1
|
Reddyrajula R, Kathirvel PV, Shankaraiah N. Recent developments of benzimidazole based analogs as potential tubulin polymerization inhibitors: A critical review. Bioorg Med Chem Lett 2025; 122:130167. [PMID: 40074012 DOI: 10.1016/j.bmcl.2025.130167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Microtubules, as dynamic regulators in many cellular processes, remain pivotal targets in cancer chemotherapy. Among the structural motifs explored, the benzimidazole scaffold has emerged as a privileged heterocyclic ring system in the development of potent therapeutic agents, owing to its versatility and pharmacological relevance. This review critically examines the synthesis, anticancer activity, structure-activity relationships (SAR), and tubulin polymerization inhibitory properties of diverse benzimidazole derivatives. In addition, various synthetic strategies and innovative approaches for generating benzimidazole based analogs with enhanced cytotoxic profiles are highlighted. Recent findings underscore the potential of benzimidazole derivatives as promising tubulin polymerization inhibitors, contributing significantly to the discovery of next-generation anticancer agents.
Collapse
Affiliation(s)
- Rajkumar Reddyrajula
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India
| | - Priya Varshini Kathirvel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
2
|
Perinbaraj S, Jayaraman M, Jeyaraman J, Girija KR. Designing novel potent oxindole derivatives as VEGFR2 inhibitors for cancer therapy: Computational insights from molecular docking, drug-likeness, DFT, and structural dynamics studies. J Mol Graph Model 2025; 138:109049. [PMID: 40239487 DOI: 10.1016/j.jmgm.2025.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/25/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Oxindole is a γ-lactam featuring a heterocyclic core, combining pyrrole and benzene rings with a carbonyl group at the second position. This scaffold is present in numerous bioactive compounds, both natural and synthetic, and has emerged as a privileged pharmacophore in medicinal chemistry due to its broad biological activity. Substitution at the 3-position of the 2-oxindole structure has been shown to enhance potency and selectivity, especially in anticancer drug development. Breast cancer, a prevalent and challenging disease affecting millions of women worldwide, underscores an urgent need for more effective treatments. Current therapies often exhibit limited efficacy, significant side effects, and resistance issues, highlighting the demand for novel drugs with improved safety profiles. This study focuses on vascular endothelial growth factor receptor-2 (VEGFR-2), an essential regulator of tumor angiogenesis, as a potential target for breast cancer therapy. Through molecular docking-based virtual screening of 360 designed oxindole derivatives, three compounds (BIATAM, CIHTAM, and IATAM) were identified as potential candidates, each demonstrating high docking scores (>7 kcal/mol) and favorable interactions, including hydrogen bonding, hydrophobic contacts, and stacking. Among these, BIATAM emerged as the lead compound due to its superior docking performance, favorable pharmacokinetic profiles, and compliance with Lipinski's Rule of Five. Density functional theory (DFT) calculations confirmed its chemical stability, while molecular dynamics simulations (MDS) revealed high structural stability. Principal component-based free energy landscape (FEL) analysis highlighted limited conformational flexibility, and MM/PBSA-based binding energy calculations reinforced its strong affinity within the VEGFR-2 binding pocket. These comprehensive computational findings suggest that BIATAM holds promising potential as a novel therapeutic option for treating breast cancer.
Collapse
Affiliation(s)
- Sowmiya Perinbaraj
- Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry, 605 006, India
| | - Manikandan Jayaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Konda Reddy Girija
- Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry, 605 006, India.
| |
Collapse
|
3
|
Wang GQ, Liu HW, Zhou Y, Zhang L, Zhang JR, Shao LH, Zhou X, Wu ZB, Liu LW, Yang S. Novel 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole derivatives decorated with disulfide moiety are effective for treating bacterial infections by inducing reactive oxygen species. PEST MANAGEMENT SCIENCE 2025. [PMID: 40364659 DOI: 10.1002/ps.8895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/28/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Infectious diseases caused by pathogenic bacteria are the main causes of death in humans, and responsible for reduced yield quality and quantity of plants globally. This underscores the need for developing bactericide alternatives with novel modes-of-action. RESULTS Herein, we devised a series of novel 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole derivatives decorating with the disulfide moiety (W1-W36). Bioassay results indicated their antibacterial activity against three pathogenic bacteria [Xoo (Xanthomonas oryzae pv. oryzae), Xac (Xanthomonas axonopodis pv. citri) and Psa (Pseudomonas syringae pv. actinidiae)]. Compound W1 demonstrated eminent anti-Xoo activity in vitro, with a median effecgtive concentration (EC50) value of 0.77 μg mL-1, which was considerably higher than that of the reference agent thiodiazole copper (TC, EC50 = 104 μg mL-1). At 200 μg mL-1, compound W1 demonstrated better in vivo control efficiency (46.09% curative activity; 51.26% protective activity) toward rice bacterial blight diseases, with a >20% increase in activity relative to that of the control TC. Mechanistic studies revealed that compound W1 enabled the suppression of the activities of oxidoreductases including superoxide dismutase and catalase, disrupted the redox balance, and ultimately induced bacterial cell apoptosis. CONCLUSION Overall, these new molecules were characterized by high antibacterial ability, reactive oxygen species targeting performance, and low toxicity. They demonstrated unprecedented potential for controlling bacterial infection. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guo-Qing Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ya Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ling Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jun-Rong Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Hui Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Turhal G, Demirkan B, Baslilar IN, Yuncu NS, Baytas SN, Demiroglu-Zergeroglu A. Preliminary evaluation of antiproliferative and apoptotic activities of novel indolin-2-one derivatives. Drug Dev Res 2024; 85:e22229. [PMID: 38958104 DOI: 10.1002/ddr.22229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Indole-based agents are frequently used in targeted or supportive therapy of several cancers. In this study, we investigated the anticancer properties of originally synthesized novel indolin-2-one derivatives (6a-d) against Malignant Mesothelioma, Breast cancer, and Colon Cancer cells. Our results revealed that all derivatives were effectively delayed cell proliferation by inhibiting the ERK1/2, AKT, and STAT3 signaling pathways in a concentration-dependent manner. Additionally, these variants induced cell cycle arrest in the S phase, accompanied by elevated levels of p21 and p27 expressions. Derivatives also initiated mitochondrial apoptosis through the upregulation of Bax and downregulation of Bcl-2 proteins, leading to the activation of caspase 3 and PARP cleavage in exposed cells. Remarkably, three of the indolin-2-one derivatives displayed significant selectivity towards Breast and Colon Cancer cells, with compound 6d promising as the most potent and wide spectral one for all cancer cell lines.
Collapse
Affiliation(s)
- Gulseren Turhal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Busra Demirkan
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Izel Nermin Baslilar
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Nimet Sule Yuncu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
5
|
Valapil DG, Devabattula G, Sakla AP, Godugu C, Shankaraiah N. Design, Development of Pyrazole-Linked Spirocyclopropyl Oxindole-Carboxamides as Potential Cytotoxic Agents and Type III Allosteric VEGFR-2 Inhibitors. ChemMedChem 2024:e202400422. [PMID: 39087579 DOI: 10.1002/cmdc.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Tumor progression depends on angiogenesis, which is stimulated by growth factors like VEGF, targeting VEGFR kinase with small molecules is an effective anti-angiogenic therapeutic approach. The rational modification of sunitinib (VEGFR-2 inhibitor) to spirocyclopropyloxindoline carboxamides have been performed and their in vitro cytotoxic profiling was evaluated. The molecular modelling studies enabled the screening of designed analogues and identifying the possible interactions within the type III allosteric inhibitor binding site of VEGFR-2. The biological screening of synthesized compounds 15 a-y, revealed the ability of compound 15 w to inhibit the cell growth in MCF-7 cell line with IC50 value of 3.87±0.19 μM and alongside inhibition of VEGFR-2 kinase at a IC50 concentration of 4.34±0.13 μM was observed. Also, VEGFR-2 inhibition was validated through HUVEC tube formation inhibition assay. The qualitative assessment of apoptosis induction by 15 w in MCF-7 cells was evaluated through staining studies such as AO/EB and DAPI staining, whereas quantification of apoptosis and cell cycle analysis were performed through FACS analysis. The metastatic ability of the cancer cells was evaluated through inhibition of cell migration by a scratch wound healing assay. The current study strives to sequentially optimize the structural attributes of the 3-alkenyl oxindole core to surpass the existing challenges of well-known VEGFR-2 inhibitors. The findings observed from this study highlights that compound 15 w to be a prominent lead towards the development of clinical drug candidates.
Collapse
Affiliation(s)
- Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Geetanjali Devabattula
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| |
Collapse
|
6
|
Sakla AP, Bazaz MR, Mahale A, Sharma P, Valapil DG, Kulkarni OP, Dandekar MP, Shankaraiah N. Development of Benzimidazole-Substituted Spirocyclopropyl Oxindole Derivatives as Cytotoxic Agents: Tubulin Polymerization Inhibition and Apoptosis Inducing Studies. ChemMedChem 2024; 19:e202400052. [PMID: 38517377 DOI: 10.1002/cmdc.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
A series of spirocyclopropyl oxindoles with benzimidazole substitutions was synthesized and tested for their cytotoxicity against selected human cancer cells. Most of the molecules exhibited significant antiproliferative activity with compound 12 p being the most potent. It exhibited significant cytotoxicity against MCF-7 breast cancer cells (IC50 value 3.14±0.50 μM), evidenced by the decrease in viable cells and increased apoptotic features during phase contrast microscopy, such as AO/EB, DAPI and DCFDA staining studies. Compound 12 p also inhibited cell migration in wound healing assay. Anticancer potential of 12 p was proved by the inhibition of tubulin polymerization with IC50 of 5.64±0.15 μM. These results imply the potential of benzimidazole substituted spirocyclopropyl oxindoles, notably 12 p, as cytotoxic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Hyderabad, 500037, India
| |
Collapse
|
7
|
Singh A, Singh K, Sharma A, Sharma S, Batra K, Joshi K, Singh B, Kaur K, Chadha R, Bedi PMS. Mechanistic insight and structure activity relationship of isatin-based derivatives in development of anti-breast cancer agents. Mol Cell Biochem 2024; 479:1165-1198. [PMID: 37329491 DOI: 10.1007/s11010-023-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sambhav Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kevin Batra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kaustubh Joshi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Brahmjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
8
|
Bender O, Shoman ME, Ali TFS, Dogan R, Celik I, Mollica A, Hamed MIA, Aly OM, Alamri A, Alanazi J, Ahemad N, Gan SH, Malik JA, Anwar S, Atalay A, Beshr EAM. Discovery of oxindole-based FLT3 inhibitors as a promising therapeutic lead for acute myeloid leukemia carrying the oncogenic ITD mutation. Arch Pharm (Weinheim) 2023; 356:e2200407. [PMID: 36403191 DOI: 10.1002/ardp.202200407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-β. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Adriano Mollica
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Omar M Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor DE, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor DE, Malaysia
| | - Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
11
|
Laxmikeshav K, Himaja A, Shankaraiah N. Exploration of benzimidazoles as potential microtubule modulators: An insight in the synthetic and therapeutic evolution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Hebade MJ, Dhumal ST, Kamble SS, Deshmukh TR, Khedkar VM, Hese SV, Gacche RN, Dawane BS. DTP/SiO 2 Assisted Synthesis of New Benzimidazole-Thiazole Conjugates Targeting Antitubercular and Antioxidant Activities. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2056210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Madhav J. Hebade
- Department of Chemistry, Badrinarayan Barwale Mahavidyalaya, Jalna, Maharashtra, India
| | - Sambhaji T. Dhumal
- Department of Chemistry, Ramkrishna Paramhansa Mahavidyalaya, Osmanabad, Maharashtra, India
| | - Sonali S. Kamble
- Department of Biochemistry, Gramin Science (Vocational) College, Nanded, Maharashtra, India
| | - Tejshri R. Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Shrikant V. Hese
- Department of Chemistry, D. D. Bhoyar College of Arts and Science Mouda, Nagpur, India
| | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bhaskar S. Dawane
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| |
Collapse
|
13
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
14
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
15
|
Gaikwad NB, Bansode S, Biradar S, Ban M, Srinivas N, Godugu C, Yaddanapudi VM. New 3-(1H-benzo[d]imidazol-2-yl)quinolin-2(1H)-one-based triazole derivatives: Design, synthesis, and biological evaluation as antiproliferative and apoptosis-inducing agents. Arch Pharm (Weinheim) 2021; 354:e2100074. [PMID: 34346099 DOI: 10.1002/ardp.202100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
A series of 1,2,3-triazole derivatives based on the quinoline-benzimidazole hybrid scaffold was designed, synthesized, and screened against a panel of NCI-60 humanoid cancer cell lines for in vitro cytotoxicity evaluation, which revealed that compound Q6 was the most potent cytotoxic agent with excellent GI50 , TGI, and LC50 values on multiple cancer cell lines. Q6 was tested further on the BT-474 breast cancer line to evaluate the mechanism of action. Preliminary screening studies based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that compound Q6 had an excellent antiproliferative effect against human breast cancer cells, BT-474, with IC50 values of 0.59 ± 0.01 μM. The detailed study based on the acridine orange/ethidium bromide staining (AO/EB) and the 4',6-diamidino-2-phenylindole (DAPI) assay suggested that the antiproliferative activity shown was due to the induction of apoptosis on exposure to Q6. Further, DCFDA staining showed the generation of reactive oxygen species, altering the mitochondrial potential and leading to the initiation of apoptosis. This was further supported by JC-1 staining, indicating that this scaffold can contribute to the development of more potent derivatives.
Collapse
Affiliation(s)
- Nikhil B Gaikwad
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sapana Bansode
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shankar Biradar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mayuri Ban
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nanduri Srinivas
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Venkata M Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
16
|
Khetmalis YM, Shivani M, Murugesan S, Chandra Sekhar KVG. Oxindole and its derivatives: A review on recent progress in biological activities. Biomed Pharmacother 2021; 141:111842. [PMID: 34174506 DOI: 10.1016/j.biopha.2021.111842] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oxindole has been shown to be a pharmacologically advantageous scaffold having many biological properties that are relevant to medicinal chemistry. The simplicity and widespread occurrence of this scaffold in plant-based alkaloids have further reinforced oxindole's merit in the domain of novel drug discovery. First extracted from Uncaria tomentosa, commonly the known as cat claw's plant which was found abundantly in the Amazon rainforest, molecules with the oxindole moiety have been shown to be common in a wide variety of compounds extracted from plant sources. The role of oxindole as a chemical scaffold for fabricating and designing biological drugs agents can be ascribed to its ability to be modified by a number of chemical groups to generate novel biological functions. This review is aimed at providing a description of the general chemistry based on existing corresponding structure-activity relationships (SARs) and compile all recent developmentary studies on oxindole-derived compounds as a successful pharmaceutical agent. A substantial group of oxindole derivatives are chiefly being tested as anticancer agents, however, a several oxindole derivatives have been shown to possesses antimicrobial, α-glucosidase inhibitory, antiviral, antileishmanial, antitubercular, antioxidative, tyrosinase inhibitory, PAK4 inhibitory, antirheumatoid arthritis and intraocular pressure reducing activities, to name a few. In this review we show the potential value of developing newer oxindole derivatives with an improved range of pharmacological implications as well as identifying drugs possessing oxindole core, that are showing and serving increased efficacy in clinical practice.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mithula Shivani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 33303, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
17
|
Yadav U, Vanjari Y, Laxmikeshav K, Tokala R, Niggula PK, Kumar M, Talla V, Kamal A, Shankaraiah N. Synthesis and in Vitro Cytotoxicity Evaluation of Phenanthrene Linked 2,4- Thiazolidinediones as Potential Anticancer Agents. Anticancer Agents Med Chem 2021; 21:1127-1140. [PMID: 32664846 DOI: 10.2174/1871520620666200714142931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To synthesize a series of phenanthrene-thiazolidinedione hybrids and explore their cytotoxic potential against human cancer cell lines of A-549 (lung cancer), HCT-116 and HT-29 (colon cancer), MDA MB-231 (triple-negative breast cancer), BT-474 (breast cancer) and (mouse melanoma) B16F10 cells. METHODS A new series of phenanthrene-thiazolidinedione hybrids was synthesized via Knoevenagel condensation of phenanthrene-9-carbaldehyde and N-alkylated thiazolidinediones. The cytotoxicity (IC50) of the synthesized compounds was determined by MTT assay. Apoptotic assays like (AO/EB) and DAPI staining, cell cycle analysis, JC-1 staining and Annexin V binding assay studies were performed for the most active compound (Z)- 3-(4-bromobenzyl)-5-((2,3,6,7-tetramethoxyphenanthren-9-yl)methylene)thiazolidine-2,4-dione (17b). Molecular docking, dynamics and evaluation of pharmacokinetic (ADME/T) properties were also carried out by using Schrödinger. RESULTS AND DISCUSSION From the series of tested compounds, 17b unveiled promising cytotoxic action with an IC50 value of 0.985±0.02μM on HCT-116 human colon cancer cells. The treatment of HCT-116 cells with 17b demonstrated distinctive apoptotic morphology like shrinkage of cells, horseshoe-shaped nuclei formation and chromatin condensation. The flow-cytometry analysis revealed the G0/G1 phase cell cycle arrest in a dosedependent fashion. The AO/EB, DAPI, DCFDA, Annexin-V and JC-1 staining studies were performed in order to determine the effect of the compound on cell viability. Computational studies were performed by using Schrödinger to determine the stability of the ligand with the DNA. CONCLUSION The current study provides an insight into developing a series of phenanthrene thiazolidinedione derivatives as potential DNA interactive agents which might aid in colon cancer therapy.
Collapse
Affiliation(s)
- Upasana Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Yogesh Vanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Praveen K Niggula
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Manoj Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Venu Talla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| |
Collapse
|
18
|
Sakla AP, Kansal P, Shankaraiah N. Syntheses and Applications of Spirocyclopropyl Oxindoles: A Decade Review. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Akash P. Sakla
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) 500 037 Hyderabad India
| | - Pritish Kansal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) 500 037 Hyderabad India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) 500 037 Hyderabad India
| |
Collapse
|
19
|
Laxmikeshav K, Sakla AP, Rasane S, John SE, Shankaraiah N. Microwave‐Assisted Regioselective Friedel–Crafts Arylation by BF
3
⋅ OEt
2
: A Facile Synthetic Access to 3‐Substituted‐3‐Propargyl Oxindole Scaffolds. ChemistrySelect 2020. [DOI: 10.1002/slct.202001660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Akash P. Sakla
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Sai Rasane
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Stephy Elza John
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| |
Collapse
|
20
|
Yadav U, Sakla AP, Tokala R, Nyalam ST, Khurana A, Digwal CS, Talla V, Godugu C, Shankaraiah N, Kamal A. Design and Synthesis of 5‐Morpholino‐Thiophene‐Indole/ Oxindole Hybrids as Cytotoxic Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201904845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Upasana Yadav
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Akash P. Sakla
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Ramya Tokala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Sai Teja Nyalam
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Amit Khurana
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Chander Singh Digwal
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Venu Talla
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia, Hamdard New Delhi 110062 India
| |
Collapse
|
21
|
Sakla AP, Kansal P, Shankaraiah N. Syntheses and reactivity of spiro-epoxy/aziridine oxindole cores: developments in the past decade. Org Biomol Chem 2020; 18:8572-8596. [DOI: 10.1039/d0ob01726d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights various reactions to afford spiro-epoxy/aziridine oxindoles and their potential synthetic transformations.
Collapse
Affiliation(s)
- Akash P. Sakla
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Pritish Kansal
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| |
Collapse
|
22
|
Vo QV, Van Gon T, Van Bay M, Mechler A. Antioxidant Activities of Monosubstituted Indolinonic Hydroxylamines: A Thermodynamic and Kinetic Study. J Phys Chem B 2019; 123:10672-10679. [DOI: 10.1021/acs.jpcb.9b08912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Quan V. Vo
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Tran Van Gon
- Hue University of Sciences − Hue University, 77 Nguyen Hue, Hue City 530000, Vietnam
| | - Mai Van Bay
- Department of Chemistry, The University of Da Nang - University of Science and Education, Da Nang 550000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
23
|
Jadala C, Sathish M, Anchi P, Tokala R, Lakshmi UJ, Reddy VG, Shankaraiah N, Godugu C, Kamal A. Synthesis of Combretastatin‐A4 Carboxamidest that Mimic Sulfonyl Piperazines by a Molecular Hybridization Approach:
in vitro
Cytotoxicity Evaluation and Inhibition of Tubulin Polymerization. ChemMedChem 2019; 14:2052-2060. [DOI: 10.1002/cmdc.201900541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Chetna Jadala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Manda Sathish
- Medicinal Chemistry and PharmacologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Pratibha Anchi
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Ramya Tokala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Uppu Jaya Lakshmi
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Velma Ganga Reddy
- Medicinal Chemistry and PharmacologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Nagula Shankaraiah
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Ahmed Kamal
- Medicinal Chemistry and PharmacologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- School of Pharmaceutical Education and Research (SPER) Jamia Hamdard New Delhi 110062 India
| |
Collapse
|
24
|
Goud NS, Pooladanda V, Mahammad GS, Jakkula P, Gatreddi S, Qureshi IA, Alvala R, Godugu C, Alvala M. Synthesis and biological evaluation of morpholines linked coumarin–triazole hybrids as anticancer agents. Chem Biol Drug Des 2019; 94:1919-1929. [DOI: 10.1111/cbdd.13578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nerella Sridhar Goud
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Ghouse S. Mahammad
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Pranay Jakkula
- Department of Biotechnology and Bioinformatics School of Life Sciences University of Hyderabad Hyderabad India
| | - Santhosh Gatreddi
- Department of Biotechnology and Bioinformatics School of Life Sciences University of Hyderabad Hyderabad India
| | - Insaf A. Qureshi
- Department of Biotechnology and Bioinformatics School of Life Sciences University of Hyderabad Hyderabad India
| | - Ravi Alvala
- G. Pulla Reddy College of Pharmacy Hyderabad India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Mallika Alvala
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| |
Collapse
|
25
|
Vo QV, Van Bay M, Nam PC, Mechler A. Is Indolinonic Hydroxylamine a Promising Artificial Antioxidant? J Phys Chem B 2019; 123:7777-7784. [PMID: 31462046 DOI: 10.1021/acs.jpcb.9b05160] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Indolinonic hydroxylamine (IH) is a new-generation artificial antioxidant that, due to its ability to fractionate into apolar environments, is considered for prevention against lipid peroxidation. For this reason, it is important to understand, and compare, its activity in polar and nonpolar environments. In this study, the antioxidant activity of IH has been evaluated against HO• and HOO• radicals in water and, for a lipid-mimetic environment, pentyl ethanoate solvent, using kinetic calculations. It was found that the overall reaction rate constant of the HO• radical scavenging is more than 7 times higher in aqueous (8.98 × 109 M-1 s-1) than in apolar (1.22 × 109 M-1 s-1) media. However, HOO• scavenging was 35 times faster in apolar media (1.00 × 105 M-1 s-1 vs 2.80 × 103 M-1 s-1). In a lipid environment, the HAT mechanism was favored for the antioxidant activity for both radical species, whereas in aqueous solution the SET mechanism defined the HO• scavenging, while HAT described the HOO• scavenging. IH was shown to be one of the most active antioxidants in lipid environment, an essential characteristic for the protection of biological systems.
Collapse
Affiliation(s)
- Quan V Vo
- Department for Management of Science and Technology Development , Ton Duc Thang University , Ho Chi Minh City 700000 , Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City 700000 , Vietnam
| | - Mai Van Bay
- Department of Chemistry , The University of Da Nang-University of Science and Education , Da Nang 550000 , Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering , The University of Da Nang, University of Science and Technology , Da Nang 550000 , Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics , La Trobe University , Melbourne , Victoria 3086 , Australia
| |
Collapse
|
26
|
Rafiq M, Khalid M, Tahir MN, Ahmad MU, Khan MU, Naseer MM, Braga AAC, Muhammad S, Shafiq Z. Synthesis, XRD, spectral (IR, UV–Vis, NMR) characterization and quantum chemical exploration of benzoimidazole‐based hydrazones: A synergistic experimental‐computational analysis. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5182] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Muhammad Rafiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan‐64200 Pakistan
| | | | - Muhammad Umair Ahmad
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Usman Khan
- Department of Applied ChemistryGovernment College University Faisalabad 38000 Pakistan
| | | | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Avenida Professor LineuPrestes, 748 São Paulo 05508‐000 Brazil
| | - Shabbir Muhammad
- Department of Physics, College of ScienceKing Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| | - Zahid Shafiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
27
|
PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110356. [PMID: 31319226 DOI: 10.1016/j.colsurfb.2019.110356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Abstract
A novel triblock amphiphilic copolymer (PAL-PEG-Birinapant) was designed and synthesized as a dual-functional micellar carrier utilizing birinapant (an inhibitor of inhibitor-of-apoptosis proteins) as a pH-sensitive segment and inhibitor-of-apoptosis proteins-targeting ligand. The mixed micelles comprised of PAL-PEG-Birinapant (PPB) and mPEG2k-PDLLA2k (MPP), named as PPB/MPP (2/1,w/w) micelles were developed for enhanced solubility and antitumor potency of hydrophobic drugs as paclitaxel (PTX). In vitro cell viability and cytotoxicity studies revealed that the PTX-loaded PPB/MPP micelles were more potent than the commercial PTX formulation (Taxol®), as well as the in vitro cell apoptosis study. Clear differences in the intracellular uptake of free coumarin-6 (C6) solution and C6-loaded PPB/MPP micelles were observed and indicated that the PPB/MPP micelles could efficiently deliver chemical compound into tumor cells. PPB copolymer and PTX-loaded PPB/MPP micelles demonstrated an excellent safety profile with a maximum tolerated dose (MTD) of above 1.2 g copolymer/kg and above 100 mg PTX/kg in mice respectively in contrast to 20˜24 mg/kg of Taxol®. The near infrared (NIR) fluorescence imaging showed that PPB/MPP micelles persisted for a relatively long time in the circulation and accumulated preferentially in tumor tissue. Moreover, PTX loaded PPB/MPP micelles significantly inhibited the tumor growth both in MDA-MB-231 and Ramos cancer xenograft mice models without obvious toxicity. Collectively, our study presents a new dual-functional micelles that improve the therapeutic efficacy of PTX in vitro and in vivo.
Collapse
|
28
|
Shankaraiah N, Nekkanti S, Ommi O, P.S. LS. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer. Curr Med Chem 2019; 26:7059-7080. [DOI: 10.2174/0929867325666180410110729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
:
The efficacy of successful cancer therapies is frequently hindered by the development of drug
resistance in the tumor. The term ‘drug resistance’ is used to illustrate the decreased effectiveness of a
drug in curing a disease or alleviating the symptoms of the patient. This phenomenon helps tumors to survive
the damage caused by a specific drug or group of drugs. In this context, studying the mechanisms of
drug resistance and applying this information to design customized treatment regimens can improve therapeutic
efficacy as well as the curative outcome. Over the years, numerous Multidrug Resistance (MDR)
mechanisms have been recognized and tremendous effort has been put into developing agents to address
them. The integration of data emerging from the elucidation of molecular and biochemical pathways and
specific tumor-associated factors has shown tremendous promise within the oncology community for improving
patient outcomes. In this review, we provide an overview of the utility of these molecular and biochemical
signaling processes as well as tumor-associated factors associated with MDR, for the rational
selection of cancer treatment strategies.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ojaswitha Ommi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Lakshmi Soukya P.S.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| |
Collapse
|
29
|
Sultana F, Saifi MA, Syed R, Mani GS, Shaik SP, Osas EG, Godugu C, Shahjahan S, Kamal A. Synthesis of 2-anilinopyridyl linked benzothiazole hydrazones as apoptosis inducing cytotoxic agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj06517a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 2-anilinopyridyl linked benzothiazole-hydrazone conjugates (5a-aa) were designed, synthesized and evaluated for their anticancer potential.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500007
- India
- Department of Chemistry
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology
- National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
| | - Riyaz Syed
- Medicinal Chemistry and Biotechnology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500007
- India
| | - Geeta Sai Mani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500007
- India
| | - Egharevba God'shelp Osas
- Medicinal Chemistry and Biotechnology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500007
- India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology
- National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
| | - Syeda Shahjahan
- Department of Chemistry
- University College for Women
- Hyderabad-500095
- India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500007
- India
- Department of Medicinal Chemistry
| |
Collapse
|
30
|
Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother 2018; 110:803-817. [PMID: 30554119 DOI: 10.1016/j.biopha.2018.11.145] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are the promising targets for cancer chemotherapy that cannot be eliminated by conventional chemotherapy. In this study cationic liposomes of cabazitaxel (CBX) and silibinin (SIL) were prepared with an aim to kill cancer cells and CSCs for prostate cancer. CBX act as cancer cell inhibitor and SIL as CSC inhibitor. Hyaluronic acid (HA), an endogenous anionic polysaccharide was coated on cationic liposomes for targeting CD44 receptors over expressed on CSCs. Liposomes were prepared by ethanol injection method with particle size below 100 nm and entrapment efficiency of more than 90% at 10% w/w drug loading. Liposomes were characterized by dynamic light scattering, transmission electron microscopy, 1H nuclear magnetic resonance and scanning electron microscopy-energy dispersive x-ray spectroscopy. Liposomes were evaluated for their anticancer action in androgen independent human prostate cancer cell lines (PC-3 and DU-145). HA coated liposomes showed potential cytotoxicity over other groups with low IC50, significantly inhibited cell migration and induced apoptosis. Synergistic cytotoxic effect was also observed with HA coated liposomes that resulted in colony formation inhibition and G2/M phase arrest. Proficient cytotoxicity against CD44+ cells (14.87 ± 0.41% in PC-3 and 33.95 ± 0.68% in DU-145 cells) indicated the efficiency of HA coated liposomes towards CSC targeting. Hence, the outcome of this combinational therapy with CD44 targeting indicates the suitability of HA coated CBX and SIL co-loaded liposomes as a potential approach for eradicating prostate cancer and herein might provide a insight for future studies.
Collapse
|
31
|
Bakthavatchala Reddy N, Zyryanov GV, Mallikarjuna Reddy G, Balakrishna A, Padmaja A, Padmavathi V, Suresh Reddy C, Garcia JR, Sravya G. Design and Synthesis of Some New Benzimidazole Containing Pyrazoles and Pyrazolyl Thiazoles as Potential Antimicrobial Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Grigory V. Zyryanov
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
- Ural Division of the Russian Academy of Sciences; I. Ya. Postovskiy Institute of Organic Synthesis; 22 S. Kovalevskoy Street Yekaterinburg 620219 Russia
| | - Guda Mallikarjuna Reddy
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
- Department of Chemistry; State University of Ponta Grossa; Ponta Grossa 84030-900 Parana Brazil
| | - Avula Balakrishna
- Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous); Nandyal 518501 Andhra Pradesh India
| | - Adivireddy Padmaja
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | | - Cirandur Suresh Reddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Jarem Raul Garcia
- Department of Chemistry; State University of Ponta Grossa; Ponta Grossa 84030-900 Parana Brazil
| | - Gundala Sravya
- Chemical Engineering Institute; Ural Federal University; Yekaterinburg 620002 Russia
| |
Collapse
|
32
|
Guo B, Liao C, Fang Y, Li S, Li X, Lu Z, Chen Y. Ruthenium complex delivery using liposomes to improve bioactivity against HeLa cells via the mitochondrial pathway. Nanomedicine (Lond) 2018; 13:2851-2866. [DOI: 10.2217/nnm-2018-0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The aim of this study was to encapsulate a ruthenium complex [Ru(ttbpy)2PIP](ClO4)2 (Ru) in liposomes to enhance their antitumor effect on human cervical cancer. Methods: The Ru-loaded PEGylated liposomes (Ru–Lip) were prepared using thin-film hydration method. The mechanism of action was studied. Results: A novel Ru was successfully synthesized. Ru–Lip showed stronger cytotoxic activity against HeLa cells than Ru. Ru–Lip demonstrated a more significant increase in apoptosis, reactive oxygen species production and apoptosis-associated processes (intracellular calcium concentration, cytochrome c release and activation of Bax and caspase-3) than Ru. Ru–Lip exhibited greater blockade efficacy in the cell cycle G1 phase and greater DNA damage than Ru. Conclusion: Ru–Lip significantly elevates the anticancer effect via reactive oxygen species-mediated mitochondrial dysfunctional pathway.
Collapse
Affiliation(s)
- Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cancheng Liao
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuqi Fang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuqi Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaofang Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
- R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
33
|
Mahdjour S, Guardia JJ, Rodríguez-Serrano F, Garrido JM, López-Barajas IB, Mut-Salud N, Chahboun R, Alvarez-Manzaneda E. Synthesis and antiproliferative activity of podocarpane and totarane derivatives. Eur J Med Chem 2018; 158:863-873. [DOI: 10.1016/j.ejmech.2018.09.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023]
|
34
|
Tokala R, Thatikonda S, Vanteddu US, Sana S, Godugu C, Shankaraiah N. Design and Synthesis of DNA-Interactive β-Carboline-Oxindole Hybrids as Cytotoxic and Apoptosis-Inducing Agents. ChemMedChem 2018; 13:1909-1922. [DOI: 10.1002/cmdc.201800402] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Usha Sree Vanteddu
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Sravani Sana
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| |
Collapse
|
35
|
Simulation results source for the identification of biological active compounds: synthesis, antimicrobial evaluation and SARs of three in one heterocyclic motifs. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Bhandari S, Katore AR, Bajaj DM, Sharma P, Talla V, Shankaraiah N. H2
O-Mediated Epoxide Ring-Opening with Concomitant C-S Bond Formation: A One-Pot Method to 3-Hydroxy-oxindolino-dithiocarbamates as Cytotoxic Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201800983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sonal Bhandari
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500 037 India
| | - Amol Rajaram Katore
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500 037 India
| | - Deepti Madanlal Bajaj
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500 037 India
| | - Pankaj Sharma
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500 037 India
| | - Venu Talla
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500 037 India
| |
Collapse
|
37
|
Li J, Ma J, Xin Y, Quan Z, Tian Y. Synthesis and pharmacological evaluation of 2,3‐diphenyl acrylonitriles‐bearing halogen as selective anticancer agents. Chem Biol Drug Des 2018. [DOI: 10.1111/cbdd.13180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia‐Jun Li
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai MountainAffiliated Ministry of EducationCollege of PharmacyYanbian University Yanji Jilin Province China
| | - Jun Ma
- Jiangsu Hansoh Pharmaceutical Group Co. Ltd. Lianyungang Jiangsu Province China
| | - Ya‐Bing Xin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai MountainAffiliated Ministry of EducationCollege of PharmacyYanbian University Yanji Jilin Province China
| | - Zhe‐Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai MountainAffiliated Ministry of EducationCollege of PharmacyYanbian University Yanji Jilin Province China
| | - Yu‐Shun Tian
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai MountainAffiliated Ministry of EducationCollege of PharmacyYanbian University Yanji Jilin Province China
| |
Collapse
|
38
|
Kumar NP, Thatikonda S, Tokala R, Kumari SS, Lakshmi UJ, Godugu C, Shankaraiah N, Kamal A. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg Med Chem 2018. [DOI: 10.1016/j.bmc.2018.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
A practical multi-step synthesis of ethyl N-functionalized [Formula: see text]-amino benzimidazole acrylate derivatives as promising cytotoxic agents. Mol Divers 2018; 22:685-708. [PMID: 29623536 DOI: 10.1007/s11030-018-9824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
A series of 16 new ethyl [Formula: see text]-amino benzimidazole acrylate derivatives 12(a-p) with a (2E)-s-cis/trans conformation and bearing two points of diversity was designed and synthesized by using a multi-step strategy (reductive amination, deprotection in acidic media and transamination) in moderate to good yields from ethyl 3-dimethylamino-2-(1H-benzimidazol-2-yl)acrylate (5) and monosubstituted N-Boc diamines (7a,7b) as starting building blocks. Products 12 were evaluated for their in vitro cytotoxic potential against six selected human cell lines (Huh7-D12, Caco2, MDA-MB231, HCT116, PC3 and NCI-H727). Compounds 12a, 12e and 12l exhibited selective and micromolar antitumor activities against Huh7-D12 and Caco2 cell lines.
Collapse
|
40
|
Kumar PS, Jeyalatha MV, Malathi J, Ignacimuthu S. Anticancer effects of one-pot synthesized biogenic gold nanoparticles (Mc-AuNps) against laryngeal carcinoma. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Tokala R, Thatikonda S, Sana S, Regur P, Godugu C, Shankaraiah N. Synthesis and in vitro cytotoxicity evaluation of β-carboline-linked 2,4-thiazolidinedione hybrids: potential DNA intercalation and apoptosis-inducing studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj03248c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of β-carboline-linked 2,4-thiazolidinedione hybrids was synthesized and studied for their DNA affinities and cytotoxicities. The most potent compound was 19e with IC50 of 0.97 ± 0.13 μM.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | | | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| |
Collapse
|
42
|
Acar Çevik U, Sağlık BN, Korkut B, Özkay Y, Ilgın S. Antiproliferative, Cytotoxic, and Apoptotic Effects of New Benzimidazole Derivatives Bearing Hydrazone Moiety. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry; Anadolu University, Faculty of Pharmacy; Eskişehir 26470 Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University; Eskişehir 26470 Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry; Anadolu University, Faculty of Pharmacy; Eskişehir 26470 Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University; Eskişehir 26470 Turkey
| | - Büşra Korkut
- Department of Pharmaceutical Toxicology; Anadolu University, Faculty of Pharmacy; Eskişehir 26470 Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry; Anadolu University, Faculty of Pharmacy; Eskişehir 26470 Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University; Eskişehir 26470 Turkey
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology; Anadolu University, Faculty of Pharmacy; Eskişehir 26470 Turkey
| |
Collapse
|
43
|
Synthesis of substituted phenanthrene-9-benzimidazole conjugates: Cytotoxicity evaluation and apoptosis inducing studies. Eur J Med Chem 2017; 140:128-140. [PMID: 28923381 DOI: 10.1016/j.ejmech.2017.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023]
Abstract
A series of new phenanthrene-9-benzimidazole conjugates has been synthesized by condensing phenanthrene aldehydes with various substituted o-phenylenediamines. The title compounds were evaluated for their in vitro cytotoxic potential against various human cancer cell lines like breast (BT-549), prostate (PC-3 and DU145), triple negative breast cancer (MDA-MB-453), and human colon cancer (HCT-116 and HCT-15) cells. Among the tested compounds, 10o displayed significant in vitro cytotoxic activity against PC-3 prostate cancer cells with an IC50 value of 6.32 ± 0.09 μM. Further, the cell cycle analysis indicated that it blocks G2/M phase of the cell cycle in a dose dependent manner. In order to determine the effect of the compound 10o on cell viability; phase contrast microscopy, AO/EB staining, DAPI staining, and DCFDA staining studies were performed. In these studies, apoptotic features were clearly observed indicating that the compound inhibited cell proliferation by apoptosis. JC-1 staining and annexin binding assays indicated the extent of apoptosis in PC-3 cells. Further, relative viscosity measurements and molecular docking studies indicated that these compounds bind to DNA by intercalation.
Collapse
|
44
|
Velázquez-Cayón R, Castillo-Dalí G, Corcuera-Flores JR, Serrera-Figallo MA, Castillo-Oyagüe R, González-Martín M, Gutierrez-Pérez JL, Torres-Lagares D. Production of bone mineral material and BMP-2 in osteoblasts cultured on double acid-etched titanium. Med Oral Patol Oral Cir Bucal 2017; 22:e651-e659. [PMID: 28809380 PMCID: PMC5694190 DOI: 10.4317/medoral.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/30/2022] Open
Abstract
Background The study of osteoblasts and their osteogenic functions is essential in order to understand them and their applications in implantology. In this sense, this study try to study BMP-2 production and bone matrix deposition, in addition to other biological variables, in osteoblasts cultured on a rough double acid-etched titanium surface (Osseotite®, Biomet 3i, Palm Beach Garden, Florida, USA) in comparison to a smooth titanium surface (machined) and a control Petri dish. Material and Methods An in vitro prospective study. NHOst human osteoblasts from the femur were cultured on three different surfaces: Control group: 25-mm methacrylate dish (n = 6); Machined group: titanium discs with machined surface (n = 6) and Experimental group: titanium discs with a double acid-etched nitric and hydrofluoric Osseotite® acid surface (n = 6). A quantification of the mitochondrial membrane potential, and studies of apoptosis, mobility and adhesion, bone productivity (BMP-2) and cellular bone synthesis were carried out after culturing the three groups for forty-eight hours. Results A statistically significant difference was observed in the production of BMP-2 between the experimental group and the other two groups (22.33% ± 11.06 vs. 13.10% ± 5.51 in the machined group and 3.88% ± 3.43 in the control group). Differences in cellular bone synthesis were also observed between the groups (28.34% ± 14.4% in the experimental group vs. 20.03% ± 6.79 in the machined group and 19.34% ± 15.93% in the control group). Conclusions In comparison with machined surfaces, Osseotite® surfaces favor BMP-2 production and bone synthesis as a result of the osteoblasts in contact with it. Key words:BMP-2, Cytoskeleton, cell culture, bone matrix, apoptosis, cell viability.
Collapse
Affiliation(s)
- R Velázquez-Cayón
- School of Dentistry. University of Seville, C/Avicena s/n, 41009 Seville,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sharma P, Reddy TS, Kumar NP, Senwar KR, Bhargava SK, Shankaraiah N. Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur J Med Chem 2017; 138:234-245. [PMID: 28668476 DOI: 10.1016/j.ejmech.2017.06.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/25/2022]
|
46
|
Inhibitory growth evaluation and apoptosis induction in MCF-7 cancer cells by new 5-aryl-2-butylthio-1,3,4-oxadiazole derivatives. Cancer Chemother Pharmacol 2017; 80:1027-1042. [DOI: 10.1007/s00280-017-3414-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
|
47
|
Shrivastava N, Naim MJ, Alam MJ, Nawaz F, Ahmed S, Alam O. Benzimidazole Scaffold as Anticancer Agent: Synthetic Approaches and Structure-Activity Relationship. Arch Pharm (Weinheim) 2017; 350. [PMID: 28544162 DOI: 10.1002/ardp.201700040] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 11/07/2022]
Abstract
Cancer, also known as malignant neoplasm, is a dreadful disease which involves abnormal cell growth having the potential to invade or spread to other parts of the body. Benzimidazole is an organic compound that is heterocyclic and aromatic in nature. It is a bicyclic compound formed by the fusion of the benzene and imidazole ring systems. It is an important pharmacophore and a privileged structure in medicinal chemistry. According to the World Health Organisation (2015 survey), one in six deaths is due to cancer around the globe, accounting for 8.8 million deaths of which 70% of the cases were from low- and middle-income countries. In the efforts to develop suitable anticancer drugs, medicinal chemists have focussed on benzimidazole derivatives. This review article covers the current development of benzimidazole-based anticancer agents along with the synthetic approaches and structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Neelima Shrivastava
- Faculty of Pharmacy, , Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Mohd Javed Naim
- Faculty of Pharmacy, , Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Md Jahangir Alam
- Faculty of Pharmacy, , Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Farah Nawaz
- Faculty of Pharmacy, , Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Shujauddin Ahmed
- Faculty of Pharmacy, , Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Faculty of Pharmacy, , Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| |
Collapse
|
48
|
Kumar NP, Nekkanti S, Sujana Kumari S, Sharma P, Shankaraiah N. Design and synthesis of 1,2,3-triazolo-phenanthrene hybrids as cytotoxic agents. Bioorg Med Chem Lett 2017; 27:2369-2376. [PMID: 28431881 DOI: 10.1016/j.bmcl.2017.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
A series of new 1,2,3-triazolo-phenanthrene hybrids has been synthesized by employing Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. These compounds were evaluated for their in vitro cytotoxic potential against various human cancer cell lines viz. lung (A549), prostate (PC-3 and DU145), gastric (HGC-27), cervical (HeLa), triple negative breast (MDA-MB-231, MDA-MB-453) and breast (BT-549, 4T1) cells. Among the tested compounds, 7d displayed highest cytotoxicity against DU145 cells with IC50 value of 1.5±0.09µM. Further, the cell cycle analysis shown that it blocks G0/G1 phase of the cell cycle in a dose dependent manner. In order to determine the effect of compound on cell viability, phase contrast microscopy, AO/EB, DAPI, DCFDA and JC-1 staining studies were performed. These studies clearly indicated that the compound 7d inhibited the cell proliferation of DU145 cells. Relative viscosity measurements and molecular docking studies indicated that these compounds bind to DNA by intercalation.
Collapse
Affiliation(s)
- Niggula Praveen Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - S Sujana Kumari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Pankaj Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
49
|
Gu W, Miao TT, Hua DW, Jin XY, Tao XB, Huang CB, Wang SF. Synthesis and in vitro cytotoxic evaluation of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid. Bioorg Med Chem Lett 2017; 27:1296-1300. [PMID: 28169166 DOI: 10.1016/j.bmcl.2017.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/29/2016] [Accepted: 01/11/2017] [Indexed: 01/27/2023]
Abstract
A series of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid were designed and synthesized as potent antitumor agents. Structures of the target molecules were characterized using MS, IR, 1H NMR, 13C NMR and elemental analyses. In the in vitro cytotoxic assay, most compounds showed significant cytotoxic activities against two hepatocarcinoma cells (SMMC-7721 and HepG2) and reduced cytotoxicity against noncancerous human hepatocyte (LO2). Among them, compound 7b exhibited the best cytotoxicity against SMMC-7721 cells (IC50: 0.36±0.13μM), while 7e was most potent to HepG2 cells (IC50: 0.12±0.03μM). The cell cycle analysis indicated that compound 7b caused cell cycle arrest of SMMC-7721 cells at G2/M phase. Further, compound 7b also induced the apoptosis of SMMC-7721 cells in Annexin V-APC/7-AAD binding assay.
Collapse
Affiliation(s)
- Wen Gu
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Ting-Ting Miao
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Da-Wei Hua
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiao-Yan Jin
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xu-Bing Tao
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chao-Bo Huang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shi-Fa Wang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
50
|
Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem 2016; 126:705-753. [PMID: 27951484 DOI: 10.1016/j.ejmech.2016.12.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022]
Abstract
Benzimidazole, a fused heterocycle bearing benzene and imidazole has gained considerable attention in the field of contemporary medicinal chemistry. The moiety is of substantial importance because of its wide array of pharmacological activities. This nitrogen containing heterocycle is a part of a number of therapeutically used agents. Moreover, a number of patents concerning this moiety in the last few years further highlight its worth. The present review covers the recent work published by scientists across the globe during last five years.
Collapse
Affiliation(s)
- Wasim Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M A Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Hassan Mehdi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|