1
|
Singh P, Arifuddin M, Supuran CT, Nerella SG. Carbonic anhydrase inhibitors: Structural insights and therapeutic potential. Bioorg Chem 2025; 156:108224. [PMID: 39893992 DOI: 10.1016/j.bioorg.2025.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrase inhibitors (CAIs) have garnered significant attention in recent years due to their critical role in managing various diseases, including glaucoma, epilepsy, cancer, and other conditions linked to carbonic anhydrase (CA) isoforms. This review highlights the recent advancements in the design and development of CAIs, focusing on diverse chemical classes such as indoles, sulfocoumarins, 1,2,3-triazoles, urea derivatives, chalcones, quinolines, and pyridines. Each class presents unique structural features and mechanisms of action, contributing to the selective inhibition of specific CA isoforms. The ongoing exploration of these compounds has not only enhanced our understanding of CA inhibition but also opened new avenues for therapeutic applications, paving the way for the development of novel drugs that tackle pressing healthcare challenges.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad 500 032, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD 20892, USA(2).
| |
Collapse
|
2
|
El-Damasy AK, Kim HJ, Faisal M, Angeli A, Elsawi AE, Eldehna WM, Supuran CT, Keum G. Novel N-(3-(1-(4-sulfamoylphenyl)triazol-4-yl)phenyl)benzamide Derivatives as Potent Carbonic Anhydrase Inhibitors with Broad-Spectrum Anticancer Activity: Leveraging Tail and Dual-Tail Approaches. J Med Chem 2025; 68:3764-3781. [PMID: 39818802 DOI: 10.1021/acs.jmedchem.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds 7a-s, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds 7a-e, followed by diversification with small hydrophobic groups (7f-m) and hydrophilic heterocyclic secondary amines (7n-s). Compounds were evaluated against CA II, IX, and XII to assess activity and selectivity. Chlorinated derivative 7l exhibited the highest efficacy against CA IX (KI = 0.317 μM) and ditrifluoromethylated 7j against CA XII (KI = 0.081 μM). Subsequent testing on 60 cancer cell lines at 10 μM revealed promising anticancer activity, especially for dimethylated derivative 7h (CA IX, KI = 1.324 μM; CA XII, KI = 0.435 μM), with GI50 values ranging from 0.361 to 9.21 μM. Molecular docking analyses elucidated binding mechanisms, highlighting potential inhibitory actions of compound 7h on CAs IX and XII.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hyun Ji Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Muhammad Faisal
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box, Kafrelsheikh 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box, Kafrelsheikh 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Gyochang Keum
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
4
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
5
|
Puerta A, González-Bakker A, Brandão P, Pineiro M, Burke AJ, Giovannetti E, Fernandes MX, Padrón JM. Early pharmacological profiling of isatin derivatives as potent and selective cytotoxic agents. Biochem Pharmacol 2024; 222:116059. [PMID: 38364984 DOI: 10.1016/j.bcp.2024.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Isatin derivatives have attracted a lot of interest for their potential in the development of new anticancer drugs. A library of 38 isatin derivatives, created through an Ugi four-component reaction, underwent an initial screening in a panel of six human solid tumor cell lines. The four most active derivatives were then selected for further testing. These compounds showed selectivity towards the non-small cell lung cancer (NSCLC) cell line SW1573, whilst NSCLC A549 cells were barely affected. The combination of phenotypic assays, including wound healing, clonogenic and continuous live cell imaging provided a deeper understanding of the compounds' mode of action. In particular, the latter demonstrated that isatin derivatives were able to induce necroptosis in SW1573 cells. The kinetics of cell death showed that necroptosis appeared after 2.5 h of exposure, which could be delayed to 7 h when co-treated with necrostatin-1. Interaction between the isatin derivatives and the KRAS G12C protein variant was discarded after in silico studies. Further studies are warranted to identify the cellular target responsible for the observed selectivity among cell lines.
Collapse
Affiliation(s)
- Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, and Associate Laboratory i4HB-Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Marta Pineiro
- Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Anthony J Burke
- Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal; Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, The Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain.
| |
Collapse
|
6
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Yapar G, Lolak N, Bonardi A, Akocak S, Supuran CT. Exploring the potency of diazo-coumarin containing hybrid molecules: Selective inhibition of tumor-associated carbonic anhydrase isoforms IX and XII. ChemMedChem 2024; 19:e202300626. [PMID: 38193633 DOI: 10.1002/cmdc.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
This study introduces a series of ten hybrid molecules DK(1-10), which combine diazo and coumarin moieties along with diverse aromatic substitutions. The primary objective was to evaluate the inhibitory capabilities of these compounds against four prominent isoforms: the cytosolic hCA I and II, as well as the tumor-associated membrane-bound hCA IX and XII. Impressively, the majority of the tested compounds exhibited significant inhibition activity against the tumor-associated isoforms hCA IX and XII, with KI values ranging from 29.2 to 293.3 nM. Notably, compound DK-8 displayed particularly robust inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, yielding KI values of 32.5 and 29.2 nM, respectively. Additionally, another derivative, DK-9, containing a primary sulfonamide, exhibited notable inhibition against hCA XII with a KI value of 36.4 nM. This investigation aimed to explore the structure-activity relationships within these compounds, shedding light on how various substitutions and structural components influence their inhibitory potential. As a result, these compounds present promising candidates for further exploration in medicinal and pharmacological research. Their ability to selectively inhibit specific isoforms, particularly those associated with hypoxic tumors, suggests their potential as foundational compounds for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Gönül Yapar
- Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul, 34469, Türkiye
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Türkiye
| | - Alessandro Bonardi
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Türkiye
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
8
|
Shaldam MA, Almahli H, Angeli A, Badi RM, Khaleel EF, Zain-Alabdeen AI, Elsayed ZM, Elkaeed EB, Salem R, Supuran CT, Eldehna WM, Tawfik HO. Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2023; 38:2203389. [PMID: 37122176 PMCID: PMC10134960 DOI: 10.1080/14756366.2023.2203389] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In this work, new isatin-based sulphonamides (6a-i, 11a-c, 12a-c) were designed and synthesised as potential dual VEGFR-2 and carbonic anhydrase inhibitors with anticancer activities. Firstly, all target isatins were examined for in vitro antitumor action on NCI-USA panel (58 tumour cell lines). Then, the most potent derivatives were examined for the potential CA inhibitory action towards the physiologically relevant hCA isoforms I, II, and tumour-linked hCA IX isoform, in addition, the VEGFR-2 inhibitory activity was evaluated. The target sulphonamides failed to inhibit the CA isoforms that could be attributable to the steric effect of the neighbouring methoxy group, whereas they displayed potent VEGFR-2 inhibitory effect. Following that, isatins 11b and 12b were tested for their influence on the cell cycle disturbance, and towards the apoptotic potential. Finally, detailed molecular modelling analyses, including docking and molecular dynamics, were carried out to assess the binding mode and stability of target isatins.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh Uinversity, Kafrelsheikh, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Romagnoli R, De Ventura T, Manfredini S, Baldini E, Supuran CT, Nocentini A, Brancale A, Bortolozzi R, Manfreda L, Viola G. Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold. J Enzyme Inhib Med Chem 2023; 38:2270180. [PMID: 37850364 PMCID: PMC10586084 DOI: 10.1080/14756366.2023.2270180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Andrea Brancale
- Vysoká Škola Chemicko-Technologická v Praze, Prague, Czech Republic
| | - Roberta Bortolozzi
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, Section of Pharmacology, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| |
Collapse
|
10
|
Denner TC, Angeli A, Ferraroni M, Supuran CT, Csuk R. Ureidobenzenesulfonamides as Selective Carbonic Anhydrase I, IX, and XII Inhibitors. Molecules 2023; 28:7782. [PMID: 38067512 PMCID: PMC10707797 DOI: 10.3390/molecules28237782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Sulfonamides remain an important class of drugs, especially because of their inhibitory effects on carbonic anhydrases. Herein, we have synthesized several sulfonamides and tested them for their inhibitory activity against carbonic anhydrases hCA I, hCA II, hCA IX, and hCA XII, respectively. Thereby, biphenyl- and benzylphenyl-substituted sulfonamides showed high selectivity against hCA IX and hCA XII; these enzymes are common targets in the treatment of hypoxic cancers, and noteworthy inhibitory activity was observed for several compounds toward hCA I that might be of interest for future applications to treat cerebral edema. Compound 3 (4-[3-(2-benzylphenyl)ureido]benzenesulfonamide) held an exceptionally low Ki value of 1.0 nM for hCA XII.
Collapse
Affiliation(s)
- Toni C. Denner
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany;
| | - Andrea Angeli
- Section of Pharmaceutical Sciences, Neurofarba Department, University of Florence, Via Ugo Schiff 6, Sesto Florentino, 50019 Florence, Italy; (A.A.); (C.T.S.)
| | - Marta Ferraroni
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy;
| | - Claudiu T. Supuran
- Section of Pharmaceutical Sciences, Neurofarba Department, University of Florence, Via Ugo Schiff 6, Sesto Florentino, 50019 Florence, Italy; (A.A.); (C.T.S.)
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany;
| |
Collapse
|
11
|
Saied S, Shaldam M, Elbadawi MM, Giovannuzzi S, Nocentini A, Almahli H, Salem R, Ibrahim TM, Supuran CT, Eldehna WM. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties. Eur J Med Chem 2023; 259:115707. [PMID: 37556946 DOI: 10.1016/j.ejmech.2023.115707] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
In the current medical era, the utilization of a single small molecule to simultaneously target two distinct molecular targets is emerging as a highly effective strategy in the battle against cancer. Carbonic Anhydrase (CA) and Vascular-Endothelial Growth Factor (VEGF) are genes that are activated in response to low oxygen levels (hypoxia) and play a role in the development and progression of tumors in hypoxic conditions. Herein we report the design, synthesis, and biological assessment of a series of novel indolinone-based benzenesulfonamides (8a-k, 11a-d, 15a-d, and 16) as potential dual inhibitors for cancer-associated hCA IX/XII and VEGFR-2. All the synthesized sulfonamides were assessed for their inhibitory effect against four CA isoforms I, II, IX, and XII where they displayed varying degrees of hCA inhibition. The most effective and selective hCA IX and XII inhibitors 8g, 8j and 15b were chosen to be tested for their in vitro inhibitory impact against VEGFR-2 as well as their antiproliferative impact against VEGFR-2 overexpressing MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, molecular docking studies were conducted within the hCA IX, XII, and VEGFR-2 active sites to explain the observed inhibitory results.
Collapse
Affiliation(s)
- Samaa Saied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
12
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
13
|
Elsawi AE, Elbadawi MM, Nocentini A, Almahli H, Giovannuzzi S, Shaldam M, Salem R, Ibrahim TM, Abdel-Aziz HA, Supuran CT, Eldehna WM. 1,5-Diaryl-1,2,4-triazole Ureas as New SLC-0111 Analogues Endowed with Dual Carbonic Anhydrase and VEGFR-2 Inhibitory Activities. J Med Chem 2023; 66:10558-10578. [PMID: 37501287 DOI: 10.1021/acs.jmedchem.3c00721] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Presently, dual targeting by a single small molecule stands out as an effective cancer-fighting weapon. Carbonic anhydrase (CA) and vascular-endothelial growth factor (VEGF) are hypoxia-activatable genes that are implicated in tumorigenesis and progression of hypoxic tumors at different levels. Herein, we designed and synthesized 30 1,5-diaryl-1,2,4-triazole-tethered sulfonamides (11a-f, 12a-l, 13a-f, 15a-f) as novel SLC-0111 analogues with dual CA IX/XII and VEGFR-2 inhibitory activities. The 4-fluorophenyl SLC-0111 tail was replaced by substituted 1,5-diaryl-1,2,4-triazoles. Changing the sulfamoyl motif position provided regioisomers 11a-f and 12a-l. Elongation of the ureido linker yielded derivatives 15a-f. Inhibitory evaluations included a panel of hCAs (hCA I, II, IX, and XII) and screening against 60 cancer cell lines. Promising candidates were assessed for VEGFR-2 inhibition and selectivity and further evaluated on breast cancer cell lines (MCF-7 and T-47D) and the non-tumorigenic (MCF-10A) cells. Molecular docking studies explored the binding modes of the sulfonamides against hCA IX/XII and VEGFR-2 kinase.
Collapse
Affiliation(s)
- Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| |
Collapse
|
14
|
Ismail RSM, El Kerdawy AM, Soliman DH, Georgey HH, Abdel Gawad NM, Angeli A, Supuran CT. Discovery of a new potent oxindole multi-kinase inhibitor among a series of designed 3-alkenyl-oxindoles with ancillary carbonic anhydrase inhibitory activity as antiproliferative agents. BMC Chem 2023; 17:81. [PMID: 37461110 DOI: 10.1186/s13065-023-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
An optimization strategy was adopted for designing and synthesizing new series of 2-oxindole conjugates. Selected compounds were evaluated for their antiproliferative effect in vitro against NCI-60 cell lines panel, inhibitory effect on carbonic anhydrase (CA) isoforms (hCAI, II, IX and XII), and protein kinases. Compounds 5 and 7 showed promising inhibitory effects on hCA XII, whereas compound 4d was the most potent inhibitor with low nanomolar CA inhibition against all tested isoforms. These results were rationalized by using molecular docking. Despite its lack of CA inhibitory activity, compound 15c was the most active antiproliferative candidate against most of the 60 cell lines with mean growth inhibition 61.83% and with IC50 values of 4.39, 1.06, and 0.34 nM against MCT-7, DU 145, and HCT-116 cell lines, respectively. To uncover the mechanism of action behind its antiproliferative activity, compound 15c was assessed against a panel of protein kinases (RET, KIT, cMet, VEGFR1,2, FGFR1, PDFGR and BRAF) showing % inhibition of 74%, 31%, 62%, 40%, 73%, 74%, 59%, and 69%, respectively, and IC50 of 1.287, 0.117 and 1.185 μM against FGFR1, VEGFR, and RET kinases, respectively. These results were also explained through molecular docking.
Collapse
Affiliation(s)
- Rania S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Dalia H Soliman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11471, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Nagwa M Abdel Gawad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
15
|
Challenging breast cancer through novel sulfonamide-pyridine hybrids: design, synthesis, carbonic anhydrase IX inhibition and induction of apoptosis. Future Med Chem 2023; 15:147-166. [PMID: 36762576 DOI: 10.4155/fmc-2022-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background: Among the important key modulators of the tumor microenvironment and hypoxia is a family of enzymes named carbonic anhydrases. Herein, 11 novel sulfonamide-pyridine hybrids (2-12) were designed, synthesized and biologically evaluated for their potential use in targeting breast cancer. Methods & results: The para chloro derivative 7 reported the highest cytotoxic activity against the three breast cancer cell lines used. In addition, compound 7 was found to induce cell cycle arrest and autophagy as well as delaying wound healing. The IC50 of compound 7 against carbonic anhydrase IX was 253 ± 12 nM using dorzolamide HCl as control. Conclusion: This study encourages us to expand the designed library, where more sulfonamide derivatives would be synthesized and studied for their structure-activity relationships.
Collapse
|
16
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
17
|
Elbadawi MM, Eldehna WM, Nocentini A, Somaa WR, Al-Rashood ST, Elkaeed EB, El Hassab MA, Abdel-Aziz HA, Supuran CT, Fares M. Development of 4-((3-oxo-3-phenylpropyl)amino)benzenesulfonamide derivatives utilizing tail/dual-tail approaches as novel carbonic anhydrase inhibitors. Eur J Med Chem 2022; 238:114412. [PMID: 35551035 DOI: 10.1016/j.ejmech.2022.114412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023]
Abstract
In the current work, we adopted the tail/dual tail approaches to design and synthesize the benzenesulfonamide derivatives 6a-b, 8, 10a-b, 12a-b, 14, and 16 as new SLC-0111 analogs endowed with carbonic anhydrase (CA) inhibitory activity. All the prepared benzenesulfonamide derivatives were tested for their inhibitory action towards hCA isoforms; hCA I, II, IX, and XII. The results revealed their ability to affect the examined isoforms in variable degrees with KI ranges: 49.3-6459 nM for CA I, 5.1-4171 nM for CA II, 9.4-945.1 nM for CA IX, and 5.2-1159 nM for CA XII. As expected, appending a second hydrophilic tail (ethanolamine) in compound 16 significantly enhanced the inhibitory activities towards hCA IX and hCA XII isoforms by about 5-fold in comparison to its single tail analogue 6c (KI = 51.5 and 28.2 nM for 6cvs. 10.2 and 5.2 nM for 16, respectively). Moreover, SAR analysis pointed out the significance of grafting the sulfamoyl functionality at para-position, as well as the incorporation of a bulky hydrophobic tail for CA inhibitory activity. The most potent hCA IX inhibitors (6f and 16) displayed efficient cell growth inhibitory activity against breast cancer cell lines; T-47D (IC50 = 19 and 10.9 μM, respectively) and MCF-7 (IC50 = 7.5 and 5.7 μM, respectively).
Collapse
Affiliation(s)
- Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Warda R Somaa
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt; School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Boda S, Nukala SK, Manchal R. One‐pot Synthesis of Some New Isatin‐1,2,4‐Oxadiazole Hybrids as VEGFR‐2 Aiming Anticancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sunitha Boda
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya (Deemed to be University) Warangal Telangana India
| |
Collapse
|
19
|
Eraslan-Elma P, Akdemir A, Berrino E, Bozdağ M, Supuran CT, Karalı N. New 1H-indole-2,3-dione 3-thiosemicarbazones with 3-sulfamoylphenyl moiety as selective carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200023. [PMID: 35500156 DOI: 10.1002/ardp.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
1-Methyl/ethyl/benzyl-5-(un)substituted 1H-indole-2,3-diones (2, 3, and 4) were synthesized by reaction of 5-(un)substituted 1H-indole-2,3-diones (1) with methyl iodide, ethyl chloride, and benzyl bromide. (3-Sulfamoylphenyl)isothiocyanate (6) was obtained by the treatment of 3-aminobenzenesulfonamide (5) with thiophosgene. Compound 6 was reacted with hydrazine to yield 4-(3-sulfamoylphenyl)thiosemicarbazide (7). Novel 1-(un)substituted/methyl/ethyl/benzyl-5-(un)substituted 1H-indole-2,3-dione 3-[4-(3-sulfamoylphenyl)thiosemicarbazone] derivatives (8-11) were prepared by condensation of 7 and 1-4. The structures of the synthesized compounds were confirmed by elemental analysis and spectral data. Inhibition of the widely distributed cytosolic off-targets human carbonic anhydrases (hCAs) I and II, and two tumor-associated membrane-bound isoforms (hCAs IX and XII), by 8-11 was investigated. The hCA II inhibitory effects of all tested compounds were in the subnanomolar to low nanomolar levels (Ki = 0.32-83.3 nM), and generally high selectivity for hCA II isoenzyme over hCA I, IX, and XII isoenzymes was observed. The strongest inhibitors of hCA II, 1-benzyl-5-(trifluoromethoxy)-substituted 11c (Ki = 0.32 nM) and 1-ethyl-5-chloro-substituted 10e (Ki = 0.35 nM), were docked within the enzyme active site. Molecular modeling studies with the most effective hCA IX and XII inhibitors were also carried out.
Collapse
Affiliation(s)
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Emanuela Berrino
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Murat Bozdağ
- Department of Pharmaceutical Science, University of Antwerp, Antwerp, Belgium
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Nilgün Karalı
- Health Sciences Institute, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
21
|
Said MF, George RF, Petreni A, Supuran CT, Mohamed NM. Synthesis, molecular modelling and QSAR study of new N-phenylacetamide-2-oxoindole benzensulfonamide conjugates as carbonic anhydrase inhibitors with antiproliferative activity. J Enzyme Inhib Med Chem 2022; 37:701-717. [PMID: 35168458 PMCID: PMC8863381 DOI: 10.1080/14756366.2022.2036137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In continuation of our previous studies to optimise potent carbonic anhydrase inhibitors, two new series of isatin N-phenylacetamide based sulphonamides were synthesised and screened for their human (h) carbonic anhydrase (EC 4.2.1.1) inhibitory activities against four isoforms hCA I, hCA II, hCA IX and hCA XII. The indole-2,3-dione derivative 2h showed the most effective inhibition profile against hCAI and hCA II (KI = 45.10, 5.87 nM) compared to acetazolamide (AAZ) as standard inhibitor. Moreover, 2h showed appreciable inhibition activity against the tumour-associated hCA XII, similar to AAZ showing KI of 7.91 and 5.70 nM, respectively. The analogs 3c and 3d showed good cytotoxicity effects, and 3c revealed promising selectivity towards lung cell line A549. Molecular docking was carried out for 2h and 3c to predict their binding conformations and affinities towards the hCA I, II, IX and XII isoforms.
Collapse
Affiliation(s)
- Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| |
Collapse
|
22
|
Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem 2021; 226:113837. [PMID: 34530384 DOI: 10.1016/j.ejmech.2021.113837] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Currently, the arise of drug resistance and undesirable off-target effects of anti-cancer agents are major challenges for cancer treatment, which energizes medicinal chemists to develop more anti-cancer agents with high efficiency and low toxicity continuously. Sulfonamide derivatives are a class of promising compounds with diverse biological activities including anti-cancer, and parts of them have been marketed for cancer therapy, such as Belinostat, ABT-199 and Amsacrine. In this review, we summed up the recent advances of sulfonamide derivatives as potential anti-cancer agents based on the anti-cancer targets, such as aromatase, carbonic anhydrase (CA), anti-apoptotic B-cell lymphoma-2 (Bcl-2) proteins, topoisomerase and phosphatidylinositol 3-kinase (PI3K), and elucidated the corresponding structure-activity relationships (SARs) of most sulfonamide derivatives. We hope this review could provide a clear insight for medicinal chemists in the rational design of more potent and bio-target specific anti-cancer agents.
Collapse
|
23
|
Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021; 30:1197-1208. [PMID: 34865569 DOI: 10.1080/13543784.2021.2014813] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hypoxic tumors, unlike normal tissues, overexpress proteins involved in oxygen sensing, metabolism, pH regulation, angiogenesis, immunological response, and other survival mechanisms, which are under investigation as antitumor drug targets. AREAS COVERED Carbonic anhydrase (CA) isoforms CA IX and XII are among these validated antitumor/antimetastatic drug targets, with several of their inhibitors undergoing preclinical or clinical-stage investigations. Alone or in combination with other chemotherapeutic agents or radiotherapy, CA IX/XII inhibitors, such as SLC-0111, SLC-149, S4, 6A10, etc., were shown to inhibit the growth of the primary tumor, metastases, and invasiveness of many tumor types, being also amenable for the development of imaging agents. EXPERT OPINION SLC-0111 is the most investigated agent, being in Phase Ib/II clinical trials. In addition to its interference with extracellular acidifications, it has been shown to promote ferroptosis in cancer cells, another antitumor mechanism of this compound and the entire class. A large number sulfonamide and non-sulfonamide inhibitors have been developed using SLC-0111 as lead in the last three years, together with hybrid agents incorporating CA inhibitors and other anticancer chemotypes, including cytotoxins, telomerase, thioredoxin or P-glycoprotein inhibitors, adenosine A2A receptor antagonists, pyrophosphatase/phosphodiesterase-3 inhibitors or antimetabolites. All of them showed significant antitumor activity.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Università Degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
24
|
YAKAN H, Serdar ÇAVUŞ M, KURT BZENGİN, MUĞLU H, SÖNMEZ F, GÜZEL E. A new series of asymmetric bis-isatin derivatives containing urea/thiourea moiety: Preparation, spectroscopic elucidation, antioxidant properties and theoretical calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Structural investigation of isatin-based benzenesulfonamides as carbonic anhydrase isoform IX inhibitors endowed with anticancer activity using molecular modeling approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mishra CB, Kumari S, Angeli A, Bua S, Mongre RK, Tiwari M, Supuran CT. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J Med Chem 2021; 64:3100-3114. [PMID: 33721499 DOI: 10.1021/acs.jmedchem.0c01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| |
Collapse
|
28
|
Chahal V, Nirwan S, Pathak M, Kakkar R. Identification of potent human carbonic anhydrase IX inhibitors: a combination of pharmacophore modeling, 3D-QSAR, virtual screening and molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:4516-4531. [PMID: 33317405 DOI: 10.1080/07391102.2020.1860132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human carbonic anhydrase IX (hCA IX) is a promising target for the development of potential anticancer agents. In the current study, pharmacophore and 3D-QSAR models have been developed using SLC-0111 derivatives. The developed models have been further utilized for the virtual screening process to develop potent hCA IX inhibitors. Thirteen different models have been developed by employing various combinations of training and test set molecules. Based on this, a model, AADDR.135, comprising two H-bond acceptors, two H-bond donors and one aromatic ring, has been found as the best QSAR model. The proposed model exhibits high robustness (R2 = 0.9789), with good predictive ability (Q2 = 0.6872). An external library of drug-like compounds (∼10000 molecules) imported from the ZINC15 database has been screened over the model AADDR.135. In total, 1601 compounds were obtained as hits. Molecular docking studies and molecular dynamics simulations have been performed on the obtained hits and, based on these computations, two unique molecules have been identified as potential hCA IX inhibitors. These show higher binding energies compared to the parent molecule and its most potent analogue.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Varun Chahal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonam Nirwan
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mallika Pathak
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
29
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
30
|
Alkhaldi AAM, Al-Sanea MM, Nocentini A, Eldehna WM, Elsayed ZM, Bonardi A, Abo-Ashour MF, El-Damasy AK, Abdel-Maksoud MS, Al-Warhi T, Gratteri P, Abdel-Aziz HA, Supuran CT, El-Haggar R. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies. Eur J Med Chem 2020; 207:112745. [PMID: 32877804 DOI: 10.1016/j.ejmech.2020.112745] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/17/2023]
Abstract
Herein we describe design and synthesis of different series of novel small molecules featuring 3-methylthiazolo[3,2-a]benzimidazole moiety (as a tail) connected to the zinc anchoring benzenesulfonamide moiety via ureido (7), enaminone (12), hydrazone (14), or hydrazide (15) linkers. The newly prepared conjugates have been screened for their inhibitory activities toward four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms: hCA I, II, IX and XII. Thereafter, the urea and enaminone linkers were elongated by one- or two-atoms spacers to afford the elongated counterparts 9 and 13, respectively. Finally, the zinc anchoring sulfonamide group was replaced by the carboxylic acid group to afford acids 17. Compounds 12d, 13b and 15 displayed single-digit nanomolar CA IX inhibitory activities (KIs = 6.2, 9.7 and 5.5 nM, respectively), along with good selectivity towards hCA IX over hCA I and II. Subsequently, they were screened for their growth inhibitory actions against breast cancer MCF-7 and MDA-MB-231 cell lines, and for their impact on cell cycle progression and induction of apoptosis. Moreover, a molecular docking study was conducted to gain insights for the plausible binding interactions of target sulfonamides within hCA isoforms II, IX and XII binding sites.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| |
Collapse
|
31
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites 2020; 10:metabo10100412. [PMID: 33066524 PMCID: PMC7602163 DOI: 10.3390/metabo10100412] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Jean-Yves Winum
- IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., 1048 Riga, Latvia;
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey;
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - William A. Donald
- School of Chemistry, University of New South Wales, 1466 Sydney, Australia;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver Vancouver, BC V5Z 1L3, Canada;
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
- Correspondence:
| |
Collapse
|
32
|
Al-Salem HS, Arifuzzaman M, Alkahtani HM, Abdalla AN, Issa IS, Alqathama A, Albalawi FS, Rahman AFMM. A Series of Isatin-Hydrazones with Cytotoxic Activity and CDK2 Kinase Inhibitory Activity: A Potential Type II ATP Competitive Inhibitor. Molecules 2020; 25:E4400. [PMID: 32992673 PMCID: PMC7582667 DOI: 10.3390/molecules25194400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Isatin derivatives potentially act on various biological targets. In this article, a series of novel isatin-hydrazones were synthesized in excellent yields. Their cytotoxicity was tested against human breast adenocarcinoma (MCF7) and human ovary adenocarcinoma (A2780) cell lines using MTT assay. Compounds 4j (IC50 = 1.51 ± 0.09 µM) and 4k (IC50 = 3.56 ± 0.31) showed excellent activity against MCF7, whereas compound 4e showed considerable cytotoxicity against both tested cell lines, MCF7 (IC50 = 5.46 ± 0.71 µM) and A2780 (IC50 = 18.96± 2.52 µM), respectively. Structure-activity relationships (SARs) revealed that, halogen substituents at 2,6-position of the C-ring of isatin-hydrazones are the most potent derivatives. In-silico absorption, distribution, metabolism and excretion (ADME) results demonstrated recommended drug likeness properties. Compounds 4j (IC50 = 0.245 µM) and 4k (IC50 = 0.300 µM) exhibited good inhibitory activity against the cell cycle regulator CDK2 protein kinase compared to imatinib (IC50 = 0.131 µM). A molecular docking study of 4j and 4k confirmed both compounds as type II ATP competitive inhibitors that made interactions with ATP binding pocket residues, as well as lacking interactions with active state DFG motif residues.
Collapse
Affiliation(s)
- Huda S. Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (I.S.I.); (F.S.A.)
| | - Md Arifuzzaman
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (I.S.I.); (F.S.A.)
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Iman S. Issa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (I.S.I.); (F.S.A.)
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Fatemah S. Albalawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (I.S.I.); (F.S.A.)
| | - A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (I.S.I.); (F.S.A.)
| |
Collapse
|
33
|
Chahal V, Nirwan S, Kakkar R. A comparative study of the binding modes of SLC-0111 and its analogues in the hCA II and hCA IX active sites using QM/MM, molecular docking, MM-GBSA and MD approaches. Biophys Chem 2020; 265:106439. [PMID: 32738591 DOI: 10.1016/j.bpc.2020.106439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Human carbonic anhydrase IX (hCA IX) is over-expressed in many tumor types and serves as an important target for the discovery of novel anticancer agents. However, development of compounds that can selectively inhibit hCA IX over its widespread cytosolic isoform human carbonic anhydrase II (hCA II) is a major challenge. This work focuses on recognizing the structural features of the hCA IX receptor that could help in achieving its selective inhibition. Tools such as protein structure alignment, rigid as well as flexible docking, QM/MM calculations and molecular dynamics simulations on SLC-0111, a selective hCA IX inhibitor, in complexation with each receptor, have been used to differentiate the receptor-ligand interactions in the two complexes. It is found that the ligand shows better binding to hCA IX due to stronger coordination to the Zn (II) ion. The ligand provides bidentate coordination through its negatively charged nitrogen and an oxygen of the sulfonamide zinc binding group. Binding energy calculations show that the potency of this ligand is due to the hydrophobic contacts, whereas the selectivity is due to the electrostatic interactions. Molecular docking and binding energy calculations for three different series of SLC-0111 analogs have identified a few molecules that show high potency and selectivity toward hCA IX. It is found that both hydrophobic and polar contacts contribute to the potency and selectivity of the ligands.
Collapse
Affiliation(s)
- Varun Chahal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sonam Nirwan
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
34
|
Mikulová MB, Kružlicová D, Pecher D, Supuran CT, Mikuš P. Synthetic Strategies and Computational Inhibition Activity Study for Triazinyl-Substituted Benzenesulfonamide Conjugates with Polar and Hydrophobic Amino Acids as Inhibitors of Carbonic Anhydrases. Int J Mol Sci 2020; 21:E3661. [PMID: 32456080 PMCID: PMC7279466 DOI: 10.3390/ijms21103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Various sulfonamide derivatives are intensively studied as anticancer agents owing to their inhibitory activity against human tumor-associated carbonic anhydrase isoforms. In this work, different synthetic procedures for the series of 1,3,5-triazinyl-aminobenzenesulfonamide conjugates with amino acids, possessing polar uncharged, negatively charged, and hydrophobic side chain, were studied and optimized with respect to the yield/purity of the synthesis/product as well as the time of synthetic reaction. These procedures were compared to each other via characteristic HPLC-ESI-DAD/QTOF/MS analytical product profiles, and their benefits as well as limitations were discussed. For new sulfonamide derivatives, incorporating s-triazine with a symmetric pair of polar and some less-polar proteinogenic amino acids, inhibition constants (KIs) against four human carboanhydrases (hCAs), namely cytosolic hCA I, II, transmembrane hCA IV, and the tumor-associated, membrane-bound hCA IX isoforms, were computationally predicted applying various methods of the advanced statistical analysis. Quantitative structure-activity relationship (QSAR) analysis indicated an impressive KI ratio (hCA II/hCA IX) 139.1 and hCA IX inhibition constant very similar to acetazolamide (KI = 29.6 nM) for the sulfonamide derivative disubstituted with Gln. The derivatives disubstituted with Ser, Thr, and Ala showed even lower KIs (8.7, 13.1, and 8.4 nM, respectively).
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Dáša Kružlicová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| |
Collapse
|
35
|
Fares M, Eldehna WM, Bua S, Lanzi C, Lucarini L, Masini E, Peat TS, Abdel-Aziz HA, Nocentini A, Keller PA, Supuran CT. Discovery of Potent Dual-Tailed Benzenesulfonamide Inhibitors of Human Carbonic Anhydrases Implicated in Glaucoma and in Vivo Profiling of Their Intraocular Pressure-Lowering Action. J Med Chem 2020; 63:3317-3326. [PMID: 32031797 DOI: 10.1021/acs.jmedchem.9b02090] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The design of three dual-tailed sulfonamide series 11a-11g, 14a-14h, and 16a-16e as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors are presented. All compounds were evaluated for inhibitory action against pharmacologically relevant human CA isoforms I, II, IV, and VII. Compounds 11a-11g emerged as potent CA inhibitors against the four tested isoforms with a significant selectivity to CA II, which is implicated in glaucoma (Ki in the range 0.36-6.9 nM). X-ray crystallographic analysis of three compounds (11a, 11d, and 11g) bound to CA II showed the validity of the adopted drug design strategy as specific moieties within the ligand structure interacted directly with the hydrophobic and hydrophilic halves of the CA II active site. Compounds 11b-11d and 11g were evaluated for their intraocular pressure-lowering effects in a rabbit model of glaucoma. 11b and 11d showed significant efficacy when compared to the clinically used drug dorzolamide.
Collapse
Affiliation(s)
- Mohamed Fares
- School of Chemistry & Molecular Bioscience, Molecular Horizons, and Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Cecilia Lanzi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Laura Lucarini
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Emanuela Masini
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Thomas S Peat
- Biomedical Manufacturing Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza 12622, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, and Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
36
|
George RF, Said MF, Bua S, Supuran CT. Synthesis and selective inhibitory effects of some 2-oxindole benzenesulfonamide conjugates on human carbonic anhydrase isoforms CA I, CA II, CA IX and CAXII. Bioorg Chem 2020; 95:103514. [PMID: 31887473 DOI: 10.1016/j.bioorg.2019.103514] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/20/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
Three series of 2-oxindole benzenesulfonamide conjugates with different linkers were prepared by the condensation reaction of isatin derivatives 1a-e with different benzenesulfonamides. They were screened for their ability to inhibit human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, hCA II, hCA IX and hCA XII. Many compounds revealed promising activity and selectivity toward CAI, CAII and CAIX compared to acetazolamide (AAZ) especially compounds 2b (KI = 97.6, 8.0 nM against hCA I, hCA II, respectively) and 3a (KI = 90.2, 6.5 and 21.4 nM against hCA I, hCA II and hCA IX, respectively) relative to AAZ (KI = 250, 12 and 25 nM). Additionally, compound 4a revealed the highest activity against hCA II and hCA IX with KI of 3.0 and 13.9 nM, respectively. Docking of 2b, 3a and 4a into the active site of CA I, II, IX and XII revealed binding mode comparable to AAZ confirming the inhibition results.
Collapse
Affiliation(s)
- Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Silvia Bua
- University of Florence, Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- University of Florence, Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
37
|
Abo-Ashour MF, Eldehna WM, Nocentini A, Bonardi A, Bua S, Ibrahim HS, Elaasser MM, Kryštof V, Jorda R, Gratteri P, Abou-Seri SM, Supuran CT. 3-Hydrazinoisatin-based benzenesulfonamides as novel carbonic anhydrase inhibitors endowed with anticancer activity: Synthesis, in vitro biological evaluation and in silico insights. Eur J Med Chem 2019; 184:111768. [PMID: 31629164 DOI: 10.1016/j.ejmech.2019.111768] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 12/01/2022]
Abstract
Herein we describe the design and synthesis of two series of sulfonamides featuring N-unsubstituted (4a-c) or N-substituted (7a-o) isatin moieties (as tails) connected to benzenesulfonamide moiety via a hydrazine linker. All the prepared sulfonamides (4a-c and 7a-o) showed potent inhibitory activities toward transmembrane tumor-associated human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, IX and XII with KI range (8.3-65.4 nM) and (11.9-72.9 nM), respectively. Furthermore, six sulfonamides (7e, 7i, 7j, 7m, 7n and 7o) were assessed for their anti-proliferative activity, according to US-NCI protocol, toward a panel of sixty cancer cell lines. Compounds 7j and 7n were the most promising counterparts in this assay displaying broad spectrum anti-proliferative activity toward diverse cell lines. Also, sulfonamide 7n significantly inhibited clonogenicity of HCT-116 cells in a concentration dependent manner in the colony forming assay. Moreover, molecular modeling studies were performed to gain insights for the plausible binding interactions and affinities for the target isatin-based sulfonamides (4a-c and 7a-o) within hCA isoforms II and IX active sites.
Collapse
Affiliation(s)
- Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, Sesto Fiorentino, Firenze, 50019, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, Sesto Fiorentino, Firenze, 50019, Italy
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, Sesto Fiorentino, Firenze, 50019, Italy.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-kasr Elaini Street, Cairo, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
38
|
Garousi J, Huizing FJ, Vorobyeva A, Mitran B, Andersson KG, Leitao CD, Frejd FY, Löfblom J, Bussink J, Orlova A, Heskamp S, Tolmachev V. Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts. Sci Rep 2019; 9:14907. [PMID: 31624303 PMCID: PMC6797765 DOI: 10.1038/s41598-019-51445-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with 111In and characterized in vitro. Tumor-targeting properties of [111In]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [99mTc]Tc(CO)3-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [111In]In-DTPA-G250(Fab’)2, in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the 99mTc-labeled parental variant, [111In]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [111In]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [111In]In-G250(Fab’)2. In conclusion, [111In]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fokko J Huizing
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sandra Heskamp
- Department of Radiology and Nuclear medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
39
|
Distinto S, Meleddu R, Ortuso F, Cottiglia F, Deplano S, Sequeira L, Melis C, Fois B, Angeli A, Capasso C, Angius R, Alcaro S, Supuran CT, Maccioni E. Exploring new structural features of the 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzenesulphonamide scaffold for the inhibition of human carbonic anhydrases. J Enzyme Inhib Med Chem 2019; 34:1526-1533. [PMID: 31431095 PMCID: PMC6713091 DOI: 10.1080/14756366.2019.1654470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A library of 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulphonamides (EMAC8002a–m) was designed and synthesised to evaluate the effect of substituents in the positions 3 and 4 of the dihydrothiazole ring on the inhibitory potency and selectivity toward human carbonic anhydrase isoforms I, II, IX, and XII. Most of the new compounds preferentially inhibit the isoforms II and XII. Both electronic and steric features on the aryl substituent in the position 4 of the dihydrothiazole ring concur to determine the overall biological activity of these new derivatives.
Collapse
Affiliation(s)
- Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro , Catanzaro , Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Claudia Melis
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | | | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro , Catanzaro , Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| |
Collapse
|
40
|
Serbian I, Schwarzenberger P, Loesche A, Hoenke S, Al-Harrasi A, Csuk R. Ureidobenzenesulfonamides as efficient inhibitors of carbonic anhydrase II. Bioorg Chem 2019; 91:103123. [PMID: 31336306 DOI: 10.1016/j.bioorg.2019.103123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
Sulfonamides represent an important class of drugs because of their inhibitory effect on carbonic anhydrases (CAs). We therefore synthesized several ureidobenzenesulfonamides and evaluated their bCA II inhibition for their potential use as anti-glaucoma gents. Since these compounds must not show cytotoxic effects, their cytotoxic potential against several human tumor cell lines and non-malignant fibroblasts was investigated. Several fluorophenyl substituted sulfonamides were efficient inhibitors of bCA II. Only one benzylphenyl substituted sulfonamide, however, showed a remarkable selectivity for HT29 colorectal carcinoma cells while being significantly less cytotoxic to non-malignant fibroblasts.
Collapse
Affiliation(s)
- Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Philipp Schwarzenberger
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
41
|
Allam HA, Fahim SH, F Abo-Ashour M, Nocentini A, Elbakry ME, Abdelrahman MA, Eldehna WM, Ibrahim HS, Supuran CT. Application of hydrazino and hydrazido linkers to connect benzenesulfonamides with hydrophilic/phobic tails for targeting the middle region of human carbonic anhydrases active site: Selective inhibitors of hCA IX. Eur J Med Chem 2019; 179:547-556. [PMID: 31276899 DOI: 10.1016/j.ejmech.2019.06.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
Abstract
Herein we report the design and synthesis of three different sets of novel benzenesulfonamides (5a-e, 7a-e and 10a-d) incorporating hydrophilic/hydrophobic tails by hydrazido or hydrazino linkers. The newly synthesized benzenesulfonamides were examined in vitro for their inhibitory activity towards four human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, IX and XII using a stopped-flow CO2 hydrase assay. All these isoforms were inhibited by the sulfonamides (5a-e, 7a-e and 10a-d) with variable degrees in the following KI ranges: 76.8-357.4 nM for hCA I, 8.2-94.6 nM for hCA II, 2.0-46.3 nM for hCA XI, and 8.3-88.3 nM for hCA XII. The sulfonamide 7d exhibited potent anti-proliferative activity against breast MCF-7 cancer cell line under both normoxic and hypoxic conditions with IC50 values equal 3.32 ± 0.06 and 8.53 ± 0.32 μM, respectively, which are comparable to the reference drug doxorubicin (IC50 = 2.36 ± 0.04 and 8.39 ± 0.25 μM, respectively). Furthermore, 7d was screened for cell cycle disturbance and apoptosis induction in MCF-7 cells. It was found to persuade cell cycle arrest at G2-M stage as well as to alter the Sub-G1 phase, also, 7d resulted in a significant increase in the percent of annexinV-FITC positive apoptotic cells from 1.03 to 18.54%. Molecular docking study was carried out for 7d within the hCA IX and hCA XII active sites to rationalize the obtained inhibition results.
Collapse
Affiliation(s)
- Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mohamed E Elbakry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohamed A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
42
|
Abdelrahman MA, Eldehna WM, Nocentini A, Bua S, Al-Rashood ST, Hassan GS, Bonardi A, Almehizia AA, Alkahtani HM, Alharbi A, Gratteri P, Supuran CT. Novel Diamide-Based Benzenesulfonamides as Selective Carbonic Anhydrase IX Inhibitors Endowed with Antitumor Activity: Synthesis, Biological Evaluation and In Silico Insights. Int J Mol Sci 2019; 20:ijms20102484. [PMID: 31137489 PMCID: PMC6566410 DOI: 10.3390/ijms20102484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, we present the synthesis and biological evaluation of novel series of diamide-based benzenesulfonamides 5a–h as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, II, IX and XII. The target tumor-associated isoforms hCA IX and XII were undeniably the most affected ones (KIs: 8.3–123.3 and 9.8–134.5 nM, respectively). Notably, diamides 5a and 5h stood out as a single-digit nanomolar hCA IX inhibitors (KIs = 8.8 and 8.3 nM). The SAR outcomes highlighted that bioisosteric replacement of the benzylidene moiety, compounds 5a–g, with the hetero 2-furylidene moiety, compound 5h, achieved the best IX/I and IX/II selectivity herein reported with SIs of 985 and 13.8, respectively. Molecular docking simulations of the prepared diamides within CA IX active site revealed the ability of 5h to establish an additional H-bond between the heterocyclic oxygen and HE/Gln67. Moreover, benzenesulfonamides 5a, 5b and 5h were evaluated for their antitumor activity against renal cancer UO-31 cell line. Compound 5h was the most potent derivative with about 1.5-fold more enhanced activity (IC50 = 4.89 ± 0.22 μM) than the reference drug Staurosporine (IC50 = 7.25 ± 0.43 μM). Moreover, 5a and 5h were able to induce apoptosis in UO-31 cells as evidenced by the significant increase in the percent of annexinV-FITC positive apoptotic cells by 22.5- and 26.5-folds, respectively.
Collapse
Affiliation(s)
- Mohamed A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
43
|
Abo-Ashour MF, Eldehna WM, Nocentini A, Ibrahim HS, Bua S, Abdel-Aziz HA, Abou-Seri SM, Supuran CT. Novel synthesized SLC-0111 thiazole and thiadiazole analogues: Determination of their carbonic anhydrase inhibitory activity and molecular modeling studies. Bioorg Chem 2019; 87:794-802. [PMID: 30978604 DOI: 10.1016/j.bioorg.2019.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Abstract
In the presented work, we report the design and synthesis of novel SLC-0111 thiazole and thiadiazole analogues (11a-d, 12a-d, 16a-c and 17a-d). A bioisosteric replacement approach was adopted to replace the 4-fluorophenyl tail of SLC-0111 with thiazole and thiadiazole ones, which were thereafter extended with lipophilic un/substituted phenyl moieties. All the newly synthesized SLC-0111 analogues were evaluated in vitro for their inhibitory activity towards a panel of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, IX and XII), using a stopped-flow CO2 hydrase assay. All the examined isoforms were inhibited by the primary sulfonamide derivatives (11a-d and 12a-d) in variable degrees with the following KI ranges: 162.6-7136 nM for hCA I, 9.0-833.6 nM for hCA II, 7.9-153.0 nM for hCA IX, and 9.4-94.0 nM for hCA XII. In particular, compounds 12b and 12d displayed 5.5-fold more potent inhibitory activity (KIs = 8.3 and 7.9 nM, respectively) than SLC-0111 (KI = 45 nM) towards hCA IX. Molecular docking study was carried out for 12d within the hCA IX (PDB 3IAI) active site, to justify its inhibitory activity.
Collapse
Affiliation(s)
- Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
44
|
Varun, Sonam, Kakkar R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. MEDCHEMCOMM 2019; 10:351-368. [PMID: 30996856 PMCID: PMC6438150 DOI: 10.1039/c8md00585k] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Isatin (1H-indole-2,3-dione) and its derivatives represent an important class of heterocyclic compounds that can be used as precursors for drug synthesis. Since its discovery, a lot of research work has been done regarding the synthesis, chemical properties, and biological and industrial applications of isatin. In this review, we have reported several novel methods for the synthesis of N-, C2-, and C3-substituted and spiro derivatives of isatin. The isatin moiety also shows important chemical reactions such as oxidation, ring expansion, Friedel-Crafts reaction and aldol condensation. These reactions, in turn, produce several biologically viable compounds like 2-oxindoles, tryptanthrin, indirubins, and many more. We have also summarized some recently reported biological activities exhibited by isatin derivatives, like anti-cancer, anti-bacterial, anti-diabetic and others. Special attention has been paid to their anti-cancer activity, and various anti-cancer targets such as histone deacetylase, carbonic anhydrase, tyrosine kinase, and tubulin have been discussed in detail. Other applications of isatin derivatives, such as in the dye industry and in corrosion prevention, have also been discussed.
Collapse
Affiliation(s)
- Varun
- Department of Chemistry , University of Delhi , India .
| | - Sonam
- Department of Chemistry , University of Delhi , India .
| | - Rita Kakkar
- Department of Chemistry , University of Delhi , India .
| |
Collapse
|
45
|
Gao S, Zheng J, Ge G, Luo J. Cu–Catalyzed Tandem Oxidation of
N
‐Substituted Indolines to Isatins. ChemistrySelect 2018. [DOI: 10.1002/slct.201803312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shanshan Gao
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Junliang Zheng
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Guoping Ge
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Junfei Luo
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
46
|
Eldehna WM, Nocentini A, Al-Rashood ST, Hassan GS, Alkahtani HM, Almehizia AA, Reda AM, Abdel-Aziz HA, Supuran CT. Tumor-associated carbonic anhydrase isoform IX and XII inhibitory properties of certain isatin-bearing sulfonamides endowed with in vitro antitumor activity towards colon cancer. Bioorg Chem 2018; 81:425-432. [DOI: 10.1016/j.bioorg.2018.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
47
|
Eldehna WM, Abo-Ashour MF, Berrino E, Vullo D, Ghabbour HA, Al-Rashood ST, Hassan GS, Alkahtani HM, Almehizia AA, Alharbi A, Abdel-Aziz HA, Supuran CT. SLC-0111 enaminone analogs, 3/4-(3-aryl-3-oxopropenyl) aminobenzenesulfonamides, as novel selective subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform IX. Bioorg Chem 2018; 83:549-558. [PMID: 30471577 DOI: 10.1016/j.bioorg.2018.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
Abstract
SLC-0111, an ureido substituted benzenesulfonamide, is a selective carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor that is currently in Phase I/II clinical trials for the treatment of advanced hypoxic tumors complicated with metastases. Herein we report the synthesis of two series of 3/4-(3-aryl-3-oxopropenyl) aminobenzenesulfonamides 5a-i and 6a-j as SLC-0111 enaminone congeners. The prepared enaminones were in vitro investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, II, IV and IX, using a stopped-flow CO2 hydrase assay. All these isoforms were inhibited by the enaminones reported here in variable degrees. The target tumor-associated isoform hCA IX was undeniably the most affected one (KIs: 0.21-7.1 nM), with 6- to 21-fold enhanced activity than SLC-0111 (KI = 45 nM). All the prepared enaminones displayed interesting selectivity towards hCA IX over hCA I (SI: 32 - >35714), hCA II (SI: 2 - 1689) and hCA IV (SI: 11 - >45454). Of particular interest, bioisosteric replacement of phenyl tail with the bulkier 2-naphthyl tail, sulfonamide 6h, achieved the higher II/IX selectivity herein reported with SI of 1689.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt
| | - Emanuela Berrino
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
48
|
Eldehna WM, Abo-Ashour MF, Nocentini A, El-Haggar RS, Bua S, Bonardi A, Al-Rashood ST, Hassan GS, Gratteri P, Abdel-Aziz HA, Supuran CT. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur J Med Chem 2018; 162:147-160. [PMID: 30445264 DOI: 10.1016/j.ejmech.2018.10.068] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023]
Abstract
Herein we report the design and synthesis of novel N-substituted isatins-SLC-0111 hybrids (6a-f and 9a-l). A structural extension approach was adopted via N-alkylation and N-benzylation of isatin moiety to enhance the tail hydrophobic interactions within the carbonic anhydrase (CA) IX active site. Thereafter, a hybrid pharmacophore approach was utilized via merging the pharmacophoric elements of isatin and SLC-0111 in a single chemical framework. As planned, a substantial improvement of inhibitory profile of the target hybrids (KIs: 4.7-86.1 nM) towards hCA IX in comparison to N-unsubstituted leads IVa-c (KIs: 192-239 nM), was achieved. Molecular docking of the designed hybrids in CA IX active site unveiled, as planned, the ability of N-alkylated and N-benzylated isatin moieties to accommodate in a wide hydrophobic pocket formed by T73, P75, P76, L91, L123 and A128, establishing strong van der Waals interactions. Hybrid 6c displayed good anti-proliferative activity under hypoxic conditions towards breast cancer MDA-MB-231 and MCF-7 cell lines (IC50 = 7.43 ± 0.28 and 12.90 ± 0.34 μM, respectively). Also, 6c disrupted the MDA-MB-231 cell cycle via alteration of the Sub-G1 phase and arrest of G2-M stage. Additionally, 6c displayed significant increase in the percent of annexinV-FITC positive apoptotic cells from 1.03 to 18.54%. Furthermore, 6c displayed potent VEGFR-2 inhibitory activity (IC50 = 260.64 nM). Collectively, these data suggest 6c as a promising lead molecule for the development of effective anticancer agents.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Radwan S El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
49
|
Meleddu R, Distinto S, Cottiglia F, Angius R, Gaspari M, Taverna D, Melis C, Angeli A, Bianco G, Deplano S, Fois B, Del Prete S, Capasso C, Alcaro S, Ortuso F, Yanez M, Supuran CT, Maccioni E. Tuning the Dual Inhibition of Carbonic Anhydrase and Cyclooxygenase by Dihydrothiazole Benzensulfonamides. ACS Med Chem Lett 2018; 9:1045-1050. [PMID: 30344915 DOI: 10.1021/acsmedchemlett.8b00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
A novel series of of 4-[(3-phenyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulfonamides (EMAC10111a-g) was synthesized and assayed toward both human carbonic anhydrase isozymes I, II, IX, and XII and cyclooxygenase isoforms. The majority of these derivatives preferentially inhibit hCA isoforms II and XII and hCOX-2 isozyme, indicating that 2,3,4-trisubstituted 2,3-dihydrothiazoles are a promising scaffold for the inhibition of hCA isozymes and of hCOX-2 enzyme. The nature of the substituent at the dihydrothiazole ring position 4 influenced the activity and selectivity toward both enzyme families. EMAC10111g resulted as the best performing compound toward both enzyme families and exhibited preferential activity toward hCA XII and hCOX-2 isozymes.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Rossella Angius
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, 09010 Pula, Cagliari, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Taverna
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Claudia Melis
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Giulia Bianco
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Matilde Yanez
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
50
|
Abo-Ashour MF, Eldehna WM, Nocentini A, Ibrahim HS, Bua S, Abou-Seri SM, Supuran CT. Novel hydrazido benzenesulfonamides-isatin conjugates: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2018; 157:28-36. [PMID: 30071407 DOI: 10.1016/j.ejmech.2018.07.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 12/15/2022]
Abstract
As a part of our ongoing efforts towards developing novel carbonic anhydrase inhibitors based on the isatin moiety, herein we report the synthesis and biological evaluation of novel sulfonamides (5a-h, 10a-g and 11a-c) incorporating substituted 2-indolinone moiety (as tail) linked to benzenesulfonamide (as zinc anchoring moiety) through a hydrazide linker. The synthesized sulfonamides were evaluated in vitro for their inhibitory activity against the following human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, IX and XII. All these isoforms were inhibited by the sulfonamides reported here in variable degrees. hCA I was inhibited with KIs in the range of 671.8: 3549.5 nM, hCA II in the range of 36.8: 892.4 nM; hCA IX in the range of 8.9: 264.5 nM, whereas hCA XII in the range of 9.0: 78.1 nM. In particular, compound 10b emerged as a single-digit nanomolar hCA IX and XII inhibitor (8.9 and 9.2 nM, respectively). Molecular docking studies carried out for compound 10b within the hCA II, IX and XII active sites allowed us to rationalize the obtained inhibition results.
Collapse
Affiliation(s)
- Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-kasr Elaini Street, Cairo, Egypt.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|