1
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Staphylococcus aureus Infections. J Am Chem Soc 2024; 146:6880-6892. [PMID: 38411555 DOI: 10.1021/jacs.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ki Wan Park
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nichole J Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
2
|
Irondi EA, Bankole AO, Awoyale W, Ajani EO, Alamu EO. Antioxidant, enzymes inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Front Nutr 2024; 10:1340679. [PMID: 38274204 PMCID: PMC10808348 DOI: 10.3389/fnut.2023.1340679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to assess the antioxidant, enzyme inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Multi-purpose natural additives were formulated with three natural additives (sweet detar seed, ginger rhizome, and hibiscus calyx flours, as a thickener, flavourant and colourant, respectively) blends at proportions derived from the Design Expert. The additives' synthetic counterparts were formulated with sodium carboxymethylcellulose, vanilla flavor, and red colourant at the same proportions. After that, yoghurt was produced and the additives blends were incorporated into it either in aqueous extract or flour form, yielding bio-yoghurts designated multi-purpose natural additive extract-containing yoghurt (MNAE-yoghurt), multi-purpose natural additive flour-added yoghurt (MNAF-yoghurt), and their multi-purpose synthetic additives-containing counterparts (MSAE-yoghurt and MSAF-yoghurt). A commercially-available bio-yoghurt served as a control. All the yoghurts were lyophilized to obtain instant bio-yoghurts. Subsequently, bioactive components (total phenolics, tannins, total flavonoids and saponins), antioxidants and enzymes [alpha-amylase, alpha-glucosidase, pancreatic lipase, and angiotensin 1-converting enzyme (ACE)] inhibitory activities, as well as proximate, physicochemical and sensory qualities of the bio-yoghurts were determined. The MNAE-yoghurt and MNAF-yoghurt had higher bioactive constituents, total titratable acid levels, and more potent antioxidant and enzyme inhibitory properties, but a lower pH than their synthetic counterparts and the control. The total phenolics, tannins, total flavonoids and saponins levels of MNAE-yoghurt and MNAF-yoghurt were 14.40 ± 0.24 and 16.54 ± 0.62 mg/g, 1.65 ± 0.04 and 1.74 ± 0.08 mg/g, 4.25 ± 0.03 and 4.40 ± 0.02 mg/g, 0.64 ± 0.01 and 0.66 ± 0.02 mg/g, respectively. Among the natural multi-purpose additives-containing bio-yoghurts, MNAF-yoghurt had higher bioactive constituents and stronger antioxidant and enzymes inhibitory properties. Its α-amylase, α-glucosidase, ACE, and pancreatic lipase IC50 values were 72.47 ± 0.47, 74.07 ± 0.02, 25.58 ± 2.58, and 33.56 ± 29.66 μg/mL, respectively. In contrast, MNAE-yoghurt had the highest protein (13.70 ± 0.85%) and the lowest fat (2.63 ± 0.71%) contents. The sensory attributes of all the bio-yoghurts fell within an acceptable likeness range. Overall, the inclusion of multi-purpose natural additives blends enhanced the instant bio-yoghurts' nutritional, health-promoting, and sensory qualities.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Oyo, Nigeria
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub (SARAH), Lusaka, Zambia
| |
Collapse
|
3
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of S. aureus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571116. [PMID: 38168396 PMCID: PMC10760020 DOI: 10.1101/2023.12.11.571116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here we describe the development of oxadiazolonebased activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologs in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling and mouse models of infection we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes (ABPs) and validate FphE as a target for development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ki Wan Park
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulio A. Valdez
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Infantes-Garcia MR, Verkempinck SHE, Carriére F, Hendrickx ME, Grauwet T. Pre-duodenal lipid digestion of emulsions: Relevance, colloidal aspects and mechanistic insight. Food Res Int 2023; 168:112785. [PMID: 37120232 DOI: 10.1016/j.foodres.2023.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Fréderic Carriére
- CNRS, Aix-Marseille Université, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 9, France
| | - Marc E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
6
|
Gherrak F, Hadjsadok A, Lefnaoui S. Implementation and in vitro characterization of calcium-free in situ gelling oral reconstituted suspension for potential overweight treatment. Drug Dev Ind Pharm 2020; 47:36-50. [PMID: 33191791 DOI: 10.1080/03639045.2020.1851242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work, oral granules that were easily dissolved in aqueous dispersion, were prepared. These oral suspensions were formulated with sodium alginate (AlgNa), chitosan (CHI) and sodium carboxymethylcellulose (CMC Na). The gels were formulated by pouring the suspensions into 150 ml of simulated gastric fluid (SGF) pH 1.2 at 37° C. The in-situ gelling mechanism was based on the ionization states of the three biopolymers as a function of the pH of the medium. Fourier transform infrared analysis of gels confirmed the interactions between alginate and chitosan. According to the scanning electron microscopy analysis, the gels were characterized by a firm and homogeneous structure. The obtained values of the elastic storage modulus, G', varied between 10 1 and 10 7 Pa. The eliminated volume of the unabsorbed liquid by the gels fluctuated between 25% and 55% of the total liquid volume. The quality of the gels was improved when a maximum concentration of alginate ( 4 g / 100 ml ) , a minimum concentration of chitosan ( 0.5 g / 100 ml ) and a maximum amount of carboxymethylcellulose ( 4 g / 100 ml ) were used. The value of their elastic modulus, G' was around 10 5 Pa and the residual unabsorbed volume of the liquid was 25% of the total liquid volume. According to the obtained results, the prepared gels could induce a feeling of fullness by stimulating the gastric distension and they could potentially be applied as anti-obesity medication.
Collapse
Affiliation(s)
- Fouzia Gherrak
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques (LAFPC), University of Blida1, Blida, Algeria
| | - Abdelkader Hadjsadok
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques (LAFPC), University of Blida1, Blida, Algeria
| | - Sonia Lefnaoui
- Faculty of Sciences, University Dr. Yahia Fares of Medea, Medea, Algeria
| |
Collapse
|
7
|
Discovery and characterization of pentacyclic triterpenoid acids in Styrax as potent and reversible pancreatic lipase inhibitors. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
9
|
Jebli N, Hamimed S, Van Hecke K, Cavalier J, Touil S. Synthesis, Antimicrobial Activity and Molecular Docking Study of Novelα‐(Diphenylphosphoryl)‐ andα‐(Diphenylphosphorothioyl)cycloalkanone Oximes. Chem Biodivers 2020; 17:e2000217. [DOI: 10.1002/cbdv.202000217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Nejib Jebli
- University of CarthageFaculty of Sciences of BizerteLaboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11) CP 7021- Jarzouna Tunisia
| | - Selma Hamimed
- University of CarthageFaculty of Sciences of BizerteLaboratory of Biochemistry and Molecular Biology 7021 Jarzouna Tunisia
| | - Kristof Van Hecke
- XStructDepartment of Inorganic and Physical Chemistry Krijgslaan 281-S3 CP 9000-Ghent Belgium
| | | | - Soufiane Touil
- University of CarthageFaculty of Sciences of BizerteLaboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11) CP 7021- Jarzouna Tunisia
| |
Collapse
|
10
|
Hou XD, Guan XQ, Cao YF, Weng ZM, Hu Q, Liu HB, Jia SN, Zang SZ, Zhou Q, Yang L, Ge GB, Hou J. Inhibition of pancreatic lipase by the constituents in St. John's Wort: In vitro and in silico investigations. Int J Biol Macromol 2020; 145:620-633. [DOI: 10.1016/j.ijbiomac.2019.12.231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
|
11
|
Hkiri S, Hafidh A, Cavalier J, Touil S, Samarat A. Design, synthesis, antimicrobial evaluation, and molecular docking studies of novel symmetrical 2,5‐difunctionalized 1,3,4‐oxadiazoles. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shaima Hkiri
- Faculty of Sciences of Bizerte, LR18ES11 Laboratory of Hetero‐Organic Compounds and Nanostructured MaterialsUniversity of Carthage Zarzouna Tunisia
| | - Afifa Hafidh
- Preparatory Institute for Engineering Studies of Tunis, UR99/12‐16 Materials and Environment UnitUniversity of Tunis Tunis Tunisia
| | | | - Soufiane Touil
- Faculty of Sciences of Bizerte, LR18ES11 Laboratory of Hetero‐Organic Compounds and Nanostructured MaterialsUniversity of Carthage Zarzouna Tunisia
| | - Ali Samarat
- Faculty of Sciences of Bizerte, LR18ES11 Laboratory of Hetero‐Organic Compounds and Nanostructured MaterialsUniversity of Carthage Zarzouna Tunisia
| |
Collapse
|
12
|
Chauhan D, George G, Sridhar SNC, Bhatia R, Paul AT, Monga V. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. Arch Pharm (Weinheim) 2019; 352:e1900029. [PMID: 31407389 DOI: 10.1002/ardp.201900029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023]
Abstract
A series of rhodanine-3-acetic acid derivatives were synthesized via Knoevenagel condensation of rhodanine-3-acetic acid with various substituted aromatic aldehydes. The synthesized derivatives were screened in vitro for understanding the inhibitory potential towards pancreatic lipase (PL), a key enzyme responsible for the digestion of dietary fats. Derivative 8f exhibited a potential inhibitory activity towards PL (IC50 = 5.16 µM), comparable to that of the standard drug, orlistat (0.99 µM). An increase in the density of the aromatic ring resulted in potential PL inhibition. The enzyme kinetics of 8f exhibited a reversible competitive-type inhibition, similar to that of orlistat. Derivative 8f exhibited a MolDock score of -125.19 kcal/mol in docking studies, and the results were in accordance with their PL inhibitory potential. Furthermore, the reactive carbonyl group of 8f existed at a distance adjacent to Ser152 (≈3 Å) similar to that of orlistat. Molecular dynamics simulation (10 ns) of the 8f-PL complex revealed a stable binding conformation of 8f in the active site of PL (maximum root mean square displacement of ≈2.25 Å). The present study identified novel rhodanine-3-acetic acid derivatives with promising PL inhibitory potential, and further lead optimization might result in potent PL inhibitors.
Collapse
Affiliation(s)
- Divya Chauhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ginson George
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (Pilani campus), Pilani, Rajasthan, India
| | - S N C Sridhar
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (Pilani campus), Pilani, Rajasthan, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (Pilani campus), Pilani, Rajasthan, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
13
|
Ye Z, Cao C, Li R, Cao P, Li Q, Liu Y. Lipid composition modulates the intestine digestion rate and serum lipid status of different edible oils: a combination of in vitro and in vivo studies. Food Funct 2019; 10:1490-1503. [PMID: 30783644 DOI: 10.1039/c8fo01290c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of the present study was to investigate the connections between lipid compositions and the digestion and absorption differences of different lipids. Five typical edible oils (palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; linseed oil, LINO) were selected to conduct in vitro digestion experiments considering the lipid digestion extent and hydrolysis rate before analyzing the fatty acid composition and TAG profiles using GC and UHPLC-Q-TOF-MS/MS. Meanwhile, the postprandial lipid absorption status after gavage administration was examined in adult male Sprague-Dawley rats with respect to serum lipid profiles. The results showed that the maximum FFA release extent decreased in the order: PO > RO > LINO > SO > LO, and the FFA release apparent constants were PO > SO ≈ RO > LO ≈ LINO. This suggested that the fatty acid species and the location of fatty acids within TAG molecules could significantly affect the lipid digestion fates in the gastrointestinal tract, and short chain saturated fatty acids located at the Sn-1, 3 position could favor the lipid digestion process. PO and LO were both shown to be more likely to affect the serum TG levels and LDL-C : HDL-C ratio compared with RO, SO and LINO. Different fatty acids displayed different correlations with serum lipid profiles when examined by Pearson correlation analysis. This suggested that fatty acid composition and TAG profiles may influence first the digestion rate and then the serum lipid profiles. This further confirmed that lipid composition could modulate the digestion and absorption status under the gastrointestinal conditions. These findings may provide some basic understanding of the connections between lipid composition and their functional difference.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
14
|
Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, Dubois C, Cantelmo AR, Chen R, Loroch S, Timmerman E, Caixeta V, Bloch K, Conradi LC, Treps L, Staes A, Gevaert K, Tee A, Dewerchin M, Semenkovich CF, Impens F, Schilling B, Verdin E, Swinnen JV, Meier JL, Kulkarni RA, Sickmann A, Ghesquière B, Schoonjans L, Li X, Mazzone M, Carmeliet P. Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metab 2018; 28:866-880.e15. [PMID: 30146486 PMCID: PMC8057116 DOI: 10.1016/j.cmet.2018.07.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/12/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.
Collapse
Affiliation(s)
- Ulrike Bruning
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Francisco Morales-Rodriguez
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Karla C S Queiroz
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Charlotte Dubois
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Anna Rita Cantelmo
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China
| | - Stefan Loroch
- Leibniz Institut für analytische Wissenschaften, ISAS, 44227 Dortmund, Germany
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | - Vanessa Caixeta
- Leibniz Institut für analytische Wissenschaften, ISAS, 44227 Dortmund, Germany
| | - Katarzyna Bloch
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | - Andrew Tee
- Cardiff University, Cardiff CF14 4YS, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Francis Impens
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Albert Sickmann
- Leibniz Institut für analytische Wissenschaften, ISAS, 44227 Dortmund, Germany
| | - Bart Ghesquière
- Metabolomics Core Facility, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Metabolomics Core Facility, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorg Chem 2018; 81:414-424. [PMID: 30212765 DOI: 10.1016/j.bioorg.2018.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.
Collapse
|
16
|
Savitha B, Koti Reddy E, Parthasarathi D, Pakkath R, Sajith AM, Ananda kumar CS, Haridas KR, Syed Ali Padusha M. A Highly Efficient Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction of 5-(5-chloropyridin-3-yl)-3-methyl-1,3,4-oxadiazol-2(3H
)-one. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bhaskaran Savitha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| | - Eeda Koti Reddy
- Department of Chemistry; Vignan's Foundation for Science, Technology and Research - VFSTR (Deemed to be University); Vadlamudi Guntur Andhra Pradesh 522 213 India
| | - D. Parthasarathi
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| | - Rajeesh Pakkath
- School of Chemical Sciences; Kannur University; Payyanur Campus, Edat P.O Kannur Kerala 670327 India
| | - Ayyiliath M. Sajith
- Postgraduate and Research Department of Chemistry, Kasaragod Government College; Kannur University; Kasaragod Kerala 671123 India
| | - C. S. Ananda kumar
- Department of Nanotechnology; Visvesvaraya Technological University; CPGS Muddenahalli 562 101 India
- Centre for Material Science; University of Mysore, Manasagangotri; Mysuru Karnataka 570 006 India
| | - Karickal R. Haridas
- School of Chemical Sciences; Kannur University; Payyanur Campus, Edat P.O Kannur Kerala 670327 India
| | - M. Syed Ali Padusha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| |
Collapse
|
17
|
|
18
|
S.N.C. S, Bhurta D, Kantiwal D, George G, Monga V, Paul AT. Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors. Bioorg Med Chem Lett 2017; 27:3749-3754. [DOI: 10.1016/j.bmcl.2017.06.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
|
19
|
Aouani I, Sellami B, Lahbib K, Cavalier JF, Touil S. Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg Chem 2017; 72:301-307. [DOI: 10.1016/j.bioorg.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
20
|
Benzoflavones as cholesterol esterase inhibitors: Synthesis, biological evaluation and docking studies. Bioorg Med Chem Lett 2017; 27:850-854. [PMID: 28117203 DOI: 10.1016/j.bmcl.2017.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 02/05/2023]
Abstract
A library of forty 7,8-benzoflavone derivatives was synthesized and evaluated for their inhibitory potential against cholesterol esterase (CEase). Among all the synthesized compounds seven benzoflavone derivatives (A-7, A-8, A-10, A-11, A-12, A-13, A-15) exhibited significant inhibition against CEase in in vitro enzymatic assay. Compound A-12 showed the most promising activity with IC50 value of 0.78nM against cholesterol esterase. Enzyme kinetic studies carried out for A-12, revealed its mixed-type inhibition approach. Molecular protein-ligand docking studies were also performed to figure out the key binding interactions of A-12 with the amino acid residues of the enzyme's active site. The A-12 fits well at the catalytic site and is stabilized by hydrophobic interactions. It completely blocks the catalytic assembly of CEase and prevents it to participate in ester hydrolysis mechanism. The favorable binding conformation of A-12 suggests its prevailing role as CEase inhibitor.
Collapse
|
21
|
Synthesis, evaluation and molecular modelling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors. Bioorg Med Chem 2016; 25:609-620. [PMID: 27908755 DOI: 10.1016/j.bmc.2016.11.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/30/2023]
Abstract
A series of twenty four 2-(carbazol-3-yl)-2-oxoacetamide analogues were synthesized, characterized and evaluated for their pancreatic lipase (PL) inhibitory activity. Porcine PL was used against 4-nitrophenyl butyrate (method A) and tributyrin (methods B and C) as substrates during the PL inhibition assay. Compounds 7e, 7f and 7p exhibited potential PL inhibitory activity (IC50 values of 6.31, 8.72 and 9.58μM, respectively in method A; and Xi50 of 21.85, 21.94 and 26.2, respectively in method B). Further, inhibition kinetics of 7e, 7f and 7p against PL, using method A, revealed their competitive nature of inhibition. A comparison of the inhibition profiles of the top three compounds in methods B and C, provided a preliminary idea of covalent bonding of the compounds with Ser 152 of PL. Molecular docking studies of the compounds 7a-x into the active site of human PL (PDB ID: 1LPB) was in agreement with the in vitro results, and highlighted probable covalent bond formation with Ser 152 apart from hydrophobic interactions with the lid domain. Molecular dynamics simulation of 7e complexed with PL, further confirmed the role of aromatic groups in stabilising the ligand (RMSD ⩽4Å). The present study led to the identification of 2-(carbazol-3-yl)-2-oxoacetamide analogues 7a-x as a new class of potential PL inhibitors.
Collapse
|