy.
| |
Collapse
|
33
|
Xia CL, Wang N, Guo QL, Liu ZQ, Wu JQ, Huang SL, Ou TM, Tan JH, Wang HG, Li D, Huang ZS. Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment. Eur J Med Chem 2017; 130:139-153. [PMID: 28242549 DOI: 10.1016/j.ejmech.2017.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
A series of 2-arylethenyl-N-methylquinolinium derivatives were designed and synthesized based on our previous research of 2-arylethenylquinoline analogues as multifunctional agents for the treatment of Alzheimer's disease (AD) (Eur. J. Med. Chem. 2015, 89, 349-361). The results of in vitro biological activity evaluation, including β-amyloid (Aβ) aggregation inhibition, cholinesterase inhibition, and antioxidant activity, showed that introduction of N-methyl in quinoline ring significantly improved the anti-AD potential of compounds. The optimal compound, compound a12, dramatically attenuated the cell death of glutamate-induced HT22 cells by preventing the generation of ROS and increasing the level of GSH. Most importantly, intragastric administration of a12•HAc was well tolerated at doses up to 2000 mg/kg and could traverse blood-brain barrier.
Collapse
Affiliation(s)
- Chun-Li Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ning Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhen-Quan Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Qiang Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
34
|
Ghanei-Nasab S, Nadri H, Moradi A, Marjani A, Shabani S, Firoozpour L, Moghimi S, Khoobi M, Hadizadeh F, Foroumadi A. Synthesis and Anti-Acetylcholinesterase Activity of N-[(indolyl)ethyl)-coumarin-yloxy)]Alkanamides. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14859570937677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel coumarin–tryptamine systems attached through a linker were synthesised and evaluated in vitro against acetylcholinesterase by the classical Ellman's test.
Collapse
Affiliation(s)
- Sarah Ghanei-Nasab
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Shabnam Shabani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy and Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
35
|
Landagaray E, Ettaoussi M, Rami M, Boutin JA, Caignard DH, Delagrange P, Melnyk P, Berthelot P, Yous S. New quinolinic derivatives as melatonergic ligands: Synthesis and pharmacological evaluation. Eur J Med Chem 2017; 127:621-631. [DOI: 10.1016/j.ejmech.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
|
36
|
Ghanei-Nasab S, Khoobi M, Hadizadeh F, Marjani A, Moradi A, Nadri H, Emami S, Foroumadi A, Shafiee A. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur J Med Chem 2016; 121:40-46. [DOI: 10.1016/j.ejmech.2016.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
|
37
|
Khalesi M, Jahanbani R, Riveros-Galan D, Sheikh-Hassani V, Sheikh-Zeinoddin M, Sahihi M, Winterburn J, Derdelinckx G, Moosavi-Movahedi AA. Antioxidant activity and ACE-inhibitory of Class II hydrophobin from wild strain Trichoderma reesei. Int J Biol Macromol 2016; 91:174-9. [DOI: 10.1016/j.ijbiomac.2016.05.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
38
|
Sun D, Han Y, Wang W, Wang Z, Ma X, Hou Y, Bai G. Screening and identification of Caulis Sinomenii bioactive ingredients with dual-target NF-κB inhibition and β 2- AR agonizing activities. Biomed Chromatogr 2016; 30:1843-1853. [PMID: 27187693 DOI: 10.1002/bmc.3761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/07/2022]
Abstract
Caulis Sinomenii (CS) is a valuable traditional medicine in China. Its extract can act as an anti-inflammatory agent and a vascular smooth muscle relaxant. However, the underlying mechanisms remain unknown. In this study, we developed a simple dual-target method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with a dual-target bioactive screening assay for anti-inflammatory and antispasmodic activities to characterize the chemical structure of various bioactive compounds of CS rapidly. Seven potential NF-κB inhibitors were identified, including laudanosoline-1-O-xylopyranose, 6-O-methyl-laudanosoline-1-O-glucopyranoside, menisperine, sinomenine, laurifoline, magnoflorine and norsinoacutin. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which laudanosoline-1-O-d-xylopyranose and menisperine were revealed as novel NF-κB inhibitors. Among the seven identified alkaloids, three potential β2 -adrenergic receptor agonists, including sinomenine, magnoflorine and laurifoline, were characterized using a luciferase reporter system to measure for the activity of β2 -adrenergic receptor agonists. Finally, sinomenine, magnoflorine and laurifoline were identified not only as potential NF-κB inhibitors but also as potential β2 -adrenegic receptor agonists, which is the first time this has been reported. Molecular dynamic simulation and docking results suggest that the three dual-bioactive constituents could not only inhibit Pseudomonas aeruginosa PAK strain-induced inflammatory responses via a negative regulation of the Braf protein that participates in MAPK signaling pathway but also activate the β2 -adrenegic receptor. These results suggest that CS extract has dual signaling activities with potential clinical application as a novel drug for asthma.
Collapse
Affiliation(s)
- Dan Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yanqi Han
- Department of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research Co. Ltd, Tianjin, People's Republic of China
| | - Weiya Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Zengyong Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
39
|
Estrada M, Herrera-Arozamena C, Pérez C, Viña D, Romero A, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New cinnamic - N-benzylpiperidine and cinnamic - N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur J Med Chem 2016; 121:376-386. [PMID: 27267007 DOI: 10.1016/j.ejmech.2016.05.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Here we describe new families of multi-target directed ligands obtained by linking antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their antioxidant and neuroprotective properties against mitochondrial oxidative stress, are active at relevant molecular targets in Alzheimer's disease, such as cholinesterases (hAChE and hBuChE) and monoamine oxidases (hMAO-A and hMAO-B). Hybrids derived from umbellic - NBP (8), caffeic - NBP (9), and ferulic - DBMA (12) displayed balanced biological profiles, with IC50s in the low-micromolar and submicromolar range for hChEs and hMAOs, and an antioxidant potency comparable to vitamin E. Moreover, the caffeic - NBP hybrid 9 is able to improve the differentiation of adult SGZ-derived neural stem cells into a neuronal phenotype in vitro.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
40
|
Novel indole-based melatonin analogues: Evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg Med Chem 2016; 24:1658-64. [DOI: 10.1016/j.bmc.2016.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 01/01/2023]
|
41
|
Couhert A, Delagrange P, Caignard DH, Chartier A, Suzenet F, Guillaumet G. Synthesis of 2-arylfuro[3,2-b]pyridines: Effect of the C2-aryl group on melatoninergic activity. Eur J Med Chem 2016; 109:268-75. [DOI: 10.1016/j.ejmech.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
|