1
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ye S, Ma L, Chi Y, Liu N, Liu Y, Wei W, Niu Y, Zheng P, Yu J, Hai D. Targeting neutrophil dysfunction in acute lung injury: Insights from active components of Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156664. [PMID: 40121883 DOI: 10.1016/j.phymed.2025.156664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUNDS Acute lung injury (ALI) is a lethal condition characterized by uncontrolled pulmonary inflammatory responses, with high morbidity and mortality rates that pose a significant threat to patient health. The persistent retention of neutrophils in lung tissue and subsequent inflammatory damage represents a primary mechanism underlying the early onset of ALI disorders. In recent years, pharmaceutical research targeting these pathological processes has garnered considerable attention. Traditional Chinese medicines (TCM) and their active ingredients, known for their safety and stability, show promising potential in treating ALI through their ability to modulate neutrophil function via multiple pathways. PURPOSE This review examines the mechanisms of neutrophil involvement in the pathogenesis of ALI, investigates potential therapeutic targets and pathways through which Chinese medicines and their active ingredients regulate neutrophil function, and provides a theoretical foundation for developing novel clinical treatment strategies. METHODS A comprehensive literature search was conducted using multiple databases, including Science Direct, PubMed, Google Scholar, and Web of Science. Search terms included 'lung injury,' 'acute lung injury,' 'inflammatory lung injury,' 'inflammation,' 'active ingredient,' 'herbal,' 'traditional Chinese medicine,' 'mechanism,' 'drug,' and 'neutrophils.' The selected literature was systematically categorized and analyzed. RESULTS Our review reveals that TCM and active ingredients influence neutrophil function through four primary mechanisms to impede ALI progression: 1) reduction of neutrophil-mediated uncontrolled inflammatory responses by suppressing neutrophil hyperactivation and inhibiting neutrophil migration and infiltration; 2) attenuation of lung tissue inflammatory damage by inhibiting neutrophil-produced cytotoxic substances, including elastase granules, neutrophil extracellular traps (NETs), and reactive oxygen species (ROS); 3) suppression of inflammatory responses by decreasing the secretion of neutrophil-derived cytokines, such as interleukin (IL) -1β, IL-6 and tumor necrosis factor-alpha (TNF-α); and 4) enhancement of neutrophil phagocytosis and accelerate the removal of apoptotic neutrophils to eliminate harmful pathogens and promote late-stage tissue repair. These findings demonstrate that Chinese medicines and their active ingredients exhibit significant therapeutic potential in ALI disorders through the modulation of neutrophil function, providing a robust theoretical framework for their clinical applications. CONCLUSION Traditional Chinese medicines and their active ingredients demonstrate significant anti-inflammatory efficacy through multiple mechanisms of neutrophil function regulation, showing considerable promise for the treatment of ALI with broad clinical applications.
Collapse
Affiliation(s)
- Saiya Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yannan Chi
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China.
| | - Dongmei Hai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China.
| |
Collapse
|
3
|
Cai J, Zhong H, Luo J, Huang X, Xu Q, Li P. Inhalable multi-stimulus sensitive curcumin-alginate nanogels for scavenging reactive oxygen species and anti-inflammatory co-ordination to alleviate acute lung injury. Int J Biol Macromol 2024; 283:137816. [PMID: 39571867 DOI: 10.1016/j.ijbiomac.2024.137816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Acute lung injury (ALI) is one of the most common and extremely critical clinical conditions, which progresses with an inflammatory response and overproduction of reactive oxygen species (ROS), leading to oxidative damage to the lungs. Curcumin (Cur) has great potential in treating ALI due to its excellent antioxidant and anti-inflammatory effects. In this study, Cur and alginate were cross-linked by zinc ions and intermolecular hydrogen bonding to form an inhalable aqueous nanogel system to overcome Cur's low solubility and bioavailability. Cur-alginate (ZA-Cur) nanogels exhibited superior antioxidant properties and down-regulated inflammation-associated factors in vitro with controlled-release behavior under multi-stimulus conditions such as temperature, pH, and ions. Meanwhile, the nanogels system could effectively scavenge cellular ROS to repair oxidative stress damage. In a mice model of ALI, tracheal nebulised inhalation of ZA-Cur nanogels down-regulated the expression of inflammation-related genes such as TNF-α, IL-1β, and IL-6, as well as modulated MDA content and CAT activity to attenuate oxidative stress injury, showing promising lung-protective effects. In conclusion, this work developed inhalable ZA-Cur nanogels to decelerate the progression of lesions in ALI by scavenging intracellular ROS and alleviating inflammation simultaneously, which may be a promising strategy for treating ALI.
Collapse
Affiliation(s)
- Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyi Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jianwei Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinghai Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiuting Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
4
|
Ma Y, Wang X, Li X, Chen X, Teng Z, Wang X, Yang J, Liu G. COP-22 Alleviates D-Galactose-Induced Brain Aging by Attenuating Oxidative Stress, Inflammation, and Apoptosis in Mice. Mol Neurobiol 2024; 61:6708-6720. [PMID: 38347285 PMCID: PMC11339142 DOI: 10.1007/s12035-024-03976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 08/22/2024]
Abstract
Aging is a natural and inevitable process of organisms. With the intensification of population aging, research on aging has become a hot topic of global attention. The most obvious manifestation of human aging is the aging of brain function, which has been linked to the development of neurodegenerative diseases. In this study, COP-22, a mono-carbonyl curcumin derivative, was evaluated for its anti-aging ability, especially its ability to resist brain aging induced by D-galactose (D-gal) in mice. For brain protection, COP-22 could resist D-gal-induced oxidative stress by increasing the activity of antioxidative defense enzymes and enhancing antioxidant capacity in the brain tissue; COP-22 could improve the dysfunction of the cholinergic system by decreasing the increased activity of acetylcholinesterase and increasing the reduced content of acetylcholine induced by D-gal; and COP-22 could protect nerve cells of the brain. Further, western blot was used to determine related proteins of the brain. We found that COP-22 could effectively protect against brain injury (SIRT1, p53, p21, and p16) by inhibiting oxidative stress (Nrf2 and HO-1), inflammation (IL-6 and TNF-α), and apoptosis (Bax and caspase-3) in D-gal-induced aging mice. Additionally, COP-22 demonstrated the ability to reduce oxidative stress in serum and liver caused by D-gal, as well as relieve the damages in the liver and kidney induced by D-gal. These results indicated that COP-22 had potential anti-aging activity and could be used in the therapy of aging and aging-associated diseases like Alzheimer disease.
Collapse
Affiliation(s)
- Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xiaotong Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xi Chen
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Zhifeng Teng
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
5
|
Zhang J, Wang Z, Wang J, Zhuo X, Yu L, Han T, Song Y, Gai C, Zou Y, Meng Q, Chai X, Zhao Q. Total synthesis and structural modification of the dibenzylbutane lignan LCA as a potent anti-inflammatory agent against LPS-induced acute lung injury. Eur J Med Chem 2024; 268:116272. [PMID: 38402749 DOI: 10.1016/j.ejmech.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Acute lung injury (ALI) is a serious public health problem associated with high morbidity and mortality. However, few efficacious drugs are clinically available. Inhibition of proinflammatory cytokines is considered to be a promising method for the treatment of inflammatory diseases. Herein, the total synthesis of a dibenzylbutane lignan, 9'-O-di-(E)-feruloyl-meso-5,5'-dimethoxysecoisolariciresinol (LCA), was completed. A series of LCA derivatives were designed and synthesized, and their anti-inflammatory activities were evaluated. Derivative 14r significantly inhibited LPS-induced expression of NO and the proinflammatory cytokines TNF-α, IL-6, and IL-1β in RAW 264.7 cells and inhibited activation of the NF-κB pathway. Compound 14r reduced LPS-induced pulmonary inflammation and ALI in mice. It showed significant protective effects against LPS-induced ALI in mice and significantly reduced levels of proinflammatory cytokines in serum and bronchoalveolar lavage fluid. The ratio of wet weight to dry weight of lung tissue was normalized by compound 14r, which was consistent with suppression of neutrophil infiltration and production of proinflammatory cytokines. Compound 14r reduced the mRNA expression of some proinflammatory cytokines, improved histopathologic changes, and reduced macrophage infiltration in lung tissues. Collectively, these results suggest a new series of LCA derivatives that could be promising anti-inflammatory agents for ALI treatment.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Zhen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Jing Wang
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiaobin Zhuo
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Luyao Yu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Song
- Navy Medical Center, Second Military Medical University, Shanghai, 200433, China
| | - Conghao Gai
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Zou
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qingjie Zhao
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Chen J, Zheng Z, Li M, Cao C, Zhou X, Wang B, Gan X, Huang Z, Liu Y, Huang W, Liang F, Chen K, Zhao Y, Wang X, Wu J, Lin L. Design, synthesis and evaluation of monoketene compounds as novel potential Parkinson's disease agents by suppressing ER stress via AKT. Bioorg Chem 2023; 136:106543. [PMID: 37119784 DOI: 10.1016/j.bioorg.2023.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Curcumin is identified that it has the potential to treat Parkinson's disease (PD), but its instability limits its further application in clinic. The mono-carbonyl analogs of curcumin (MACs) with diketene structure can effectively improve its stability, but it is highly toxic. In the present study, a less cytotoxic and more stable monoketene MACs skeleton S2 was obtained, and a series of monoketene MACs were synthesized by combining 4-hydroxy-3‑methoxy groups of curcumin. In the 6-OHDA-induced PD's model in-vitro, some compounds exhibited significant neurotherapeutic effect. The quantitative structure-activity relationship (QSAR) model established by the random forest algorithm (RF) for the cell viability rate of above compounds showed that the statistical results are good (R2 = 0.883507), with strong reliability. Among all compounds, the most active compound A4 played an important role in neuroprotection in the PD models both in vitro and in vivo by activating AKT pathway, and then inhibiting the apoptosis of cells caused by endoplasmic reticulum (ER) stress. In the PD model in-vivo, compound A4 significantly improved survival of dopaminergic neurons and the contents of neurotransmitters. It also enhanced the retention of nigrostriatal function which was better than the effect in the mice treated by Madopar, a classical clinical drug for PD. In summary, we screened out the compound A4 with high stability, less cytotoxic monoketene compounds. And these founding provide evidence that the compound A4 can protect dopaminergic neurons via activating AKT and subsequently suppressing ER stress in PD.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mingqi Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chengkun Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuli Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bozhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Gan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yugang Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 315020, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 315020, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Bhandari SV, Kuthe P, Patil SM, Nagras O, Sarkate AP. A Review: Exploring Synthetic Schemes and Structure-activity Relationship (SAR) Studies of Mono-carbonyl Curcumin Analogues for Cytotoxicity Inhibitory Anticancer Activity. Curr Org Synth 2023; 20:821-837. [PMID: 36703591 DOI: 10.2174/1570179420666230126142238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cancer is the major cause of death globally. Cancer can be treated with naturally occurring Curcumin nuclei. Curcumin has a wide range of biological actions, including anti-inflammatory and anti-cancer properties. Even though it is an effective medicinal entity, it has some limitations such as instability at physiological pH and a weak pharmacokinetic profile due to the β-diketone moiety present in it. To overcome this drawback, research was carried out on monoketone moieties in curcumin, popularly known as mono-carbonyl curcumin. OBJECTIVE The present review focuses on different synthetic schemes and Mono-carbonyl curcumin derivative's Structure-Activity Relationship (SAR) as a cytotoxic inhibitory anticancer agent. The various synthetic schemes published by researchers were compiled. METHODS Findings of different researchers working on mono-carbonyl curcumin as an anticancer have been reviewed, analyzed and the outcomes were summarized. RESULTS The combination of all of these approaches serves as a one-stop solution for mono-carbonyl curcumin synthesis. The important groups on different positions of mono-carbonyl curcumin were discovered by a SAR study focused on cytotoxicity, which could be useful in the designing of its derivatives. CONCLUSION Based on our examination of the literature, we believe that this review will help researchers design and develop powerful mono-carbonyl curcumin derivatives that can be proven essential for anticancer activity.
Collapse
Affiliation(s)
- Shashikant Vasantarao Bhandari
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Pranali Kuthe
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Shital Manoj Patil
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Om Nagras
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Aniket Pardip Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
| |
Collapse
|
8
|
Moreira J, Saraiva L, Pinto MM, Cidade H. Bioactive Diarylpentanoids: Insights into the Biological Effects beyond Antitumor Activity and Structure-Activity Relationships. Molecules 2022; 27:6340. [PMID: 36234878 PMCID: PMC9572019 DOI: 10.3390/molecules27196340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Diarylpentanoids, a class of natural products and their synthetic analogs which are structurally related to chalcones, have gained increasing attention due to their wide array of biological activities, including antitumor, anti-infective, antioxidant, anti-inflammatory, antidiabetic, anti-hyperuricemic, and neuroprotective properties. Previously, we reviewed diarylpentanoids with promising antitumor activity. However, in view of the wide range of biological activities described for this class of compounds, the purpose of this review is to provide a more detailed overview of the synthetic bioactive diarylpentanoids that have been described over the last two decades, beyond simply their antitumor effects. A total of 745 compounds were found, highlighting the main synthetic methodologies used in their synthesis as well as the structure-activity relationship studies and structural features for all activities reported. Collectively, this review highlights the diarylpentanoid scaffold as a promising starting point for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucilia Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Kumar V, Bala R, Dhawan S, Singh P, Karpoormath R. The Multi‐Biological Targeted Role of Dehydrozingerone and its Analogues. ChemistrySelect 2022. [DOI: 10.1002/slct.202201938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Renu Bala
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics University of KwaZulu-Natal (Westville campus) Private Bag X01, Scottsville Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| |
Collapse
|
10
|
Memarzia A, Saadat S, Behrouz S, Boskabady MH. Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. Biofactors 2022; 48:521-551. [PMID: 34932258 DOI: 10.1002/biof.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 01/23/2023]
Abstract
Curcuma longa and its constituents, mainly curcumin, showed various of pharmacological effects in previous studies. This review article provides updated and comprehensive experimental and clinical evidence regarding the effects of C. longa and curcumin on respiratory, allergic, and immunologic disorders. Using appropriate keywords, databases including PubMed, Science Direct, and Scopus were searched until the end of October 2021. C. longa extracts and its constituent, curcumin, showed the relaxant effect on tracheal smooth muscle, which indicates their bronchodilatory effect in obstructive pulmonary diseases. The preventive effects of extracts of C. longa and curcumin were shown in experimental animal models of different respiratory diseases through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. C. longa and curcumin also showed preventive effects on some lung disorders in the clinical studies. It was shown that the effects of C. longa on pulmonary diseases were mainly due to its constituent, curcumin. Pharmacological effects of C. longa extracts and curcumin on respiratory, allergic, and immunologic disorders indicate the possible therapeutic effect of the plant and curcumin on these diseases.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Mu W, Wang Q, Jia M, Dong S, Li S, Yang J, Liu G. Hepatoprotective Effects of Albumin-Encapsulated Nanoparticles of a Curcumin Derivative COP-22 against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Injury in Mice. Int J Mol Sci 2022; 23:ijms23094903. [PMID: 35563293 PMCID: PMC9102161 DOI: 10.3390/ijms23094903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI) is a severe syndrome and can further develop into acute liver failure (ALF) which can lead to high mortality and cause irreversible liver injuries in the clinic. Liver transplantation is the most common treatment; however, liver donors are lacking, and the progression of ALF is rapid. Nanoparticles can increase the bioavailability and the targeted accumulation of drugs in the liver, so as to significantly improve the therapeutic effect of ALI. Curcumin derivative COP-22 exhibits low cytotoxicity and effective anti-inflammatory activity; however, it has poor water solubility. In this study, COP-22-loaded bovine serum albumin (BSA) nanoparticles (22 NPs) were prepared and characterized. They exhibit effective hepatoprotective effects by inhibiting inflammation, oxidative stress, and apoptosis on Lipopolysaccharide/D-Galactosamine-induced acute liver injury of mice. The anti-inflammatory activity of 22 NPs is related to the regulation of the NF-κB signaling pathways; the antioxidant activity is related to the regulation of the Nrf2 signaling pathways; and the apoptosis activity is related to mitochondrial pathways, involving Bcl-2 family and Caspase-3 protein. These three cellular pathways are interrelated and affected each other. Moreover, 22 NPs could be passively targeted to accumulate in the liver through the retention effect and are more easily absorbed than 22.HCl salt in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yang
- Correspondence: (J.Y.); (G.L.); Tel.: +86-15063505132 (L.G.)
| | - Guoyun Liu
- Correspondence: (J.Y.); (G.L.); Tel.: +86-15063505132 (L.G.)
| |
Collapse
|
12
|
Monoketonic Curcuminoid-Lidocaine Co-Deliver Using Thermosensitive Organogels: From Drug Synthesis to Epidermis Structural Studies. Pharmaceutics 2022; 14:pharmaceutics14020293. [PMID: 35214026 PMCID: PMC8879257 DOI: 10.3390/pharmaceutics14020293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Organogels (ORGs) are remarkable matrices due to their versatile chemical composition and straightforward preparation. This study proposes the development of ORGs as dual drug-carrier systems, considering the application of synthetic monoketonic curcuminoid (m-CUR) and lidocaine (LDC) to treat topical inflammatory lesions. The monoketone curcuminoid (m-CUR) was synthesized by using an innovative method via a NbCl5–acid catalysis. ORGs were prepared by associating an aqueous phase composed of Pluronic F127 and LDC hydrochloride with an organic phase comprising isopropyl myristate (IPM), soy lecithin (LEC), and the synthesized m-CUR. Physicochemical characterization was performed to evaluate the influence of the organic phase on the ORGs supramolecular organization, permeation profiles, cytotoxicity, and epidermis structural characteristics. The physico-chemical properties of the ORGs were shown to be strongly dependent on the oil phase constitution. Results revealed that the incorporation of LEC and m-CUR shifted the sol-gel transition temperature, and that the addition of LDC enhanced the rheological G′/G″ ratio to higher values compared to original ORGs. Consequently, highly structured gels lead to gradual and controlled LDC permeation profiles from the ORG formulations. Porcine ear skin epidermis was treated with ORGs and evaluated by infrared spectroscopy (FTIR), where the stratum corneum lipids were shown to transition from a hexagonal to a liquid crystal phase. Quantitative optical coherence tomography (OCT) analysis revealed that LEC and m-CUR additives modify skin structuring. Data from this study pointed ORGs as promising formulations for skin-delivery.
Collapse
|
13
|
Girgis AS, D'Arcy P, Aboshouk DR, Bekheit MS. Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics. RSC Adv 2022; 12:31102-31123. [DOI: 10.1039/d2ra05518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022] Open
Abstract
3,5-Diyliden-4-piperidone scaffold are considered as curcumin mimic exhibiting diverse bio-properties.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Padraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
14
|
Dikmen N, Cellat M, Etyemez M, İşler CT, Uyar A, Aydın T, Güvenç M. Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats. Inflammation 2021; 44:2246-2259. [PMID: 34515957 DOI: 10.1007/s10753-021-01496-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is one of the most common causes of death in diseases with septic shock. Oleuropein, one of the important components of olive leaf, has antioxidant and anti-inflammatory effects. The objective of this study was to investigate the effects of oleuropein on lipopolysaccharide (LPS)-induced ALI in rats. Oleuropein was administered to rats at a dose of 200 mg/kg for 20 days and LPS was given through intratracheal administration to induce ALI. The study was terminated after 12 h. The results showed that in the group treated with oleuropein, inflammatory cytokines and oxidative stress decreased in serum, bronchoalveolar lavage fluid (BALF), and lung tissue, and there were significant improvements in the picture of acute interstitial pneumonia (AIP) caused by LPS in histopathological examination. Based on the findings of the present study, oleuropein showed protective effects against LPS-induced ALI.
Collapse
Affiliation(s)
- Nursel Dikmen
- Department of Chest Diseases, Faculty of Medicine, University of Hatay Mustafa Kemal, 31060, Antakya, Hatay, Turkey.
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Tuba Aydın
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Agri, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| |
Collapse
|
15
|
Cong W, Sun Y, Sun YF, Yan WB, Zhang YL, Gao ZF, Wang CH, Hou GG, Zhang JJ. Trifluoromethyl-substituted 3,5-bis(arylidene)-4-piperidones as potential anti-hepatoma and anti-inflammation agents by inhibiting NF-кB activation. J Enzyme Inhib Med Chem 2021; 36:1622-1631. [PMID: 34284695 PMCID: PMC8297402 DOI: 10.1080/14756366.2021.1953996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Some methoxy-, hydroxyl-, pyridyl-, or fluoro-substituted 3,5-bis(arylidene)-4-piperidones (BAPs) could reduce inflammation and promote hepatoma cell apoptosis by inhibiting activation of NF-κB, especially after introduction of trifluoromethyl. Herein, a series of trifluoromethyl-substituted BAPs (4-30) were synthesised and the biological activities were evaluated. We successfully found the most potential 16, which contains three trifluoromethyl substituents and exhibits the best anti-tumour and anti-inflammatory activities. Preliminary mechanism research revealed that 16 could promote HepG2 cell apoptosis in a dose-dependent manner by down-regulating the expression of Bcl-2 and up-regulating the expression of Bax, C-caspase-3. Meanwhile, 16 inhibited activation of NF-κB by directly inhibiting the phosphorylation of p65 and IκBα induced by LPS, together with indirectly inhibiting MAPK pathway, thereby exhibiting both anti-hepatoma and anti-inflammatory activities. Molecular docking confirmed that 16 could bind to the active sites of Bcl-2, p65, and p38 reasonably. The above results suggested that 16 has enormous potential to be developed as a multifunctional agent for the clinical treatment of liver cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Wei Cong
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Yue Sun
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Yi-Fan Sun
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Wei-Bin Yan
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Yu-Long Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Zhong-Fei Gao
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Chun-Hua Wang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Gui-Ge Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Jia-Jing Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| |
Collapse
|
16
|
Anti-inflammatory activity of ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives in vitro and in vivo. Eur J Pharm Sci 2021; 160:105756. [PMID: 33588045 DOI: 10.1016/j.ejps.2021.105756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Curcumin was reported as an anti-inflammatory agent. However, curcumin's poor bioavailability limited its clinical utility. Here, thirty ortho-substituted mono-carbonyl curcumin derivatives, containing acetone, cyclopentanone, cyclohexanone or 4-piperidione (NH, N-methyl or N-acrylyl) moieties replacing β-diketone moiety of curcumin, were investigated for anti-inflammatory activity. Two active ortho-trifluoromethoxy-substituted 4-piperidione-containing derivatives 22 and 24 owned good cell uptake ability, and displayed excellent anti-inflammatory activity in both lipopolysaccharide-induced Raw264.7 macrophages and a dextran sulfate sodium (DSS)-induced mouse model of colitis. They inhibited the production of nitric oxide, reactive oxygen species, malonic dialdehyde and cyclooxygenase-2; and the expression of pro-inflammatory cytokines interleukin-1β, tumor necrosis factor-α and myeloperoxidase; the phosphorylation of mitogen-activated protein kinases; and the nucleus translocation of p65. What's more, 22 or 24 oral administered reduced the severity of clinical symptoms of ulcerative colitis (body weight and disease activity index), and reduced obviously DSS-induced colonic pathological damage (the colon length and histopathology analysis). These results suggested that ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives 22 and 24 were potential anti-inflammatory agents; and offered the important information for design and discovery of more potent anti-inflammatory drug candidates.
Collapse
|
17
|
Gao X, Yi X, Liu Z, Dong X, Xia G, Zhang X, Shen X. Comparative Study on Curcumin Loaded in Golden Pompano ( Trachinotus blochii) Head Phospholipid and Soybean Lecithin Liposomes: Preparation, Characteristics and Anti-Inflammatory Properties. Molecules 2021; 26:2328. [PMID: 33923773 PMCID: PMC8073247 DOI: 10.3390/molecules26082328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we compared the characteristics and in vitro anti-inflammatory effects of two curcumin liposomes, prepared with golden pompano head phospholipids (GPL) and soybean lecithin (SPC). GPL liposomes (GPL-lipo) and SPC liposomes (SPC-lipo) loaded with curcumin (CUR) were prepared by thin film extrusion, and the differences in particle size, ζ-potential, morphology, and storage stability were investigated. The results show that GPL-lipo and SPC-lipo were monolayer liposomes with a relatively small particle size and excellent encapsulation rates. However, GPL-lipo displayed a larger negative ζ-potential and better storage stability compared to SPC-lipo. Subsequently, the effects of phospholipids in regulating the inflammatory response of macrophages were evaluated in vitro, based on the synergistic effect with CUR. The results showed that both GPL and SPC exerted excellent synergistic effect with CUR in inhibiting the lipopolysaccharide (LPS)-induced secretion of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory genes (tumor necrosis factor (TNF)-α, interleukin 1β (IL-β), and interleukin 6 (IL-6)) in RAW264.7 cells. Interestingly, GPL-lipo displayed superior inhibitory effects, compared to SPC-lipo. The findings provide a new innovative bioactive carrier for development of stable CUR liposomes with good functional properties.
Collapse
Affiliation(s)
- Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xiuping Dong
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| |
Collapse
|
18
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
19
|
A Review of Malaysian Herbal Plants and Their Active Constituents with Potential Therapeutic Applications in Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8257817. [PMID: 33193799 PMCID: PMC7641701 DOI: 10.1155/2020/8257817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Sepsis refers to organ failure due to uncontrolled body immune responses towards infection. The systemic inflammatory response triggered by pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) from Gram-negative bacteria, is accompanied by the release of various proinflammatory mediators that can lead to organ damage. The progression to septic shock is even more life-threatening due to hypotension. Thus, sepsis is a leading cause of death and morbidity globally. However, current therapies are mainly symptomatic treatment and rely on the use of antibiotics. The lack of a specific treatment demands exploration of new drugs. Malaysian herbal plants have a long history of usage for medicinal purposes. A total of 64 Malaysian plants commonly used in the herbal industry have been published in Malaysian Herbal Monograph 2015 and Globinmed website (http://www.globinmed.com/). An extensive bibliographic search in databases such as PubMed, ScienceDirect, and Scopus revealed that seven of these plants have antisepsis properties, as evidenced by the therapeutic effect of their extracts or isolated compounds against sepsis-associated inflammatory responses or conditions in in vitro or/and in vivo studies. These include Andrographis paniculata, Zingiber officinale, Curcuma longa, Piper nigrum, Syzygium aromaticum, Momordica charantia, and Centella asiatica. Among these, Z. officinale is the most widely studied plant and seems to have the highest potential for future therapeutic applications in sepsis. Although both extracts as well as active constituents from these herbal plants have demonstrated potential antisepsis activity, the activity might be primarily contributed by the active constituent(s) from each of these plants, which are andrographolide (A. paniculata), 6-gingerol and zingerone (Z. officinale), curcumin (C. longa), piperine and pellitorine (P. nigrum), biflorin (S. aromaticum), and asiaticoside, asiatic acid, and madecassoside (C. asiatica). These active constituents have shown great antisepsis effects, and further investigations into their clinical therapeutic potential may be worthwhile.
Collapse
|
20
|
Tang L, Gao XH, Zhao B, Luo JR, Shi XY, Ge R, Ban SR, Li QS. Design and synthesis of new disubstituted benzoxazolone derivatives that act as iNOS inhibitors with potent anti-inflammatory activity against LPS-induced acute lung injury (ALI). Bioorg Med Chem 2020; 28:115733. [PMID: 33065432 DOI: 10.1016/j.bmc.2020.115733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) is a pulmonary disease that acts as a severe acute inflammatory response with no specific drugs. iNOS, a catalyst of the excessive production of NO, has been demonstrated to participate in the inflammatory process, and targeting iNOS may be a promising therapeutic pathway to alleviate ALI. In our research, eighteen new disubstituted benzoxazolone derivatives were synthesized, characterized, and evaluated for activity against NO production in an LPS-induced RAW264.7 cell. The results showed that these compounds could obviously inhibit the over-generation of NO and disubstitution at the 4, N-position of the benzoxazolone ring, presenting better potency than substitution only at the 4-position. Among the analogues generated, compounds 2c, 2d, and 3d showed NO inhibitory activity with IC50 values of 16.43, 14.72, and 13.44 µM and iNOS inhibitory activity with IC50 values of 4.605, 3.342, and 9.733 µM, respectively. Meanwhile, compounds 2c, 2d, and 3d could also inhibit the release of IL-6, IL-1β in vitro and suppress xylene-induced ear edema in vivo to realize anti-inflammatory activity. Furthermore, compound 2d could significantly protect the LPS-induced ALI, presenting as decreased inflammatory cytokines and obvious pathological changes. Immunohistochemistry and molecular modeling demonstrated that compound 2d significantly inhibited the expression of iNOS in vivo and interacted with iNOS through two hydrogen bindings with the MET368 and ILE195 residues of the iNOS protein. These results demonstrated that compound 2d could be a promising lead structure for iNOS inhibitors, with anti-inflammatory activity to treat LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Li Tang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, PR China
| | - Xiao-Hui Gao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Bei Zhao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jie-Ran Luo
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xin-Yang Shi
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Rui Ge
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Shu-Rong Ban
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, PR China.
| |
Collapse
|
21
|
Discovery of novel NF-кB inhibitor based on scaffold hopping: 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidine. Eur J Med Chem 2020; 198:112366. [PMID: 32371335 DOI: 10.1016/j.ejmech.2020.112366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
NF-κB is a key signaling pathway molecule linking hepatoma and chronic inflammation. Inhibition of NF-κB activation can alleviate inflammation, and promote hepatoma cell apoptosis. In this study, a series of fluoro-substituted 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidines (PPMs, 31-57) were synthesized from 3,5-bis(arylidene)-4-piperidones (BAPs, 4-30) based on scaffold hopping. We successfully discovered the most potent 43 substituted by electron-withdrawing substitutes (3-F and 4-CF3) exhibited less toxicity and higher anti-inflammatory activity. Preliminary mechanistic studies revealed that 43 induced dose-dependent cell apoptosis at cell and protein level, while inhibited NF-κB activation by suppressing LPS-induced phosphorylation levels of p65, IκBα and Akt, and by indirectly suppressing MAPK signaling, and by inhibiting the nuclear translocation of NF-κB induced by TNF-α or LPS. Docking analysis verified simulated 43 could reasonably bind to the active site of Bcl-2, p65 and p38 proteins. This compound, as a novel NF-κB inhibitor, also demonstrated both anti-inflammatory and anti-hepatoma activities, warranting its further development as a potential multifunctional agent for the clinical treatment of liver cancers and inflammatory diseases.
Collapse
|
22
|
Cystic fibrosis transmembrane conductance regulator ameliorates lipopolysaccharide-induced acute lung injury by inhibiting autophagy through PI3K/AKT/mTOR pathway in mice. Respir Physiol Neurobiol 2020; 273:103338. [DOI: 10.1016/j.resp.2019.103338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023]
|
23
|
Rajamanickam V, Yan T, Wu L, Zhao Y, Xu X, Zhu H, Chen X, Wang M, Liu Z, Liu Z, Liang G, Wang Y. Allylated Curcumin Analog CA6 Inhibits TrxR1 and Leads to ROS-Dependent Apoptotic Cell Death in Gastric Cancer Through Akt-FoxO3a. Cancer Manag Res 2020; 12:247-263. [PMID: 32021440 PMCID: PMC6968823 DOI: 10.2147/cmar.s227415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer is one of the leading causes of cancer-related deaths. Allylated monocarbonyl analogs of curcumin (MACs) have been reported to selectively inhibit a broad range of human cancers including gastric cancer. However, the precise molecular mechanisms underlying the inhibitory activities of MACs are not fully known. Methods In this study, we examined the anti-tumor activities of an allylated MAC, CA6, on gastric cancer cells and gastric cancer xenograft mouse model. The potential molecular anti-tumor mechanisms of CA6 were also elucidated. Results Our data show that CA6 exhibited significant cytotoxicity in gastric cancer cells, which was seen as an induction of G2/M cell cycle arrest and apoptosis. These activities were mediated through an elaboration of ROS levels in gastric cancer cells and induction of endoplasmic reticulum stress. CA6 increased ROS levels through directly binding to and inhibiting thioredoxin reductase R1 (TrxR1). Also, CA6-generated ROS inhibited Akt and activated forkhead O3A (FoxO3a), causing cytotoxicity in gastric cancer cells. Finally, CA6 treatment dose-dependently reduced the growth of gastric cancer xenografts in tumor-bearing mice, which was associated with reduced TrxR1 activity and increased ROS in the tumor. Conclusion In summary, our studies demonstrate that CA6 inhibited gastric cancer growth by inhibiting TrxR1 and increasing ROS, which in turn activated FoxO3a through suppressing Akt. CA6 is a potential candidate for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Tao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Liangrong Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yanni Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xiaohong Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Heping Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhoudi Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
24
|
Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182:111631. [DOI: 10.1016/j.ejmech.2019.111631] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
25
|
Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur J Med Chem 2019; 183:111704. [PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
Abstract
Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
Collapse
|
26
|
Vigato AA, Querobino SM, de Faria NC, Candido ACBB, Magalhães LG, Cereda CMS, Tófoli GR, Campos EVR, Machado IP, Fraceto LF, de Sairre MI, de Araujo DR. Physico-Chemical Characterization and Biopharmaceutical Evaluation of Lipid-Poloxamer-Based Organogels for Curcumin Skin Delivery. Front Pharmacol 2019; 10:1006. [PMID: 31572185 PMCID: PMC6751402 DOI: 10.3389/fphar.2019.01006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aryane Alves Vigato
- Human and Natural Sciences Center, ABC Federal University, Santo André, Brazil
| | | | | | | | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | | | | | - Estefânia Vangelie Ramos Campos
- Human and Natural Sciences Center, ABC Federal University, Santo André, Brazil
- Department of Environmental Engineering, State University “Júlio de Mesquita Filho”, Sorocaba, Brazil
| | - Ian Pompermayer Machado
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, ABC Federal University, Santo André, Brazil
- *Correspondence: Daniele Ribeiro de Araujo, ;
| |
Collapse
|
27
|
Su CM, Hou GG, Wang CH, Zhang HQ, Yang C, Liu M, Hou Y. Potential multifunctional agents with anti-hepatoma and anti-inflammation properties by inhibiting NF-кB activation. J Enzyme Inhib Med Chem 2019; 34:1287-1297. [PMID: 31288582 PMCID: PMC6691761 DOI: 10.1080/14756366.2019.1635124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inhibition of NF-κB signalling has been demonstrated as a therapeutic option in treating inflammatory diseases and cancers. Herein, we synthesized novel dissymmetric 3,5-bis(arylidene)-4-piperidones (BAPs, 83-102) and characterized fully. MTT and ELISA assay were performed to screen the anti-hepatoma and anti-inflammation properties. 96 showed the most potential bioactivity. 96 could promote HepG2 apoptosis through up-regulating the expression of C-Caspase-3 and Bax, down-regulating the expression of Bcl-2, while markedly inhibit LPS or TNF-α-induced activation of NF-κB through both inhibiting the phosphorylation of IκBα and p65, and preventing the p65 nuclear translocation to exhibit both anti-hepatoma and anti-inflammatory activities. Molecular docking verified that simulated 96 can effectively bond to the active site of Bcl-2 and NF-κB/p65 proteins. 96 inhibited xenografts growth by reducing the expression of TNF-α and Bcl-2 in the tumour tissue. This study suggested that 96 could be developed as a potential multifunctional agent for treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Chang-Ming Su
- a School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , PR China
| | - Gui-Ge Hou
- a School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , PR China
| | - Chun-Hua Wang
- a School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , PR China
| | - Hong-Qin Zhang
- b School of Basic Medical Sciences , Binzhou Medical University , Yantai , PR China
| | - Cheng Yang
- b School of Basic Medical Sciences , Binzhou Medical University , Yantai , PR China
| | - Mei Liu
- c Pharmacy Department , The Second People's Hospital of Dongying , Dongying , PR China
| | - Yun Hou
- b School of Basic Medical Sciences , Binzhou Medical University , Yantai , PR China
| |
Collapse
|
28
|
Design and synthesis novel di-carbonyl analogs of curcumin (DACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI). Eur J Med Chem 2019; 167:414-425. [DOI: 10.1016/j.ejmech.2019.02.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/30/2023]
|
29
|
Yao BR, Sun Y, Chen SL, Suo HD, Zhang YL, Wei H, Wang CH, Zhao F, Cong W, Xin WY, Hou GG. Dissymmetric pyridyl-substituted 3,5-bis(arylidene)-4-piperidones as anti-hepatoma agents by inhibiting NF-κB pathway activation. Eur J Med Chem 2019; 167:187-199. [PMID: 30771605 DOI: 10.1016/j.ejmech.2019.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
Abstract
To get new anti-hepatoma agents with anti-inflammatory activity and hypotoxicity, a series of dissymmetric pyridyl-substituted 3,5-bis(arylidene)-4-piperidones (BAPs, 25-82) were designed and synthesized. Many of them exhibited potential anti-hepatoma properties against human hepatocellular carcinoma cell lines (HepG2, QGY-7703, SMMC-7721) and hypotoxicity for human normal heptical cell line (HHL-5, LO2), and prominently inhibited lipopolysaccharides (LPS) induced IL-6, TNF-α secretion to exert its anti-inflammatory effect. Combining the data of cytotoxicity, cytocompatibility and anti-inflammatory activity, 3-pyridyl and -CF3 substituted 67 may be the potential anti-hepatoma agent. 67 effectively promoted cell apoptosis through up-regulating cleaved caspase-3 and Bax expression and down-regulating Bcl-2 expression. Furthermore, 67 prominently inhibited NF-κB pathway activation by blocking the phosphorylation of IκBα, p65 and the nuclear translocation of NF-κB induced by TNF-α and LPS. In addition, 67 could reasonably bind to the active site of Bcl-2 and NF-κB/p65 protein proved by Molecular docking analyses. Moreover, 67 significantly suppressed the growth and inflammatory response of HepG2 xenografts in nude mice and was relatively nontoxic to mice. These results suggest that 67 may be effective and hypotoxicity anti-hepatoma agent for the clinical treatment of liver cancers.
Collapse
Affiliation(s)
- Bin-Rong Yao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yue Sun
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Shuang-Long Chen
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Hao-Dong Suo
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yu-Long Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Hao Wei
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Chun-Hua Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| | - Feng Zhao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Wei Cong
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Wen-Yu Xin
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| | - Gui-Ge Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
30
|
Li Q, Zhang J, Chen LZ, Wang JQ, Zhou HP, Tang WJ, Xue W, Liu XH. New pentadienone oxime ester derivatives: synthesis and anti-inflammatory activity. J Enzyme Inhib Med Chem 2018; 33:130-138. [PMID: 29199491 PMCID: PMC6010105 DOI: 10.1080/14756366.2017.1396455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
To develop novel anti-inflammatory agents, a series of new pentadienone oxime ester compounds were designed and synthesized. The structures were determined by IR, 1H NMR, 13 C NMR, and HRMS. All compounds have been screened for their anti-inflammatory activity by evaluating their inhibition against LPS-induced nitric oxide (NO) release in RAW 264.7 cell. Among them, compound 5j was found to be one of the most potent compounds in inhibiting NO and IL-6 (IC50 values were 6.66 µM and 5.07 µM, respectively). Preliminary mechanism studies show that title compound 5j could significantly suppress expressions of nitric oxide synthase, COX-2, and NO, IL-6 through Toll-like receptor 4/mitogen-activated protein kinases/NF-κB signalling pathway. These data support further studies to assess rational design of more efficient pentadienone oxime ester derivatives with anti-inflammatory activity in the future.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Juping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Jie Quan Wang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Hai Ping Zhou
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, P. R. China
| | - Wen Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, P. R. China
| |
Collapse
|
31
|
Tian C, Zhang P, Yang J, Zhang Z, Wang H, Guo Y, Liu M. The protective effect of the flavonoid fraction of Abutilon theophrasti Medic. leaves on LPS-induced acute lung injury in mice via the NF-κB and MAPK signalling pathways. Biomed Pharmacother 2018; 109:1024-1031. [PMID: 30551352 DOI: 10.1016/j.biopha.2018.10.197] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Accompanied by the damages of epithelial and capillary endothelial cell, acute lung injury is diagnosed with the typical pathological symptoms in clinic, including diffusing of pulmonary interstitial, alveolar oedema and hypoxic respiratory insufficiency. Current study focused on the investigation the anti-inflammatory action and mechanisms of total flavonoids extract (TFE) from Abutilon theophrasti Medic. leaves on ALI mice induced by LPSs. Mice were administrated intragastrically with TFE at the concentrations of 0.25, 0.5, or 1.0 g/kg for 5 days, and on last day, nasal administration of LPSs for 6 h after 30 min for intragastric administration of TFE. Pretreatment with TFE not only reduced oxidative damage but also alleviated lung edema in ALI mice. Increased secretion of pro-inflammatory cytokines TNF-α, IL-1β and IL-6, caused by LPSs was reversed by TFE; on the contrary, the anti-inflammatory cytokine IL-10 was upregulated. The proteins expressions of pro-inflammatory mediators iNOS and COX-2 induced by LPSs, were down-regulated by TFE. Moreover, the activation of NF-κB and MAPK signalling pathways was inhibited by TFE in LPSs induced ALI mice. The results revealed that the anti-inflammatory mechanisms of TFE were via inhibition of NF-κB and MAPK activation. Combined, the results suggested that TFE might exert in vivo antioxidant and anti-inflammatory functions in LPSs stimulated mice, and will be potential in adjuvant treatment in oxidative stress and inflammation diseases.
Collapse
Affiliation(s)
- Chunlian Tian
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Peng Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Jie Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Zehui Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Hong Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Yuru Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China.
| |
Collapse
|
32
|
Spaeth A, Graeler A, Maisch T, Plaetzer K. CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity. Eur J Med Chem 2018; 159:423-440. [DOI: 10.1016/j.ejmech.2017.09.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/20/2017] [Accepted: 09/29/2017] [Indexed: 11/27/2022]
|
33
|
Li N, Bai X, Zhang L, Hou Y. Synthesis, crystal structures and anti-inflammatory activity of four 3,5-bis(arylidene)-N-benzenesulfonyl-4-piperidone derivatives. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1171-1179. [PMID: 30284984 DOI: 10.1107/s2053229618013232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023]
Abstract
3,5-Bis(arylidene)-4-piperidone (BAP) derivatives display good antitumour and anti-inflammatory activities because of their double α,β-unsaturated ketone structural characteristics. If N-benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti-inflammatory activities should improve. Four N-benzenesulfonyl BAPs, namely (3E,5E)-1-(4-methylbenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, (4), (3E,5E)-1-(4-fluorobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one, C27H18F7NO3S, (5), (3E,5E)-1-(4-nitrobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one, C27H18F6N2O5S, (6), and (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, (7), were prepared by Claisen-Schmidt condensation and N-sulfonylation. They were characterized by NMR, FT-IR and HRMS (high resolution mass spectrometry). Single-crystal structure analysis reveals that the two 4-(trifluoromethyl)phenyl rings on both sides of the piperidone ring in (4)-(7) adopt an E stereochemistry of the olefinic double bonds. Molecules of both (4) and (6) are connected by hydrogen bonds into one-dimensional chains. In (5) and (7), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two-dimensional sheet. The anti-inflammatory activity data reveal that (4)-(7) significantly inhibit LPS-induced interleukin (IL-6) and tumour necrosis factor (TNF-α) secretion. Most importantly, (6) and (7), with strong electron-withdrawing substituents, display more potential inhibitory effects than (4) and (5).
Collapse
Affiliation(s)
- Ning Li
- School of Pharmacy, Binzhou Medical University, Guanhai road 346, Yantai, Shandong 264003, People's Republic of China
| | - Xianyong Bai
- School of Basic Medical Sciences, Binzhou Medical University, Guanhai road 346, Yantai, Shandong 264003, People's Republic of China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Guanhai road 346, Yantai, Shandong 264003, People's Republic of China
| | - Yun Hou
- School of Basic Medical Sciences, Binzhou Medical University, Guanhai road 346, Yantai, Shandong 264003, People's Republic of China
| |
Collapse
|
34
|
Liu LD, Liu SL, Hou GG. Crystal structure of 4-(( E)-(( E)-5-(2-fluorobenzylidene)-1-((4-fluorophenyl)sulfonyl)-4-oxopiperidin-3-ylidene)methyl)benzonitrile, C 26H 18F 2N 2O 3S. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2018-0174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H18F2N2O3S, monoclinic, P21/c (no. 14), a = 8.412(3) Å, b = 22.056(8) Å, c = 12.125(4) Å, β = 102.316(5)°, V = 2198.0(14) Å3, Z = 4, R
gt(F) = 0.0475, wR
ref(F
2) = 0.1156, T = 173(2) K.
Collapse
Affiliation(s)
- Lian-Dong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014 , P.R. China
| | - Shu-Lian Liu
- Shandong Education Training Center of Quality and Technical Supervision , Jinan 250014 , P.R. China
| | - Gui-Ge Hou
- School of Pharmacy, Binzhou Medical University, Yantai , Shandong 264003 , P.R. China
| |
Collapse
|
35
|
Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR, Zhang Y, Kong J, Jiang C, Shi J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food 2018; 2:13. [PMID: 31304263 PMCID: PMC6550192 DOI: 10.1038/s41538-018-0022-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis (AS) is a typical example of a widespread fatal cardiovascular disease. Accumulation of cholesterol-laden macrophages in the artery wall forms the starting point of AS. Increased influx of oxidized low-density lipoprotein to macrophages and decreased efflux of free cholesterol out of macrophages constitute major factors promoting the development of AS. Inflammation further aggravates the development of AS along or via interaction with the cholesterol metabolism. Many microRNAs (miRNAs) are related to the regulation of macrophage in AS in aspects of cholesterol metabolism and inflammation signaling. Dietary compounds perform AS inhibitory effects via miRNAs in the cholesterol metabolism (miR-19b, miR-378, miR-10b, miR-33a, and miR-33b) and two miRNAs in the inflammation signaling (miR-155 and miR-146a). The targeted miRNAs in the cholesterol metabolism vary greatly among different food compounds; however, in inflammation signaling, most food compounds target miR-155. Many receptors are involved in macrophages via miRNAs, including ABCA1 and ABCG1 as major receptors in the cholesterol metabolism, while nuclear factor-κB (NF-κB) and Nrf2 signaling and PI3K/AKT signaling pathways are targeted during inflammation. This article reviews current literature to investigate possible AS therapy with dietary compounds via targeting miRNAs. Currently existing problems were also discussed to guide further studies.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yichao Di
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Lei Zhang
- Department of Microbiology and Pathogeny Biology, Xi’an Medical University, 1 Xinwang Road, Xi’an, 710072 Shaanxi China
| | - Muhammad shahid riaz Rajoka
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yudan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| |
Collapse
|
36
|
Vieira TM, dos Santos IA, Silva TS, Martins CHG, Crotti AEM. Antimicrobial Activity of Monoketone Curcuminoids Against Cariogenic Bacteria. Chem Biodivers 2018; 15:e1800216. [DOI: 10.1002/cbdv.201800216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tatiana M. Vieira
- Departamento de Química; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 CEP 14040-901 Ribeirão Preto SP Brazil
| | - Isabella A. dos Santos
- Departamento de Química; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 CEP 14040-901 Ribeirão Preto SP Brazil
| | - Thayná S. Silva
- Laboratório de Pesquisa em Microbiologia Aplicada; Universidade de Franca; Av. Dr. Armando Salles de Oliveira, 201 - Parque Universitário CEP 14404600 Franca SP Brazil
| | - Carlos H. G. Martins
- Laboratório de Pesquisa em Microbiologia Aplicada; Universidade de Franca; Av. Dr. Armando Salles de Oliveira, 201 - Parque Universitário CEP 14404600 Franca SP Brazil
| | - Antônio E. M. Crotti
- Departamento de Química; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 CEP 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
37
|
Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur J Med Chem 2018; 156:493-509. [PMID: 30025345 DOI: 10.1016/j.ejmech.2018.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
In this study, twenty curcumin analogue hybrids as potential anticancer agents through regulation protein of TrxR were designed and synthesized. Results of anticancer activity showed that 5,7-dimethoxy-3-(3-(2-((1E, 4E)-3-oxo-5-(pyridin-2-yl)penta-1,4-dien-1- yl)phenoxy)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (compound 7d) could induce gastric cancer cells apoptosis by arresting cell cycle, break mitochondria function and inhibit TrxR activity. Meanwhile, western blot revealed that this compound could dramatically up expression of Bax/Bcl-2 ratio and high expression of TrxR oxidation. These results preliminarily show that the important role of ROS mediated activation of ASK1/MAPK signaling pathways by this title compound.
Collapse
|
38
|
Li N, Xin WY, Yao BR, Cong W, Wang CH, Hou GG. N-phenylsulfonyl-3,5-bis(arylidene)-4-piperidone derivatives as activation NF-κB inhibitors in hepatic carcinoma cell lines. Eur J Med Chem 2018; 155:531-544. [DOI: 10.1016/j.ejmech.2018.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 01/28/2023]
|
39
|
Yao B, Li N, Wang C, Hou G, Meng Q, Yan K. Novel asymmetric 3,5-bis(arylidene)piperidin-4-one derivatives: synthesis, crystal structures and cytotoxicity. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:659-665. [PMID: 29870000 DOI: 10.1107/s2053229618006605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/28/2018] [Indexed: 01/17/2023]
Abstract
3,5-Bis(arylidene)piperidin-4-one derivatives (BAPs) display good antitumour activity because of their double α,β-unsaturated ketone structural characteristics. Reported BAPs have generally been symmetric and asymmetric BAPs have been little documented. Three asymmetric BAPs, namely (5E)-3-(4-tert-butylbenzylidene)-5-(4-fluorobenzylidene)-1-methylpiperidin-4-one, C24H26FNO, (5), (5E)-3-(4-tert-butylbenzylidene)-5-(3,5-dimethoxybenzylidene)-1-methylpiperidin-4-one, C26H31NO3, (6), and (5E)-3-{3-[(E)-(2,3-dihydroxybenzylidene)amino]benzylidene}-5-(2-fluorobenzylidene)-1-methylpiperidin-4-one, C27H23FN2O3, (12), were generated by Claisen-Schmidt condensation. They are characterized by NMR and FT-IR spectroscopies, and elemental analysis. Single-crystal structure analysis reveals that the two arylidene rings on both sides of the BAP structures adopt an E stereochemistry of the olefinic double bonds and the compounds are E,E isomers. Molecules of (5) and (12) generate one-dimensional chains through intermolecular hydrogen bonds, while compound (6) generates a two-dimensional network through hydrogen bonds. Preliminary cytotoxicities toward human liver hepatocellular carcinoma cell line (HepG2), human acute mononuclear granulocyte leukaemia (THP-1) and human normal hepatical cell line (LO2) were evaluated.
Collapse
Affiliation(s)
- Binrong Yao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ning Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Chunhua Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Guige Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Qingguo Meng
- School of Pharmacy, Yantai University, Yantai 264005, People's Republic of China
| | - Ke Yan
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, People's Republic of China
| |
Collapse
|
40
|
Xiao S, Zhang W, Chen H, Fang B, Qiu Y, Chen X, Chen L, Shu S, Zhang Y, Zhao Y, Liu Z, Liang G. Design, synthesis, and structure-activity relationships of 2-benzylidene-1-indanone derivatives as anti-inflammatory agents for treatment of acute lung injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:887-899. [PMID: 29719375 PMCID: PMC5914570 DOI: 10.2147/dddt.s160314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. Methods A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Results Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f, was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. Conclusion The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Siyang Xiao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinda Qiu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xianxin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sheng Shu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
Man S, Zhang L, Cui J, Yang L, Ma L, Gao W. Curcumin enhances the anti-cancer effects of Paris Saponin II in lung cancer cells. Cell Prolif 2018; 51:e12458. [PMID: 29608021 DOI: 10.1111/cpr.12458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/07/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To investigate the synergistic mechanisms of Paris Saponin II (PSII) and Curcumin (CUR) in lung cancer. MATERIALS AND METHODS The combination changed the cellular uptake of CUR and PSII, apoptosis, cell cycle arrest and cytokine levels were analysed on different lung cancer cells. RESULTS The combination displayed a synergistic anti-cancer effect through promoting the cellular uptake of CUR on different lung cancer cells. Hoechst H33258 staining and FACS assay indicated that the combination of PSII and CUR induced cell cycle arrest and apoptosis. Western blot and cytokine antibody microarray suggested that the combination activated death receptors such as DR6, CD40/CD40L, FasL and TNF-α to induce cancer cells apoptosis, and up-regulated IGFBP-1 leading to inhibition of PI3K/Akt pathway and increase of p21 and p27, which therefore induced a G2 phase arrest in NCI-H446 cells. Meanwhile, the combination suppressed PCNA and NF-κB pathway in 4 kinds of lung cancer cells. They activated the phosphorylation of p38 and JNK, and inhibited PI3K in NCI-H460 and NCI-H446 cells, enhanced the phosphorylation of JNK in NCI-H1299 cells, and increased the phosphorylation of p38 and ERK, and suppressed PI3K in NCI-H520 cells. CONCLUSIONS PSII combined with CUR had a synergistic anti-cancer effect on lung cancer cells. These findings provided a rationale for using the combination of curcumin and PSII in the treatment of lung cancer in future.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lili Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jingxia Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Li Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
42
|
Li N, Xin WY, Yao BR, Wang CH, Cong W, Zhao F, Li HJ, Hou Y, Meng QG, Hou GG. Novel dissymmetric 3,5-bis(arylidene)-4-piperidones as potential antitumor agents with biological evaluation in vitro and in vivo. Eur J Med Chem 2018; 147:21-33. [PMID: 29421568 DOI: 10.1016/j.ejmech.2018.01.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/08/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022]
Abstract
Thirty-five novel dissymmetric 3,5-bis(arylidene)-4-piperidone derivatives (BAPs, 6a-h, 7a-h, 8a-g, 9a-g, 10a-e) were synthesized and evaluated the cytotoxicity. BAPs 6d, 7h, 8g, 9g demonstrated the most potentially inhibitory activities against HepG2 and THP-1 but lower cytotoxicity toward LO2. In vitro, 6d, 7h, 8g, 9g can effectively up-regulate BAX expression, down-regulate Bcl-2 expression in HepG2 cell. They could reasonably bind to the active site of Bcl-2 protein proved by molecular docking modes. The most active BAP 6d induced HepG2 cells apoptosis in a dose-dependent manner by flow cytometrey. The cellular uptake of HepG2 cells showed 6d mainly accumulated into the nuclei by confocal laser scanning microscopy (CLSM). In vivo, 6d suppressed the growth of HepG2 xenografts in nude mice and relatively nontoxic to mice. These results suggest that 6d could be therapeutically beneficial as potential therapeutic agent for the early clinical treatment of liver cancers.
Collapse
Affiliation(s)
- Ning Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Wen-Yu Xin
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Bin-Rong Yao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Chun-Hua Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Wei Cong
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Feng Zhao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Hong-Juan Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yun Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
| | - Gui-Ge Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
43
|
|
44
|
Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. PHARMACEUTICAL BIOLOGY 2017; 55:1263-1273. [PMID: 28264607 PMCID: PMC6130682 DOI: 10.1080/13880209.2017.1297838] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT The natural polyphenolic compound curcumin has been proved to modulate innate immune responses and possess anti-inflammatory properties. Nevertheless, the mechanism remains poorly understood, particularly regarding curcumin-regulated miRNAs under inflammatory response. OBJECTIVE This study investigates the role of miRNA-155 in the effects of curcumin on inflammatory response in cell and a mouse model. MATERIALS AND METHODS The anti-inflammatory activity of curcumin (5, 10 and 15 μM, 2 h) in lipopolysaccharide (LPS, 200 ng/mL)-induced cells were measured by quantitative PCR. The animals were treated orally by 20 mg/kg curcumin for 3 days before an LPS intraperitoneal injection (10 mg/kg, 16 h). MicroRNA (miRNA) expression and the underlying molecular mechanisms were assessed using transfection technique and western blotting. RESULTS AND DISCUSSION Curcumin efficiently inhibited LPS-induced cytokines (TNF-α, IL-6) and microRNA-155 (miR-155) expression (p < 0.05) without affecting the normally growth of Raw264.7 and THP-1 cells (IC50 21.8 and 22.3 μM at 48 h, respectively). Moreover, the levels of cytokines were suppressed by curcumin in miR-155 mimics transfected cells (p < 0.05). A blockade of PI3K/AKT signalling pathways resulted in a decreased level of miR-155 (p < 0.05). Curcumin effectively protected mice from sepsis as evidenced by decreasing histological damage, reducing AST (352.0 vs 279.3 U/L), BUN (14.8 vs 10.8 mmol/L) levels and the proportion of macrophages in spleen (31.1% vs 13.5%). MicroRNA-155 level and cytokines were also reduced in curcumin-treated mice (p < 0.05). CONCLUSIONS Curcumin's ability to suppress LPS-induced inflammatory response may be due to the inhibition of miR-155.
Collapse
Affiliation(s)
- Feiya Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Huimin Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Yujie Zhou
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- Yujie ZhouThe Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, PR China
- CONTACT Yayi HouMedical School, Nanjing University, Nanjing210093, China
| |
Collapse
|
45
|
Rajamanickam V, Zhu H, Feng C, Chen X, Zheng H, Xu X, Zhang Q, Zou P, He G, Dai X, Yang X, Wang Y, Liu Z, Liang G, Guo G. Novel allylated monocarbonyl analogs of curcumin induce mitotic arrest and apoptosis by reactive oxygen species-mediated endoplasmic reticulum stress and inhibition of STAT3. Oncotarget 2017; 8:101112-101129. [PMID: 29254150 PMCID: PMC5731860 DOI: 10.18632/oncotarget.20924] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a promising active compound from a natural source and is extensively being tested in clinical trials because of its bio-functional properties. However, poor bioavailability has hampered its clinical application. Numerous attempts have been made in our laboratory to discover analogs of curcumin with enhanced bioavailability and superior pharmacological activity. In this study, we have investigated a new series of allylated monocarbonyl analogs of curcumin (MAC) and tested their effect on gastric cancer cells. Our results show six MAC that selectively targeted cancer cell lines to inhibit growth and induce apoptosis. This activity was achieved by generation of reactive oxygen species (ROS) by MAC. We selected one effective MAC (CA10) for further investigation and show that CA10 inhibits cell growth by causing G2/M cell cycle arrest and induction of apoptotic death. CA10 induced ROS generation and subsequent activation of endoplasmic reticulum (ER) stress and inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation, inhibits cancer cell proliferation. These anti-tumor activities of CA10 were confirmed in gastric cancer xenografts. CA10 induced ROS, activated the ER stress pathway and inhibited STAT3 phosphorylation and gastric xenografts tumor growth in mice. Our studies provide experimental evidence that MAC CA10 effectively targets gastric cancer in preclinical models by enhancing ROS and ROS-mediated signaling.
Collapse
Affiliation(s)
- Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Heping Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Chen Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hailun Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaohong Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qianqian Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, P.R. China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guodong He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuanxuan Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xi Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guilong Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
46
|
Zeng Z, Shen ZL, Zhai S, Xu JL, Liang H, Shen Q, Li QY. Transport of curcumin derivatives in Caco-2 cell monolayers. Eur J Pharm Biopharm 2017; 117:123-131. [DOI: 10.1016/j.ejpb.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 01/18/2023]
|
47
|
An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem 2017; 9:605-626. [PMID: 28394628 DOI: 10.4155/fmc-2016-0223] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
Collapse
|
48
|
Wang ZS, Chen LZ, Zhou HP, Liu XH, Chen FH. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. Bioorg Med Chem Lett 2017; 27:1803-1807. [PMID: 28284806 DOI: 10.1016/j.bmcl.2017.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
A series of new (2E,4E)-1-(substitutedphenyl)-5-(substitutedphenyl)penta-2,4-dien-1-one derivatives were designed and synthesized. Compounds 3i, 3k were determined by X-ray. All of the compounds have been screened for their anti-inflammatory activity characterized by evaluating their inhibition against LPS-induced IL-6 and TNF-α release in cell RAW 264.7 stimulated with LPS. Compound 3i showed the highest anti-inflammatory activity on decreasing IL-6 and TNF-α. The further study showed that title compound 3i inhibited expression of proteins p-p65, iNOS, COX-2 LPS-induced. Immunofluorescence also revealed compound 3i could lightly reduce activation p65 in nuclei. These results indicate that compound 3i anti-inflammatory role may partly due to its inhibitory effect on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhi Sen Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Hai Pin Zhou
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou 239000, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; School of Material Science Chemical Engineering, ChuZhou University, ChuZhou 239000, PR China.
| | - Fei Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
49
|
Su X, Zhang J, Wang H, Xu J, He J, Liu L, Zhang T, Chen R, Kang J. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China. Molecules 2017; 22:molecules22020312. [PMID: 28218703 PMCID: PMC6155836 DOI: 10.3390/molecules22020312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
To investigate the anti-atherosclerosis related mechanism of blueberries, the phenolic acids (PAs) content, antioxidant and anti-inflammatory activities, as well as the microRNA (miRNA) regulation of polyphenol fractions in blueberry samples from China were studied. Sixteen batches of blueberries including 14 commercialized cultivars (Reka, Patriot, Brigitta, Bluecrop, Berkeley, Duke, Darrow, Northland, Northblue, Northcountry, Bluesource, Southgood, O’Neal, and Misty) were used in this study. Seven PAs in the polyphenol fractions from 16 blueberry samples in China were quantified by high performance liquid chromatography/tandem mass spectrometry (HPLC/MS2). The antioxidant activities of blueberry polyphenols were tested by (1,1-diphenyl-2-picrylhydrazyl [DPPH]) assay. The anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were investigated by using lipopolysaccharide (LPS) induced RAW 264.7 macrophages. The correlation analysis showed that the antioxidant (1,1-diphenyl-2-picrylhydrazyl [DPPH]) and anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were in accordance with their PA contents. Although the polyphenol-enriched fractions of blueberries could inhibit the microRNAs (miRNAs) (miR-21, miR-146a, and miR-125b) to different extents, no significant contribution from the PAs was observed. The inhibition of these miRNAs could mostly be attributed to the other compounds present in the polyphenol-enriched fraction of the blueberries. This is the first study to evaluate the PAs content, antioxidant and anti-inflammatory activities, and miRNA regulation of Chinese blueberries.
Collapse
Affiliation(s)
- Xianming Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Jian Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Liying Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Ting Zhang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 3 Yabao Street, Beijing 100020, China.
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
50
|
Qiu C, Hu Y, Wu K, Yang K, Wang N, Ma Y, Zhu H, Zhang Y, Zhou Y, Chen C, Li S, Fu L, Zhang X, Liu Z. Synthesis and biological evaluation of allylated mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents for cholangiocarcinoma. Bioorg Med Chem Lett 2016; 26:5971-5976. [DOI: 10.1016/j.bmcl.2016.10.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
|