1
|
Zhang Z, Zhu J, Wang J, Chen J, Pang Y, Wu C. A novel bakuchiol aminoguanidine derivative induces apoptosis in human triple-negative breast cancer cells. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:509-518. [PMID: 39183056 PMCID: PMC11375495 DOI: 10.3724/zdxbyxb-2024-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To synthesize new bakuchiol aminoguanidine derivatives and test their effect on viability and apoptosis of human triple-negative breast cancer (TNBC) cells. METHODS Two bakuchiol derivatives 1 and 2 were obtained by formylation and Shiff base reaction of bakuchol. The structures of derivatives 1 and 2 were identified by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analysis. Human TNBC MDA-MB-231 cells were treated with bakuchiol and its derivatives and cell viability was measured by MTT assay. Apoptosis was detected by fluorescence microscopy and flow cytometry with Annexin V-FITC/PI staining. The expressions of apoptosis-related proteins were analyzed with Western blotting. The JC-1 and reactive oxygen species (ROS) assay kits were used to determine the effect of new bakuchiol derivatives on mitochondrial function. RESULTS Based on spectroscopic analysis, a new bakuchiol schiff base derivative was elucidated as 2-{(E)-5-[(S, E)-3, 7-dimethyl-3-vinylocta-1, 6-dien-1-yl]-2-hydroxylbenzylidene} hydrazine-1-carboximidamide (derivative 2). Bakuchiol and its derivatives 1 and 2 all showed cytotoxic activity against the MDA-MB-231 cells. Derivative 2 exhibited the most potent cytotoxic activity to MDA-MB-231 cell with IC50 of (13.11±1.09), (6.91±1.78), and (2.23±1.32) μmol/L after 24, 48, and 72 h. It had low toxicity to normal mouse liver (AML-12) cells with IC50 of (31.23±1.58) μmol/L at 72 h. Fluorescence microscopy and flow cytometry demonstrated apoptosis in breast cancer cells after treating with derivative 2 in a concentration dependent manner. Western blotting showed that after derivative 2 treatment, the expression of apoptosis-related proteins cytochrome C, cleaving caspase-3 and Bax/Bcl-2 radio in MDA-MB-231 cells increased; in addition, apoptosis was associated with the decreased mitochondrial membrane potential and increased reactive oxygen species accumulation. CONCLUSIONS The novel bakuchiol aminoguanidine derivative (derivative 2) is capable of inducing apoptosis in MDA-MB-231 cells, but has low toxicity to normal liver cells, suggesting that it may be used as a lead compound for an anti-TNBC agent.
Collapse
Affiliation(s)
- Zhenhai Zhang
- Department of Emergency Surgery, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
| | - Jing Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Jian'an Wang
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Jie Chen
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Yingying Pang
- Department of Respiratory Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China.
| | - Chengzhu Wu
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, Anhui Province, China.
- Anhui Provincial Biochemical Pharmaceutical Technology Research Center, Bengbu 233030, Anhui Province, China.
| |
Collapse
|
2
|
Peslalz P, Vorbach A, Bleisch A, Liberini E, Kraus F, Izzo F, Brötz-Oesterhelt H, Götz F, Plietker B. Chemical Predictive Modelling and Natural Product-based Divergent Synthesis - Design of Type B PPAPs with Nanomolar Activities against MRSA. Chemistry 2024; 30:e202401955. [PMID: 38860572 DOI: 10.1002/chem.202401955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
In response to the pressing global challenge of antibiotic resistance, time efficient design and synthesis of novel antibiotics are of immense need. Polycyclic polyprenylated acylphloroglucinols (PPAP) were previously reported to effectively combat a range of gram-positive bacteria. Although the exact mode of action is still not clear, we conceptualized a late-stage divergent synthesis approach to expand our natural product-based PPAP library by 30 additional entities to perform SAR studies against methicillin-resistant Staphylococcus aureus (MRSA). Although at this point only data from cellular assays are available and understanding of molecular drug-target interactions are lacking, the experimental data were used to generate 3D-QSAR models via an artificial intelligence training and to identify a common pharmacophore model. The experimentally validated QSAR model enabled the estimation of anti-MRSA activities of a virtual compound library consisting of more than 100,000 in-silico generated B PPAPs, out of which the 20 most promising candidates were synthesized. These novel PPAPs revealed significantly improved cellular activities against MRSA with growth inhibition down to concentrations less than 1 μm.
Collapse
Affiliation(s)
- Philipp Peslalz
- Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Andreas Vorbach
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Cluster of Excellence Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Anton Bleisch
- Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Elisa Liberini
- Cluster of Excellence Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Frank Kraus
- Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Flavia Izzo
- Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Cluster of Excellence Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Cluster of Excellence Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Bernd Plietker
- Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, 01069, Dresden, Germany
| |
Collapse
|
3
|
Shoji M, Esumi T, Masuda T, Tanaka N, Okamoto R, Sato H, Watanabe M, Takahashi E, Kido H, Ohtsuki S, Kuzuhara T. Bakuchiol targets mitochondrial proteins, prohibitins and voltage-dependent anion channels: New insights into developing antiviral agents. J Biol Chem 2024; 300:105632. [PMID: 38199573 PMCID: PMC10862021 DOI: 10.1016/j.jbc.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Tomoyuki Esumi
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Narue Tanaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Risa Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hinako Sato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mihiro Watanabe
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
4
|
Adarsh Krishna TP, Edachery B, Athalathil S. Bakuchiol - a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches. RSC Adv 2022; 12:8815-8832. [PMID: 35424800 PMCID: PMC8985110 DOI: 10.1039/d1ra08771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bakuchiol is an emblematic meroterpene class of natural product extracted from Psoralea corylifolia. It has been reported to possess a broad range of biological and pharmacological properties and is considered as a leading biomolecule. It is highly desirable to devise an efficient approach to access bakuchiol and its chemical biology applications. In this review we provided structural features, isolation methods, various chemical routes and late-stage functionalization (LSF) approaches for bakuchiol and its derivatives. Moreover, this review encompasses the structure-activity relationships (SAR), value-added contributions and future perspectives of bakuchiol.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Baldev Edachery
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Sunil Athalathil
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| |
Collapse
|
5
|
Ma Q, Bian M, Gong G, Bai C, Liu C, Wei C, Quan ZS, Du HH. Synthesis and Evaluation of Bakuchiol Derivatives as Potent Anti-inflammatory Agents in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:15-24. [PMID: 35000392 DOI: 10.1021/acs.jnatprod.1c00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bakuchiol, a prenylated phenolic monoterpene derived from the fruit of Psoralen corylifolia L. (Buguzhi), is widely used to treat tumors, viruses, inflammation, and bacterial infections. In this study, we designed and synthesized 30 bakuchiol derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide-induced RAW264.7 cells. To evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO), interleukin-6, and tumor necrosis factor-α production. Based on the screening results, compound 7a displayed more pronounced activity than bakuchiol and celecoxib. Furthermore, the mechanistic studies indicated that 7a inhibited pro-inflammatory cytokine release, which was correlated with activation of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway and blockade of the nuclear factor-κB/mitogen-activated protein kinase signaling pathway. The in vivo anti-inflammatory activity in zebrafish indicated that 7a inhibited NO and reactive oxygen species production in a dose-dependent manner. These results indicate that 7a is a potential candidate for development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Qianqian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Guohua Gong
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- First Clinical Medical of Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, People's Republic of China
| | - Chunmei Bai
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Chunyan Liu
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- School of Pharmacy, Yanbian University, Yanji City 133002, Jilin, People's Republic of China
| | - Chengxi Wei
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| | - Zhe-Shan Quan
- School of Pharmacy, Yanbian University, Yanji City 133002, Jilin, People's Republic of China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, Inner Mongolia, People's Republic of China
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao 028000, People's Republic of China
| |
Collapse
|
6
|
Beeby E, Magalhães M, Lemos MFL, Pires IM, Cabral C. Cytotoxic effects of Ridolfia segetum (L.) Moris phytoproducts in cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113515. [PMID: 33190784 DOI: 10.1016/j.jep.2020.113515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The past few years have witnessed an increasing interest in essential oils (EOs) as potential therapeutic agents against a wide variety of pathologies, including cancer. EOs extracted from Ridolfia segetum (L.) Moris (R. segetum) are a clear example of a phytoproduct with therapeutic applications, as it is widely used in traditional medicine due to its antioxidant and anti-inflammatory properties, and these properties were already validated by previous studies. Although, it is well established that inflammation is a key hallmark of cancer, with a key role promoting tumorigenesis, and being chronic inflammation often associated with tumorigenic processes, there are no previous studies regarding the assessment of the antitumoural potential of R. segetum EOs. AIM OF THE STUDY The present study intends to be the first to evaluate the antitumoural proprieties of R. segetum EO phytoproducts in cancer cell models. MATERIALS AND METHODS For this, R. segetum EOs were extracted from plants collected at either flowering (RS_Fl) or fruiting (RS_Fr) stage. The impact on proliferation and viability of treatment with R. segetum EO extracts was assessed using in vitro 2D and 3D models. RESULTS Both R. segetum EOs presented effective antiproliferative/viability effects, evidence noted by low IC50 values in 2D models, and significant reduction of spheroid size in 3D in vitro models. Mechanistically, treatment with R. segetum EOs was associated with an altered G1 (associated with p21 stabilisation), and subsequent induction of apoptosis. CONCLUSIONS Overall, these results indicate that R. segetum EOs have potential as suitable antitumoural therapeutic agents.
Collapse
Affiliation(s)
- Ellie Beeby
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, HU6 7RX, UK
| | - Mariana Magalhães
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Isabel M Pires
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, HU6 7RX, UK.
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
7
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Ling T, Hadi V, Bollinger J, Rivas F. Identification of rapid access to polycyclic systems via a base-catalyzed cascade cyclization reaction and their biological evaluation. Bioorg Chem 2020; 99:103846. [PMID: 32334195 PMCID: PMC7329093 DOI: 10.1016/j.bioorg.2020.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022]
Abstract
A base-mediated cascade reaction between malonate esters and acrolein was developed to access complex polycyclic systems. This novel tandem reaction enables the simultaneous generation of up to seven new bonds and at least three new stereogenic centers. Mechanistic studies indicate a series of nucleophilic 1,4 and 1,6 Michael addition reactions occur, followed by an aldol condensation reaction, culminating in the formation of three fused rings. The compounds were characterized by NMR studies and the stereochemistry was confirmed by X-ray analysis. The ability to generate multigram quantities of such complex molecular scaffolds renders the method promising for medicinal chemistry campaigns. Herein, we also demonstrate that the lead compounds display promising anti-proliferative activities against human cancer cell models.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Victor Hadi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - John Bollinger
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
9
|
Hamulić D, Stadler M, Hering S, Padrón JM, Bassett R, Rivas F, Loza-Mejía MA, Dea-Ayuela MA, González-Cardenete MA. Synthesis and Biological Studies of (+)-Liquiditerpenoic Acid A (Abietopinoic Acid) and Representative Analogues: SAR Studies. JOURNAL OF NATURAL PRODUCTS 2019; 82:823-831. [PMID: 30840453 DOI: 10.1021/acs.jnatprod.8b00884] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The first semisynthesis and biological profiling of the new abietane diterpenoid (+)-liquiditerpenoic acid A (abietopinoic acid) (7) along with several analogues are reported. The compounds were obtained from readily available methyl dehydroabietate (8), which was derived from (-)-abietic acid (1). Biological comparison was conducted according to the different functional groups, leading to some basic structure-activity relationships (SAR). In particular, the ferruginol and sugiol analogues 7 and 10-16 were characterized by the presence of an acetylated phenolic moiety, an oxidized C-7 as a carbonyl, and a different functional group at C-18 (methoxycarbonyl, carboxylic acid, and hydroxymethyl). The biological properties of these compounds were investigated against a panel of six representative human tumor solid cells (A549, HBL-100, HeLa, SW1573, T-47D, and WiDr), five leukemia cellular models (NALM-06, KOPN-8, SUP-B15, UoCB1, and BCR-ABL), and four Leishmania species ( L. infantum, L. donovani, L. amazonensis, and L. guyanensis). A molecular docking study pointed out some targets in these Leishmania species. In addition, the ability of the compounds to modulate GABAA receptors (α1β2γ2s) is also reported. The combined findings indicate that these abietane diterpenoids offer a source of novel bioactive molecules with promising pharmacological properties from cheap chiral-pool building blocks.
Collapse
Affiliation(s)
- Damir Hamulić
- Instituto de Tecnología Química (UPV-CSIC) , Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n , 46022 Valencia , Spain
| | - Marco Stadler
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , A-1090 Vienna , Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , A-1090 Vienna , Austria
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN) , Universidad de La Laguna , C/Astrofísico Francisco Sanchez 2 , La Laguna 38200 , Tenerife , Spain
| | - Rachel Bassett
- Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Marco A Loza-Mejía
- Facultad de Ciencias Químicas , Universidad La Salle México , Avenue Benjamín Franklin 45 , Condesa , 06140 Ciudad de México , Mexico
| | - M Auxiliadora Dea-Ayuela
- Departamento de Farmacia , Universidad CEU Cardenal Herrera , Avenida Seminario s/n , 46113 Moncada (Valencia) , Spain
| | - Miguel A González-Cardenete
- Instituto de Tecnología Química (UPV-CSIC) , Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n , 46022 Valencia , Spain
| |
Collapse
|
10
|
Synthesis and Evaluation of Bakuchiol Derivatives as Potential Anticancer Agents. Molecules 2018; 23:molecules23030515. [PMID: 29495380 PMCID: PMC6017251 DOI: 10.3390/molecules23030515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
A series of bakuchiol derivatives were synthesized and evaluated for their anti-proliferative and the inhibitory activities on SMMC7721 cell line migration using PX-478 as a positive control. The results showed (S,E)-4-(7-methoxy-3,7-dimethyl-3-vinyloct-1-en-1-yl)phenol (10) to have the best activity among the tested compounds, which included PX-478. In addition, compound 10 showed greater inhibitory activity than that of bakuchiol in the transwell migration and invasion assays at every dose. In western blotting tests, compound 10 showed a promising ability to downregulate the expression of HIF-1α and its associated downstream proteins MMP-2 and MMP-9. Moreover, this effect was dose-dependent and could represent a possible mechanism of action for the anticancer activity of compound 10.
Collapse
|
11
|
Cavallaro V, Řezníčková E, Jorda R, Alza NP, Murray AP, Kryštof V. Semisynthetic Esters of 17-Hydroxycativic Acid with in Vitro Cytotoxic Activity against Leukemia Cell Lines. Biol Pharm Bull 2017; 40:1923-1928. [PMID: 29093339 DOI: 10.1248/bpb.b17-00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of sixteen semisynthetic 17-hydroxycativic acid esters with alcohols containing a tertiary amine group was evaluated for their in vitro cytotoxicity against two human cancer cell lines, THP-1 and U937, and for their effects on the cell cycle and cell death. While 17-hydroxycativic acid itself is not cytotoxic, all the esters displayed cytotoxic activity, with 50% growth inhibition (GI50) values ranging between 3.2 and 23.1 µM. In general, the most potent compounds in both cell lines were esters with four carbon long alcohol residues. There was no clear relationship between the identity of the terminal secondary amine and the activity of the compound. Experiments using the 6-(pyrrolidin-1-yl)pentyl ester, 2c, revealed that this compound activates caspases-3/7 and causes poly(ADP-ribose)polymerase 1 (PARP-1) fragmentation in THP-1 and U937 cells, indicating the induction of apoptotic cell death. These results suggest that further investigation into the anticancer activity of diterpene derivatives and other labdane diterpenes may be fruitful.
Collapse
Affiliation(s)
- Valeria Cavallaro
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET
| | - Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR
| | - Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR
| | - Natalia Paola Alza
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET
| | - Ana Paula Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR
| |
Collapse
|
12
|
Gupta N, Sharma S, Raina A, Bhushan S, Malik FA, Sangwan PL. Synthesis of Novel Mannich Derivatives of Bakuchiol as Apoptotic Inducer through Caspase Activation and PARP-1 Cleavage in A549 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201700504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nidhi Gupta
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, J ammu- 180001 India
| | - Sonia Sharma
- Cancer Pharmacology Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| | - Arun Raina
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, J ammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| | - Shashi Bhushan
- Cancer Pharmacology Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu- 180001 India
- Phytopharmaceutical Division; Indian Pharmacopoeia Commission; Raj Nagar Ghaziabad UP-201002
| | - Fayaz A. Malik
- Cancer Pharmacology Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| | - Payare L. Sangwan
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, J ammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| |
Collapse
|
13
|
Gupta N, Sharma S, Raina A, Dangroo NA, Bhushan S, Sangwan P. Synthesis and anti-proliferative evaluation of novel 3,4-dihydro-2H-1,3-oxazine derivatives of bakuchiol. RSC Adv 2016. [DOI: 10.1039/c6ra23757f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Anti-proliferation study of new bakuchiol analogs revealed the anti-pancreatic potential of aliphatic oxazine derivatives of bakuchiol that activate caspase-9 and -3 and cleave PARP-1.
Collapse
Affiliation(s)
- Nidhi Gupta
- Bioorganic Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
| | - Sonia Sharma
- Cancer Pharmacology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Arun Raina
- Bioorganic Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Nisar A. Dangroo
- Bioorganic Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
| | - Shashi Bhushan
- Cancer Pharmacology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Payare L. Sangwan
- Bioorganic Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|