1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Balcer E, Giebułtowicz J, Sochacka M, Ruszczyńska A, Muszyńska M, Bulska E. Investigation of the Impact of L-Phenylalanine and L-Tyrosine Pre-Treatment on the Uptake of 4-Borono-L-Phenylalanine in Cancerous and Normal Cells Using an Analytical Approach Based on SC-ICP-MS. Molecules 2023; 28:6552. [PMID: 37764328 PMCID: PMC10534874 DOI: 10.3390/molecules28186552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Boron has gained significant attention in medical research due to its B-10 isotope's high cross section for the reaction with thermal neutrons, generating ionizing particles that can eliminate cancer cells, propelling the development of boron neutron capture therapy (BNCT) for cancer treatment. The compound 4-borono-L-phenylalanine (BPA) has exhibited potential in BNCT clinical trials. Enhancing BPA uptake in cells involves proposing L-amino acid preloading. This study introduces a novel analytical strategy utilizing ICP-MS and single cell ICP-MS (SC-ICP-MS) to assess the effectiveness of L-tyrosine and L-phenylalanine preloading on human non-small cell lung carcinoma (A549) and normal Chinese hamster lung fibroblast (V79-4) models, an unexplored context. ICP-MS outcomes indicated that L-tyrosine and L-phenylalanine pre-treatment increased BPA uptake in V79-4 cells by 2.04 ± 0.74-fold (p = 0.000066) and 1.46 ± 0.06-fold (p = 0.000016), respectively. Conversely, A549 cells manifested heightened BPA uptake solely with L-tyrosine preloading, with a factor of 1.24 ± 0.47 (p = 0.028). BPA uptake remained higher in A549 compared to V79-4 regardless of preloading. SC-ICP-MS measurements showcased noteworthy boron content heterogeneity within A549 cells, signifying diverse responses to BPA exposure, including a subset with notably high BPA uptake. This study underscores SC-ICP-MS's utility in precise cellular boron quantification, validating cellular BPA uptake's heterogeneity.
Collapse
Affiliation(s)
- Emilia Balcer
- Radiochemistry Team, Reactor Research Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, Sołtana 7, Świerk, 05-400 Otwock, Poland;
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Małgorzata Sochacka
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.R.); (M.M.); (E.B.)
| | - Magdalena Muszyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.R.); (M.M.); (E.B.)
- Pro-Environment Polska Sp. z o.o., Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.R.); (M.M.); (E.B.)
| |
Collapse
|
3
|
Wang N, Kong Y, Li J, Hu Y, Li X, Jiang S, Dong C. Synthesis and application of phosphorylated saccharides in researching carbohydrate-based drugs. Bioorg Med Chem 2022; 68:116806. [PMID: 35696797 DOI: 10.1016/j.bmc.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.
Collapse
Affiliation(s)
- Ning Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yuanfang Kong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Jieming Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yulong Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Xiaofei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China.
| |
Collapse
|
4
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
5
|
Druzina AA, Grammatikova NE, Zhidkova OB, Nekrasova NA, Dudarova NV, Kosenko ID, Grin MA, Bregadze VI. Synthesis and Antibacterial Activity Studies of the Conjugates of Curcumin with closo-Dodecaborate and Cobalt Bis(Dicarbollide) Boron Clusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092920. [PMID: 35566270 PMCID: PMC9101702 DOI: 10.3390/molecules27092920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
A series of novel conjugates of cobalt bis(dicarbollide) and closo-dodecaborate with curcumin were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition. These conjugates were tested for antibacterial activity. It was shown that all derivatives are active when exposed to Bacillus cereus ATCC 10702 and are not active against Gram-negative microorganisms and Candida albicans at the maximum studied concentration of 1000 mg/L. The conjugate of alkynyl-curcumin with azide synthesized from the tetrahydropyran derivative of cobalt bis(dicarbollide) exhibited activity against Gram-positive microorganisms: Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and the clinical isolate MRSA 17, that surpassed curcumin by 2–4 times.
Collapse
Affiliation(s)
- Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
- Correspondence: ; Tel.: +7-926-404-5566
| | | | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| | - Natalia A. Nekrasova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Nadezhda V. Dudarova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| | - Irina D. Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| | - Mikhail A. Grin
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| |
Collapse
|
6
|
Cobalt Bis-Dicarbollide Enhances Antibiotics Action towards Staphylococcus epidermidis Planktonic Growth Due to Cell Envelopes Disruption. Pharmaceuticals (Basel) 2022; 15:ph15050534. [PMID: 35631360 PMCID: PMC9147877 DOI: 10.3390/ph15050534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2–2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.
Collapse
|
7
|
Das BC, Nandwana NK, Das S, Nandwana V, Shareef MA, Das Y, Saito M, Weiss LM, Almaguel F, Hosmane NS, Evans T. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules 2022; 27:2615. [PMID: 35565972 PMCID: PMC9104566 DOI: 10.3390/molecules27092615] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure-activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer's agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Louis M. Weiss
- Department of Pathology, Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| |
Collapse
|
8
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
9
|
Avdeeva VV, Garaev TM, Malinina EA, Zhizhin KY, Kuznetsov NT. Physiologically Active Compounds Based on Membranotropic Cage Carriers–Derivatives of Adamantane and Polyhedral Boron Clusters (Review). RUSS J INORG CHEM+ 2022. [PMCID: PMC8824546 DOI: 10.1134/s0036023622010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Data on compounds based on cage structures―boron clusters (polyhedral boron hydrides, carboranes, metallacarboranes) and compounds of the adamantane series, which possess physiological activity, have been generalized. The main emphasis is placed on the antiviral activity of the compounds. The mechanism of the possible action of the replication inhibitors of influenza A virus strains is considered, the molecular model of viroporin inhibitors is discussed. The proposed model consists of a cage hydrophobic core that performs the function of a membranotropic carrier (a boron cluster or adamantane fragment), into which physiologically active functional groups are introduced. The relationship between the structure of the cage compound with the introduced substitute and the biologically active properties of this molecular structure has been analyzed.
Collapse
Affiliation(s)
- V. V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. M. Garaev
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - E. A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - K. Yu. Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N. T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Paradowska E, Studzińska M, Jabłońska A, Lozovski V, Rusinchuk N, Mukha I, Vitiuk N, Leśnikowski ZJ. Antiviral Effect of Nonfunctionalized Gold Nanoparticles against Herpes Simplex Virus Type-1 (HSV-1) and Possible Contribution of Near-Field Interaction Mechanism. Molecules 2021; 26:molecules26195960. [PMID: 34641506 PMCID: PMC8512028 DOI: 10.3390/molecules26195960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The antiviral activity of nonfunctionalized gold nanoparticles (AuNPs) against herpes simplex virus type-1 (HSV-1) in vitro was revealed in this study. We found that AuNPs are capable of reducing the cytopathic effect (CPE) of HSV-1 in Vero cells in a dose- and time-dependent manner when used in pretreatment mode. The demonstrated antiviral activity was within the nontoxic concentration range of AuNPs. Interestingly, we noted that nanoparticles with smaller sizes reduced the CPE of HSV-1 more effectively than larger ones. The observed phenomenon can be tentatively explained by the near-field action of nanoparticles at the virus envelope. These results show that AuNPs can be considered as potential candidates for the treatment of HSV-1 infections.
Collapse
Affiliation(s)
- Edyta Paradowska
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Łódź, Poland; (E.P.); (M.S.); (A.J.)
| | - Mirosława Studzińska
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Łódź, Poland; (E.P.); (M.S.); (A.J.)
| | - Agnieszka Jabłońska
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Łódź, Poland; (E.P.); (M.S.); (A.J.)
| | - Valeri Lozovski
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01033 Kyiv, Ukraine;
- Correspondence: (V.L.); (Z.J.L.)
| | - Natalia Rusinchuk
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01033 Kyiv, Ukraine;
| | - Iuliia Mukha
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov St., 03164 Kyiv, Ukraine; (I.M.); (N.V.)
| | - Nadiia Vitiuk
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov St., 03164 Kyiv, Ukraine; (I.M.); (N.V.)
| | - Zbigniew J. Leśnikowski
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Łódź, Poland; (E.P.); (M.S.); (A.J.)
- Correspondence: (V.L.); (Z.J.L.)
| |
Collapse
|
11
|
Fink K, Uchman M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213684] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Horáček O, Papajová-Janetková M, Grüner B, Lochman L, Štěrbová-Kovaříková P, Vespalec R, Kučera R. The first chiral HPLC separation of dicarba-nido-undecarborate anions and their chromatographic behavior. Talanta 2021; 222:121652. [DOI: 10.1016/j.talanta.2020.121652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
|
13
|
Różycka D, Korycka-Machała M, Żaczek A, Dziadek J, Gurda D, Orlicka-Płocka M, Wyszko E, Biniek-Antosiak K, Rypniewski W, Olejniczak AB. Novel Isoniazid-Carborane Hybrids Active in Vitro Against Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13:ph13120465. [PMID: 33333865 PMCID: PMC7765321 DOI: 10.3390/ph13120465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is a severe infectious disease with high mortality and morbidity. The emergence of drug-resistant TB has increased the challenge to eliminate this disease. Isoniazid (INH) remains the key and effective component in the therapeutic regimen recommended by World Health Organization (WHO). A series of isoniazid-carborane derivatives containing 1,2-dicarba-closo-dodecaborane, 1,7-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane, or 7,8-dicarba-nido-undecaborate anion were synthesized for the first time. The compounds were tested in vitro against the Mycobacterium tuberculosis (Mtb) H37Rv strain and its mutant (DkatG) defective in the synthesis of catalase-peroxidase (KatG). N'-((7,8-dicarba-nido-undecaboranyl)methylidene)isonicotinohydrazide (16) showed the highest activity against the wild-type Mtb strain. All hybrids could inhibit the growth of the ΔkatG mutant in lower concentrations than INH. N'-([(1,12-dicarba-closo-dodecaboran-1yl)ethyl)isonicotinohydrazide (25) exhibited more than 60-fold increase in activity against Mtb DkatG as compared to INH. This compound was also found to be noncytotoxic up to a concentration four times higher than the minimum inhibitory concentration 99% (MIC99) value.
Collapse
Affiliation(s)
- Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Małgorzata Korycka-Machała
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Anna Żaczek
- Institute of Medical Sciences, Medical College, University of Rzeszow, 2A Kopisto Avenue, 35-959 Rzeszow, Poland;
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Dorota Gurda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Marta Orlicka-Płocka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Katarzyna Biniek-Antosiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Agnieszka B. Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
- Correspondence: ; Tel.: +48-42-272-36-37
| |
Collapse
|
14
|
Etse KS, Lamela LC, Zaragoza G, Pirotte B. Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione. ACTA ACUST UNITED AC 2020. [DOI: 10.5155/eurjchem.11.2.91-99.1973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The title compound 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione was obtained by reaction of thymine with 3-nitrobenzylbromide in the presence of cesium carbonate. Characterization of the product was achieved by NMR spectroscopy and its stability was probed in basic condition using UV-Visible analysis. Furthermore, the molecular structure was confirmed by X-ray diffraction analysis. The compound crystallizes in orthorhombic Pna21 space group with unit cell parameters a = 14.9594 (15) Å, b = 25.711 (3) Å, c = 4.5004 (4) Å, V = 1731.0 (3) Å3 and Z = 4. The crystal packing of the title compound is stabilized by intermolecular hydrogen bond, π···π and C−H···π stacking interactions. The intermolecular interactions were furthermore analyzed through the mapping of different Hirshfeld surfaces. The two-dimensional fingerprint revealed that the most important contributions to these surfaces come from O···H (37.1%), H···H (24%) and H···C/C···H (22.6%) interactions. The interaction energies stabilizing the crystal packing were calculated and were presented graphically as framework energy diagrams. Finally, the energy-framework analysis reveals that π···π and C−H···π interactions energies are mainly dispersive and are the most important forces in the crystal.
Collapse
Affiliation(s)
- Koffi Senam Etse
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Laura Comeron Lamela
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus VIDA, 15782 Santiago de Compostela, Spain
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| |
Collapse
|
15
|
Gul S, Khalil R, Zaheer Ul-Haq, Mubarak MS. Computational Overview of Mycobacterial Thymidine Monophosphate Kinase. Curr Pharm Des 2020; 26:1676-1681. [PMID: 32242781 DOI: 10.2174/1381612826666200403114152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) ranks among the diseases with the highest morbidity rate with significantly high prevalence in developing countries. Globally, tuberculosis poses the most substantial burden of mortality. Further, a partially treated tuberculosis patient is worse than untreated; they may lead to standing out as a critical obstacle to global tuberculosis control. The emergence of multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains, and co-infection of HIV further worsen the situation. The present review article discusses validated targets of the bacterial enzyme thymidine monophosphate kinase (TMPK). TMPKMTB enzyme belongs to the nucleoside monophosphate kinases (NMPKs) family. It is involved in phosphorylation of TMP to TDP, and TDP is phosphorylated to TTP. This review highlights structure elucidation of TMP enzymes and their inhibitors study on TMP scaffold, and it also discusses different techniques; including molecular docking, virtual screening, 3DPharmacophore, QSAR for finding anti-tubercular agents.
Collapse
Affiliation(s)
- Sana Gul
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | - Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | | |
Collapse
|
16
|
Doboszewski B, Nazarenko AY, Soares FDP. 1,3-Bis(2-oxoprop-yl)thymine. IUCRDATA 2020; 5:x200257. [PMID: 36340837 PMCID: PMC9462178 DOI: 10.1107/s2414314620002576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
In the title compound [systematic name: 5-methyl-1,3-bis-(2-oxoprop-yl)pyrimidine-2,4(1H,3H)-dione], C11H14N2O4, the two 2-oxopropyl groups are nearly perpendicular to the planar thymine unit. One methyl group of oxopropyl substituent is disordered. In the crystal, C-H⋯O inter-actions help to connect the mol-ecules into (001) layers.
Collapse
Affiliation(s)
- Bogdan Doboszewski
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Alexander Y. Nazarenko
- Chemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA
| | - Fábio da Paixão Soares
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| |
Collapse
|
17
|
Jian Y, Risseeuw MDP, Froeyen M, Song L, Cappoen D, Cos P, Munier-Lehmann H, van Calenbergh S. 1-(Piperidin-3-yl)thymine amides as inhibitors of M. tuberculosis thymidylate kinase. J Enzyme Inhib Med Chem 2019; 34:1730-1739. [PMID: 31822127 PMCID: PMC6920704 DOI: 10.1080/14756366.2019.1662790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A series of readily accessible 1-(piperidin-3-yl)thymine amides was designed, synthesised and evaluated as Mycobacterium tuberculosis TMPK (MtbTMPK) inhibitors. In line with the modelling results, most inhibitors showed reasonable MtbTMPK inhibitory activity. Compounds 4b and 4i were slightly more potent than the parent compound 3. Moreover, contrary to the latter, amide analogue 4g was active against the avirulent M. tuberculosis H37Ra strain (MIC50=35 µM). This finding opens avenues for future modifications.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mathy Froeyen
- Department of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lijun Song
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, Paris, France
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Różycka D, Leśnikowski ZJ, Olejniczak AB. Synthesis of boron cluster analogs of penicillin and their antibacterial activity. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Gozzi M, Schwarze B, Hey-Hawkins E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Today, medicinal chemistry is still clearly dominated by organic chemistry, and commercially available boron-based drugs are rare. In contrast to hydrocarbons, boranes prefer the formation of polyhedral clusters via delocalized 3c2e bonds, such as polyhedral dicarba-closo-dodecaborane(12) (closo-C2B10H12). These clusters have remarkable biological stability, and the three isomers, 1,2- (ortho), 1,7- (meta), and 1,12-dicarba-closo-dodecaborane(12) (para), have attracted much interest due to their unique structural features. Furthermore, anionic nido clusters ([7,8-C2B9H11]2−), derived from the neutral icosahedral closo cluster 1,2-dicarba-closo-dodecaborane(12) by deboronation followed by deprotonation are suitable ligands for transition metals and offer the possibility to form metallacarboranes, for example via coordination through the upper pentagonal face of the cluster. The isolobal analogy between the cyclopentadienyl(–1) ligand (Cp−) and [C2B9H11]2− clusters (dicarbollide anion, Cb2−) is the motivation in using Cb2− as ligand for coordination to a metal center to design compounds for various applications. This review focuses on potential applications of half- and mixed-sandwich-type transition metal complexes in medicine.
Collapse
Affiliation(s)
- Marta Gozzi
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Benedikt Schwarze
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany , Phone: +49-341-9736151, Fax: +49-341-9739319
| |
Collapse
|
20
|
Anderson KP, Mills HA, Mao C, Kirlikovali KO, Axtell JC, Rheingold AL, Spokoyny AM. Improved synthesis of icosahedral carboranes containing exopolyhedral B-C and C-C bonds. Tetrahedron 2019; 75:187-191. [PMID: 31303685 PMCID: PMC6625786 DOI: 10.1016/j.tet.2018.11.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carboranes are boron-rich molecular clusters possessing electronic characteristics that allow for orthogonal approaches to vertex-selective modifications. We report improved functionalization methods utilizing orthogonal chemistry to achieve efficient substitution at electron-rich B-vertices and electron-poor C-vertices of carborane. Functionalization of B-vertices with alkyl and (hetero)aryl groups using the corresponding Grignard reagents has been improved through the use of a Pd-based precatalyst featuring an electron-rich biaryl phosphine ligand, resulting in reduced reaction times. Importantly, this method is tolerant towards alkyl-based Grignard reagents containing β-hydrogens. Furthermore, a transition metal-free approach to the substitution of carborane C-vertices with (hetero)aryl substrates has been developed under nucleophilic aromatic substitution (SNAr) conditions. The selective substitution of carboranes afforded by these methods holds potential for the rational synthesis of heterofunctionalized boron clusters with substituents on both boron and carbon-based vertices.
Collapse
Affiliation(s)
- Kierstyn P. Anderson
- Department of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Harrison A. Mills
- Department of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Chantel Mao
- Department of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kent O. Kirlikovali
- Department of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan C. Axtell
- Department of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arnold L. Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Alexander M. Spokoyny
- Department of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Goszczyński TM, Fink K, Boratyński J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin Biol Ther 2019; 18:205-213. [PMID: 30063861 DOI: 10.1080/14712598.2018.1473369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Icosahedral boron clusters have unique properties useful in medicinal chemistry: rigidity, chemical stability, and three-dimensional aromaticity. Furthermore, these abiotic compounds have low toxicity and are stable in the biological environment. All these features ultimately give them the ability to interact with biological molecules in a different mode than organic compounds. AREAS COVERED In the present article, we aim to introduce boron clusters as a class of entities suitable for modifications of biomolecules to obtain a specific biological effect. We will focus on icosahedral boron clusters, as well as metallacarboranes, and their biological activity and interaction with the biological environment. EXPERT OPINION Boron clusters are suitable for altering structural and functional features of biomolecules and can be used in the development of new drugs and drug delivery systems. The high affinity of boron clusters, especially metallacarboranes, to albumin creates a new possibility to use them to optimize the pharmacokinetics of biologically active peptides. Boron clusters have high potential in biological and medicinal applications. Due to their peculiar properties, they can be used to optimize parameters critical for the biological activity of therapeutic substances and their affinity toward biological targets.
Collapse
Affiliation(s)
- Tomasz M Goszczyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Krzysztof Fink
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Janusz Boratyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| |
Collapse
|
22
|
Suthagar K, Jiao W, Munier-Lehmann H, Fairbanks AJ. Synthesis of sulfamide analogues of deoxthymidine monophosphate as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr Res 2018; 457:32-40. [PMID: 29348046 DOI: 10.1016/j.carres.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
Abstract
The recently discovered enzyme Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt), which catalyses the phosphorylation of deoxythymidine monophosphate (dTMP) to give deoxythymidine diphosphate (dTDP), is indispensable for the growth and survival of M. tuberculosis as it plays an essential role in DNA synthesis. Inhibition of TMPKmt is an attractive avenue for the development of novel anti-tuberculosis agents. Based on the premise that sulfamide may be a suitable isostere of phosphate, deoxythymidine analogues comprising various substituted sulfamides at C5' were modelled in silico into the active site of TMPKmt (PDB accession code: 1N5K) using induced-fit docking methods. A selection of modelled compounds was synthesized, and their activity as inhibitors of TMPKmt was evaluated. Three compounds showed competitive inhibition of TMPKmt in the micromolar range (10-50 μM). Compounds were tested in vitro for anti-mycobacterial activity against M. smegmatis: three compounds showed weak anti-mycobacterial activity (MIC 250 μg/mL).
Collapse
Affiliation(s)
- Kajitha Suthagar
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Wanting Jiao
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, 28 rue du Dr Roux, 75724, Paris Cedex 15, France; CNRS UMR3523, 28 rue du Dr Roux, France
| | - Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
23
|
Dąbrowska A, Matuszewski M, Zwoliński K, Ignaczak A, Olejniczak AB. Insight into lipophilicity of deoxyribonucleoside‑boron cluster conjugates. Eur J Pharm Sci 2018; 111:226-237. [DOI: 10.1016/j.ejps.2017.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/14/2023]
|
24
|
Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 138:501-513. [PMID: 28692915 DOI: 10.1016/j.ejmech.2017.06.051] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 06/25/2017] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) remains one of the most widespread and leading deadliest diseases, threats one-third of the world's population. Although numerous efforts have been undertaken to develop new anti-TB agents, only a handful of compounds have entered human trials in the past 5 decades. Triazoles including 1,2,3-triazole and 1,2,4-triazole are one of the most important classes of nitrogen containing heterocycles that exhibited various biological activities. Triazole derivatives are regarded as a new class of effective anti-TB candidates owing to their potential anti-TB potency. Thus, molecules containing triazole moiety may show promising in vitro and in vivo anti-TB activities and might be able to prevent the drug resistant to certain extent. This review outlines the advances in the application of triazole-containing hybrids as anti-TB agents, and discusses the structure-activity relationship of these derivatives.
Collapse
|
25
|
St-Coeur PD, Kinley S, Vogels CM, Decken A, Jr. Morin P, Westcott SA. Synthesis, characterization, and anticancer properties of iminophosphineplatinum(II) complexes containing boronate esters. CAN J CHEM 2017; 95:207-213. [DOI: 10.1139/cjc-2016-0570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Three new iminophosphines containing pinacol-derived boronate esters have been prepared and ligated to dichloridoplatinum(II) fragments. All compounds have been characterized fully, including an X-ray diffraction study carried out for the platinum complex 8, which is derived from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline. These three new platinum complexes, along with the non-boron containing control, have been examined for their initial cytotoxic properties against two glioma cell lines using the MTT method.
Collapse
Affiliation(s)
- Patrick-Denis St-Coeur
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Samantha Kinley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Pier Jr. Morin
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|