1
|
Srivastava R, Panda SK, Sen Gupta PS, Chaudhary A, Naaz F, Yadav AK, Ram NK, Rana MK, Singh RK, Srivastava R. In silico evaluation of S-adenosyl-L-homocysteine analogs as inhibitors of nsp14-viral cap N7 methyltranferase and PLpro of SARS-CoV-2: synthesis, molecular docking, physicochemical data, ADMET and molecular dynamics simulations studies. J Biomol Struct Dyn 2025; 43:3258-3275. [PMID: 38147408 DOI: 10.1080/07391102.2023.2297005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
A series of S-adenosyl-L-homosysteine (SAH) analogs, with modification in the base and sugar moiety, have been designed, synthesized and screened as nsp14 and PLpro inhibitors of severe acute respiratory syndrome corona virus (SARS-CoV-2). The outcomes of ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) studies demonstrated that the physicochemical properties of all analogs were permissible for development of these SAH analogs as antiviral agents. All molecules were screened against different SARS-CoV-2 targets using molecular docking. The docking results revealed that the SAH analogs interacted well in the active site of nsp14 protein having H-bond interactions with the amino acid residues Arg289, Val290, Asn388, Arg400, Phe401 and π-alkyl interactions with Arg289, Val290 and Phe426 of Nsp14-MTase site. These analogs also formed stable H-bonds with Leu163, Asp165, Arg167, Ser246, Gln270, Tyr274 and Asp303 residues of PLpro proteins and found to be quite stable complexes therefore behaved as probable nsp14 and PLpro inhibitors. Interestingly, analog 3 showed significant in silico activity against the nsp14 N7 methyltransferase of SARS-CoV-2. The molecular dynamics (MD) and post-MD results of analog 3 unambiguously established the higher stability of the nsp14 (N7 MTase):3 complex and also indicated its behavior as probable nsp14 inhibitor like the reference sinefungin. The docking and MD simulations studies also suggested that sinefungin did act as SARS-CoV-2 PLpro inhibitor as well. This study's findings not only underscore the efficacy of the designed SAH analogs as potent inhibitors against crucial SARS-CoV-2 proteins but also pinpoint analog 3 as a particularly promising candidate. All the study provides valuable insights, paving the way for potential advancements in antiviral drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, India
| | - Anvita Chaudhary
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Nand Kumar Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Richa Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
2
|
Mishra I, Sharma V, Kumar N, Krishna G, Sethi VA, Mittal R, Dhakad PK, Mishra R. Exploring Thiophene Derivatives: Synthesis Strategies and Biological Significance. Med Chem 2025; 21:11-31. [PMID: 39916435 DOI: 10.2174/0115734064326879240801043412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 05/08/2025]
Abstract
OBJECTIVES Thiophene is one of the most important heterocyclic scaffolds with notable pharmacological properties. Thiophene and its derivatives are of particular interest among sulphurcontaining heterocycles because of their similarities to numerous natural and synthetic compounds with identified potential. The purpose of this study is to extensively analyse the synthetic pathways adopted for synthesising thiophene derivatives and investigate their various biological functions. METHODS A comprehensive review of the existing literature was conducted to collect data pertaining to the methods that are employed for the synthesis of thiophene derivatives. A comprehensive search was carried out through relevant databases, including work published in 2024. A variety of synthesis procedures were identified and arranged, encompassing both traditional approaches like the Gewald reaction and contemporary ones like microwave-assisted synthesis and green synthesis. In addition, a comprehensive compilation of in vitro and in vivo studies was conducted to investigate the biological effects of 50 distinct thiophene derivatives. The primary focus of the studies was on various activities such as anti-cancer, anti-inflammatory, antiprotozoal, antibacterial, antioxidant, and antiviral functions. RESULTS Diverse methodologies have been employed in the synthesis of thiophene derivatives, encompassing both conventional and modern methods. Furthermore, the biological potential of thiophene derivatives was investigated, demonstrating a broad range of actions. Key structural elements necessary for biological activity were clarified by investigations of the structure-activity relationship. CONCLUSION The biological potential and flexible synthesis pathways of thiophene derivatives make them attractive candidates for use in medicinal and pharmaceutical chemistry. Understanding the different synthesis methods and biological actions of thiophene derivatives may assist rational design and create novel treatments for a variety of conditions. The potential for these compounds to be further explored and optimised is considerable for the next drug development initiatives.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh 201310, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh 201310, India
| | - Nitin Kumar
- Department of Pharmacy, Saraswathi College of Pharmacy, Anwarpur, Pilkhuwa, India
| | - Gaurav Krishna
- Institute of Pharmaceutical Research, GLA University, NH-2 Highway, Mathura, Uttar Pradesh 281406, India
| | - Vandana Arora Sethi
- Department of Pharmaceutics, Lloyd Institute of Management and Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India
| | - Ravi Mittal
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh 201310, India
| | - Prashant K Dhakad
- Department of Pharmacy, Suresh Gyan Vihar University, Gyan Vihar Marg Jagatpura, Jaipur, Rajasthan 302017, India
| | - Raghav Mishra
- Department of Pharmacy, Lloyd School of Pharmacy, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
3
|
Torres-Jaramillo J, Blöcher R, Chacón-Vargas KF, Hernández-Calderón J, Sánchez-Torres LE, Nogueda-Torres B, Reyes-Arellano A. Synthesis of Antiprotozoal 2-(4-Alkyloxyphenyl)-Imidazolines and Imidazoles and Their Evaluation on Leishmania mexicana and Trypanosoma cruzi. Int J Mol Sci 2024; 25:3673. [PMID: 38612484 PMCID: PMC11012064 DOI: 10.3390/ijms25073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Twenty 2-(4-alkyloxyphenyl)-imidazolines and 2-(4-alkyloxyphenyl)-imidazoles were synthesized, with the former being synthesized in two steps by using MW and ultrasonication energy, resulting in good to excellent yields. Imidazoles were obtained in moderate yields by oxidizing imidazolines with MnO2 and MW energy. In response to the urgent need to treat neglected tropical diseases, a set of 2-(4-alkyloxyphenyl)- imidazolines and imidazoles was tested in vitro on Leishmania mexicana and Trypanosoma cruzi. The leishmanicidal activity of ten compounds was evaluated, showing an IC50 < 10 µg/mL. Among these compounds, 27-31 were the most active, with IC50 values < 1 µg/mL (similar to the reference drugs). In the evaluation on epimastigotes of T. cruzi, only 30 and 36 reached an IC50 < 1 µg/mL, showing better inhibition than both reference drugs. However, compounds 29, 33, and 35 also demonstrated attractive trypanocidal activities, with IC50 values < 10 µg/mL, similar to the values for benznidazole and nifurtimox.
Collapse
Affiliation(s)
- Jenifer Torres-Jaramillo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico; (J.T.-J.); (R.B.); (J.H.-C.)
| | - René Blöcher
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico; (J.T.-J.); (R.B.); (J.H.-C.)
| | | | - Jorge Hernández-Calderón
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico; (J.T.-J.); (R.B.); (J.H.-C.)
| | - Luvia E. Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico;
| | - Alicia Reyes-Arellano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico; (J.T.-J.); (R.B.); (J.H.-C.)
| |
Collapse
|
4
|
De Tran Q, Nguyen CQ, Dang QL, Minh Nguyen TH, Buu Hue BT, Thi Le MU, Tuan NT, Chau Thanh NQ, Men TT, Quan PM, Tuan ND, Cam TT, Thu Thuy NT, Bich Hau VT, Binh TD, Nguyen HP. ZIKV Inhibitors Based on Pyrazolo[3,4- d]pyridazine-7-one Core: Rational Design, In Vitro Evaluation, and Theoretical Studies. ACS OMEGA 2023; 8:48994-49008. [PMID: 38162759 PMCID: PMC10753549 DOI: 10.1021/acsomega.3c06612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The Zika virus (ZIKV) is believed to cause birth defects, and no anti-ZIKV drugs have been approved by medical organizations to date. Starting from antimicrobial lead compounds with a pyrazolo[3,4-d]pyridazine-7-one scaffold, we synthesized 16 derivatives and screened their ability to interfere with ZIKV infection utilizing a cell-based phenotypic assay. Of these, five compounds showed significant inhibition of ZIKV with a selective index value greater than 4.6. In particular, compound 9b showed the best anti-ZIKV activity with a selectivity index of 22.4 (half-maximal effective concentration = 25.6 μM and 50% cytotoxic concentration = 572.4 μM). Through the brine shrimp lethality bioassay, 9b, 10b, 12, 17a, and 19a showed median lethal dose values in a range of 87.2-100.3 μg/mL. Compound 9b was also targeted to the NS2B-NS3 protease of ZIKV using molecular docking protocols, in which it acted as a noncompetitive inhibitor and strongly bound to five key amino acids (His51, Asp75, Ser135, Ala132, Tyr161). Utilizing the pharmacophore model of 9b, the top 20 hits were identified as prospective inhibitors of NS2B-NS3 protease, and six of them were confirmed for their stability with the protease via redocking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Quang De Tran
- Department
of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
- Analytical
Techniques Lab (1.16-AT Department of Chemistry L), CTU High-tech
Building, Can Tho University, Can Tho 94000, Vietnam
| | - Cuong Quoc Nguyen
- Department
of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
- Analytical
Techniques Lab (1.16-AT Department of Chemistry L), CTU High-tech
Building, Can Tho University, Can Tho 94000, Vietnam
| | - Quang Le Dang
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology, Hanoi 10072, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Thi Hong Minh Nguyen
- Department
of Life Science, University of Science and
Technology of Ha Noi, Vietnam Academy of Science and Technology, Ha Noi 10072, Vietnam
| | - Bui Thi Buu Hue
- Department
of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
| | - Minh Uyen Thi Le
- Department
of Surgery, Division of Transplant Surgery, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Nguyen Trong Tuan
- Department
of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
| | - Nguyen Quoc Chau Thanh
- Department
of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
| | - Tran Thanh Men
- Department
of Biology, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
| | - Pham Minh Quan
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 10072, Vietnam
- Institute
of Natural Products Chemistry, Vietnam Academy
of Science and Technology, Ha Noi 10072, Vietnam
| | | | | | - Nguyen Thi Thu Thuy
- National Institute of Hygiene and Epidemiology, No 1 Yersin, Hai Ba Trung, Ha Noi 10000, Vietnam
| | - Vu Thi Bich Hau
- National Institute of Hygiene and Epidemiology, No 1 Yersin, Hai Ba Trung, Ha Noi 10000, Vietnam
| | - Tran Duy Binh
- Department
of Biology, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam
| | - Hong Phuong Nguyen
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis 46202, Indiana, United States
| |
Collapse
|
5
|
Corman HN, McNamara CW, Bakowski MA. Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms 2023; 11:2845. [PMID: 38137989 PMCID: PMC10745741 DOI: 10.3390/microorganisms11122845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Leishmaniasis is a group of vector-borne, parasitic diseases caused by over 20 species of the protozoan Leishmania spp. The three major disease classifications, cutaneous, visceral, and mucocutaneous, have a range of clinical manifestations from self-healing skin lesions to hepatosplenomegaly and mucosal membrane damage to fatality. As a neglected tropical disease, leishmaniasis represents a major international health challenge, with nearly 350 million people living at risk of infection a year. The current chemotherapeutics used to treat leishmaniasis have harsh side effects, prolonged and costly treatment regimens, as well as emerging drug resistance, and are predominantly used for the treatment of visceral leishmaniasis. There is an undeniable need for the identification and development of novel chemotherapeutics targeting cutaneous leishmaniasis (CL), largely ignored by concerted drug development efforts. CL is mostly non-lethal and the most common presentation of this disease, with nearly 1 million new cases reported annually. Recognizing this unaddressed need, substantial yet fragmented progress in early drug discovery efforts for CL has occurred in the past 15 years and was outlined in this review. However, further work needs to be carried out to advance early discovery candidates towards the clinic. Importantly, there is a paucity of investment in the translation and development of therapies for CL, limiting the emergence of viable solutions to deal with this serious and complex international health problem.
Collapse
Affiliation(s)
- Hannah N. Corman
- Calibr at Scripps Research, La Jolla, CA 92037, USA; (C.W.M.); (M.A.B.)
| | | | | |
Collapse
|
6
|
Srivastava R, Gupta SK, Naaz F, Sen Gupta PS, Yadav M, Singh VK, Panda SK, Biswal S, Rana MK, Gupta SK, Schols D, Singh RK. Exploring antiviral potency of N-1 substituted pyrimidines against HIV-1 and other DNA/RNA viruses: Design, synthesis, characterization, ADMET analysis, docking, molecular dynamics and biological activity. Comput Biol Chem 2023; 106:107910. [PMID: 37422940 DOI: 10.1016/j.compbiolchem.2023.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
A novel series of pyrimidine derivatives, bearing modified benzimidazoles at N-1 position, has been designed, synthesized and screened as NNRTIs against HIV and as broad-spectrum antiviral agents. The molecules were screened against different HIV targets using molecular docking experiment. The docking results indicated that the molecules interacted well with the residues Lys101, Tyr181, Tyr188, Trp229, Phe227 and Tyr318 present in NNIBP of HIV-RT protein, formed quite stable complexes and, thus, behaved as probable NNRTIs. Among these compounds, 2b and 4b showed anti-HIV activity with IC50 values as 6.65 µg/mL (SI = 15.50) and 15.82 µg/mL (SI = 14.26), respectively. Similarly, compound 1a showed inhibitory property against coxsackie virus B4 and compound 3b against different viruses. Molecular dynamics simulation results unequivocally demonstrated the higher stability of the complex HIV-RT:2b than the HIV-RT:nevirapine complex. The MM/PBSA-based binding free energy (-) 114.92 kJ/mol of HIV-RT:2b complex in comparison to that of HIV-RT:nevirapine complex (-) 88.33 kJ/mol, further demonstrated the higher binding strength of 2b and thus, established the potential of compound 2b as a lead molecule as an HIV-RT inhibitor.
Collapse
Affiliation(s)
- Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India; Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Sunil K Gupta
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Vishal Kumar Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | | | | | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
7
|
Rosa FA, Jacomini AP, Vieira da Silva MJ, Pianoski KE, Poletto J, Francisco CB, de Souza Fernandes C, Martinelli V, Pontes RM, Back DF, Moura S, Basso EA. Controlled Pyrazole-Hydrazone Annulation: Regiodivergent Synthesis of 1 H- and 2 H-Pyrazolo[3,4- d]pyridazinones. J Org Chem 2023. [PMID: 37463494 DOI: 10.1021/acs.joc.3c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
An efficient and controlled site-selective annulation of 3,5-diethoxycarbonyl 4-hydrazonyl pyrazoles is described. The relative proportion of the products is affected by hydrazone intermediate configuration, reaction temperature, and Lewis acid employed. At a temperature of 110-120 °C, the reaction preferentially afforded 1H-pyrazolo[3,4-d]pyridazin-7(6H)-ones, whereas using Yb(OTf)3 in MeCN reflux, 2H-pyrazolo[3,4-d]pyridazin-7(6H)-ones were favored. Computational investigations were performed to clarify the mechanism and the origin of the regiodivergence.
Collapse
Affiliation(s)
- Fernanda Andreia Rosa
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | | | | | | | - Julia Poletto
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | | | | | - Vinicius Martinelli
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | | | - Davi Fernando Back
- Chemistry Departament, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97110-970, Brazil
| | - Sidnei Moura
- Biotechnology Departament, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul 295070-560, Brazil
| | - Ernani Abicht Basso
- Chemistry Departament, State University of Maringa, Maringa, Parana 87020-900, Brazil
| |
Collapse
|
8
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
9
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
10
|
Acylhydrazones and Their Biological Activity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248719. [PMID: 36557851 PMCID: PMC9783609 DOI: 10.3390/molecules27248719] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Due to the structure of acylhydrazones both by the pharmacophore -CO-NH-N= group and by the different substituents present in the molecules of compounds of this class, various pharmacological activities were reported, including antitumor, antimicrobial, antiviral, antiparasitic, anti-inflammatory, immunomodulatory, antiedematous, antiglaucomatous, antidiabetic, antioxidant, and actions on the central nervous system and on the cardiovascular system. This fragment is found in the structure of several drugs used in the therapy of some diseases that are at the top of public health problems, like microbial infections and cardiovascular diseases. Moreover, the acylhydrazone moiety is present in the structure of some compounds with possible applications in the treatment of other different pathologies, such as schizophrenia, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Considering these aspects, we consider that a study of the literature data regarding the structural and biological properties of these compounds is useful.
Collapse
|
11
|
Belyaeva ER, Myasoedova YV, Ishmuratova NM, Ishmuratov GY. Synthesis and Biological Activity of N-Acylhydrazones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Bigot S, Leprohon P, Vasquez A, Bhadoria R, Skouta R, Ouellette M. Thiophene derivatives activity against the protozoan parasite Leishmania infantum. Int J Parasitol Drugs Drug Resist 2022; 21:13-20. [PMID: 36525934 PMCID: PMC9772499 DOI: 10.1016/j.ijpddr.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Treatments against leishmaniasis are limited and the development of new molecules is crucial. One class of developmental drug that has shown activity against the parasite Leishmania are thiophene derivatives. Here we synthetized thirty-eight novel thiophene compounds and characterized their activity and potential for resistance against L. infantum. Half of the molecules had an EC50 in the low micromolar range, the piperidine derivatives being more potent than the tetramethylpyran derivatives. Resistance was challenging to select for, and resistant cells could only be raised against one (GC1-19) of the four most active compounds. Using chemogenomic screens we show that a gene conversion event at the ABCG2 locus as well as the overexpression of a tryparedoxin peroxidase are responsible for a weak but significant resistance to the GC1-19 drug candidate. Together, our results suggest that thiophene is a scaffold of interest for further drug development against leishmaniasis.
Collapse
Affiliation(s)
- Sophia Bigot
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Canada,Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec City, Quebec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Canada,Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec City, Quebec, Canada
| | - Abimael Vasquez
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Rohit Bhadoria
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA, USA,Department of Chemistry, University of Massachusetts, Amherst, MA, USA,Corresponding author. University of Massachusetts Amherst, MA, 01003, USA.
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Canada,Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec City, Quebec, Canada,Corresponding author. Centre de Recherche du CHU Québec, 2705, Boulevard Laurier, Quebec City, Quebec, G1V 4G2, Canada.
| |
Collapse
|
13
|
Alonso L, Pianoski KE, Alonso A, Rosa FA. Antileishmanial activity of 3,4,5-trisubstituted isoxazoles by interaction with Leishmania amazonensis plasma membrane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Rosa FA, Mendes de Souza Melo S, Pianoski KE, Poletto J, dos Santos MG, Vieira da Silva MJ, Lazarin‐Bidóia D, Volpato H, Moura S, Nakamura CV. Synthesis and Antiprotozoal Profile of 3,4,5-Trisubstituted Isoxazoles. ChemistryOpen 2021; 10:931-938. [PMID: 34331350 PMCID: PMC8485799 DOI: 10.1002/open.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
A series of 60 4-aminomethyl 5-aryl-3-substituted isoxazoles were synthesized by an efficient method and evaluated in vitro against Leishmania amazonensis and Trypanosoma cruzi, protozoa that cause the neglected tropical diseases leishmaniasis and Chagas disease, respectively. Thirteen compounds exhibited a selective index greater than 10. The series of 3-N-acylhydrazone isoxazole derivatives bearing the bithiophene core exhibited the best antiparasitic effects.
Collapse
Affiliation(s)
| | | | | | - Julia Poletto
- Departamento de QuímicaUniversidade Estadual de Maringá (UEM)MaringáBrazil
| | | | | | - Danielle Lazarin‐Bidóia
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá (UEM)MaringáBrazil
| | - Hélito Volpato
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá (UEM)MaringáBrazil
| | - Sidnei Moura
- Instituto de BiotecnologiaUniversidade de Caxias do Sul (UCS)Caxias do SulBrazil
| | - Celso Vataru Nakamura
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá (UEM)MaringáBrazil
| |
Collapse
|
16
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
17
|
Discovery of 1,3,4,5-tetrasubstituted pyrazoles as anti-trypanosomatid agents: Identification of alterations in flagellar structure of L. amazonensis. Bioorg Chem 2021; 114:105082. [PMID: 34147880 DOI: 10.1016/j.bioorg.2021.105082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Trypanosoma cruzi and Leishmania species are causative agents of Chagas disease and Leishmaniasis, respectively, known as Neglected Tropical Diseases. Up to now, the treatments are inadequate and based on old drugs. Thus, we report herein the discovery of 1,3,4,5-tetrasubstituted pyrazole derivatives that presented potent and selective inhibition against promastigote forms of L. amazonensis, and epimastigote forms of T. cruzi. The structure-activity relationship led to the identification of three compounds (2m, 2n and 2p) with an in vitro IC50 of 7.4 µM (selective index - SI ≥ 133.0), 3.8 µM (SI in the range of 148.4 to 200.8), and 7.3 µM (SI in the range of 87.2 to 122.4) against L. amazonensis, respectively. Also, those compounds exhibited in vitro IC50 of 9.7 µM (SI ≥ 101.5), 4.5 µM (SI in the range of 125.3 to 169.6) and 17.1 µM (SI in the range of 37.2 to 52.2) against T. cruzi, respectively. A preliminary study about the reaction mechanism in promastigotes showed that 2n caused an increase of the production of ROS and of lipid storage bodies. Furthermore, 2n induced abnormalities in the flagellum that may have an impact on the parasite motility.
Collapse
|
18
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
19
|
Kalai FE, Çınar EB, Lai CH, Daoui S, Chelfi T, Allali M, Dege N, Karrouchi K, Benchat N. Synthesis, spectroscopy, crystal structure, TGA/DTA study, DFT and molecular docking investigations of ( E)-4-(4-methylbenzyl)-6-styrylpyridazin-3( 2H)-one. J Mol Struct 2021; 1228:129435. [PMID: 33071353 PMCID: PMC7546970 DOI: 10.1016/j.molstruc.2020.129435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/01/2022]
Abstract
In this study, we present the synthesis of novel pyridazin-3(2H)-one derivative namely (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one (MBSP). The chemical structure of MBSP was characterized using spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, UV-Vis, ESI-MS, and finally, the structure was confirmed by single X-ray diffraction studies. The DFT calculation was performed to compare the gas-phase geometry of the title compound to the solid-phase structure of the title compound. Furthermore, a comparative study between theoretical UV-Vis, IR, 1H- and 13C NMR spectra of the studied compound and experimental ones have been carried out. The thermal behavior and stability of the compound were analyzed by using TGA and DTA techniques which revealed that the compound is thermostable up to its melting point. Finally, the in silico docking and ADME studies are performed to investigate whether MBSP is a potential therapeutic for COVID-19.
Collapse
Affiliation(s)
- Fouad El Kalai
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| | - Emine Berrin Çınar
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan
| | - Said Daoui
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| | - Tarik Chelfi
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| | - Mustapha Allali
- Institute of Nursing Professions and Health Techniques Fez, EL Ghassani Hospital, Fez 30000, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| |
Collapse
|
20
|
Synthesis, Cytotoxicity and Anti-Proliferative Activity Against AGS Cells of New 3(2 H)-Pyridazinone Derivatives Endowed with a Piperazinyl Linker. Pharmaceuticals (Basel) 2021; 14:ph14030183. [PMID: 33668893 PMCID: PMC7996573 DOI: 10.3390/ph14030183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Novel twenty-three 3(2H)-pyridazinone derivatives were designed and synthesized based on the chemical requirements related to the anti-proliferative effects previously demonstrated within this scaffold. The introduction of a piperazinyl linker between the pyridazinone nucleus and the additional (un)substituted phenyl group led to some compounds endowed with a limited cytotoxicity against human gingival fibroblasts (HGFs) and good anti-proliferative effects against gastric adenocarcinoma cells (AGS) as evaluated by MTT and LDH assays, using doxorubicin as a positive control. Successive analyses revealed that the two most promising representative compounds (12 and 22) could exert their effects by inducing oxidative stress as demonstrated by the hydrogen peroxide release and the morphological changes (cell blebbing) revealed by light microscopy analysis after the haematoxylin-eosin staining. Moreover, to further assess the apoptotic process induced by compounds 12 and 22, Bax expression was measured by flow cytometry. These findings enlarged our knowledge of the structural requirements in this scaffold to display valuable biological effects against cancerous cell lines.
Collapse
|
21
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Synthesis, crystal structure, spectroscopic studies, NBO, AIM and SQMFF calculations of new pyridazinone derivative. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Abstract
Azolo[d]pyridazinone is a privileged structure and versatile pharmacophore whose derivatives are associated with diverse biological activities, in particular antidiabetic, antiasthmatic, anticancer, analgesic, anti-inflammatory, antithrombotic, antidepressant and antimicrobial activities. The importance of this scaffold against some targets like PDE, COX and DPP-4 has been reviewed in detail previously. In the present review, we have summarized comprehensive information on azolo[d]pyridazinone derivatives investigated by many researchers for their diverse pharmacological activities, structure-activity relationship and molecular modeling studies since 2000. The review may lead scientists in the research fields of organic synthesis, medicinal chemistry and pharmacology to the strategic design and development of azolo[d]pyridazinone-based drug candidates in the future.
Collapse
|
24
|
|
25
|
Mittersteiner M, Andrade VP, Bonacorso HG, Martins MAP, Zanatta N. The Wonderful World of β‐Enamino Diketones Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Valquiria P. Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| |
Collapse
|
26
|
da Silva MJV, Jacomini AP, Figueiredo MC, Back DF, Foglio MA, Ruiz ALTG, Paula FR, Rosa FA. Efficient synthesis and antitumor evaluation of 4-aminomethyl-N-arylpyrazoles: Discovery of potent and selective agents for ovarian cancer. Bioorg Med Chem 2020; 29:115835. [PMID: 33214037 DOI: 10.1016/j.bmc.2020.115835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A new one-pot two-step sequential methodology for synthesis of novel 3-carboxyethyl 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives is reported. One-pot transformation of β-enamino diketones and arylhydrazines generated 4-iminium-N-arylpyrazole salt intermediates in situ, which were easily transformed into 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives by NaBH3CN. The products could be isolated in the free or hydrochloride salt forms. Also, it was possible to obtain the products in the zwitterionic form by ester group hydrolysis. Furthermore, all synthesised compounds were evaluated in vitro against a panel of eight human tumor cell lines. The 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives were much more powerful than the hydrochloride and zwitterionic forms. Moreover, the results suggest that the N-aryl group at the pyrazole ring is vital for modulating antiproliferative activity. The 3-carboxyethyl 4-[(tert-butylamino)methyl]-N-phenylpyrazoles 3a-g exhibited higher inhibitory activities against OVCAR-3, with GI50 values of 0.013-8.78 μM, and lower inhibitory activities against normal human cell lines. Molecular docking was performed to evaluate the probable binding mode of 3a into active site of CDK2.
Collapse
Affiliation(s)
- Michael J V da Silva
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Andrey P Jacomini
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Mariana C Figueiredo
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil
| | - Davi F Back
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 Santa Maria, RS, Brazil
| | - Mary A Foglio
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil
| | - Ana L T G Ruiz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Fávero R Paula
- Departamento de Farmácia, Universidade Federal do Pampa (UNIPAMPA), 97500-970 Uruguaiana, RS, Brazil
| | - Fernanda A Rosa
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil.
| |
Collapse
|
27
|
Srivastava R, Gupta SK, Naaz F, Sen Gupta PS, Yadav M, Singh VK, Singh A, Rana MK, Gupta SK, Schols D, Singh RK. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput Biol Chem 2020; 89:107400. [PMID: 33068917 PMCID: PMC7537607 DOI: 10.1016/j.compbiolchem.2020.107400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
New benzimidazole analogs synthesized as antivirals against HIV-1 and yellow fever virus. Molecular dynamics simulation studies indicated a stable ligand-protein complex of compound 3a within NNIBP of HIV-RT. DFT analysis confirmed the stability of hydrogen bonding interaction between the TRP 229 residue of HIV-RT and compound 3a. Molecules were tested for their anti-HIV and broad spectrum antiviral properties against different DNA and RNA viruses. Antiviral properties and cytotoxicity determined using MTT assay. Compound 3a showed anti-HIV activity and compound 2b showed excellent inhibition property against yellow fever virus.
A series of alkylated benzimidazole derivatives was synthesized and screened for their anti-HIV, anti-YFV, and broad-spectrum antiviral properties. The physicochemical parameters and drug-like properties of the compounds were assessed first, and then docking studies and MD simulations on HIV-RT allosteric sites were conducted to find the possible mode of their action. DFT analysis was also performed to confirm the nature of the hydrogen bonding interaction of active compounds. The in silico studies indicated that the molecules behaved like possible NNRTIs. The nature – polar or non-polar and position of the substituent present at fifth, sixth, and N-1 positions of the benzimidazole moiety played an important role in determining the antiviral properties of the compounds. Among the various compounds, 2-(5,6-dibromo-2-chloro-1H-benzimidazol-1-yl)ethan-1-ol (3a) showed anti-HIV activity with an appreciably low IC50 value as 0.386 × 10−5μM. Similarly, compound 2b, 3-(2-chloro-5-nitro-1H-benzimidazol-1-yl) propan-1-ol, showed excellent inhibitory property against the yellow fever virus (YFV) with EC50 value as 0.7824 × 10−2μM.
Collapse
Affiliation(s)
- Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Sunil K Gupta
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Vishal Kumar Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Anuradha Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | | | | | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
28
|
Poletto J, da Silva MJV, Jacomini AP, Bidóia DL, Volpato H, Nakamura CV, Rosa FA. Antiparasitic activities of novel pyrimidine N-acylhydrazone hybrids. Drug Dev Res 2020; 82:230-240. [PMID: 32996619 DOI: 10.1002/ddr.21745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022]
Abstract
In this article, a series of 29 new pyrimidine N-acylhydrazone hybrids were synthesized and evaluated in vitro against Leishmania amazonensis and Trypanosoma cruzi protozoa that cause the neglected diseases cutaneous leishmaniasis and Chagas disease, respectively. Eight of the target compounds showed significant antiprotozoal activities with IC50 values in 4.3-33.6 μM range. The more active compound 4f exhibited selectivity index greater than 15 and drug-like properties based on Lipinski's rule.
Collapse
Affiliation(s)
- Julia Poletto
- Departamento de Química, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Michael J V da Silva
- Departamento de Química, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Andrey P Jacomini
- Departamento de Química, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Danielle L Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Hélito Volpato
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Celso Vataru Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Fernanda A Rosa
- Departamento de Química, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| |
Collapse
|
29
|
Félix MB, de Araújo RSA, Barros RPC, de Simone CA, Rodrigues RRL, de Lima Nunes TA, da Franca Rodrigues KA, Junior FJBM, Muratov E, Scotti L, Scotti MT. Computer-Assisted Design of Thiophene-Indole Hybrids as Leishmanial Agents. Curr Top Med Chem 2020; 20:1704-1719. [PMID: 32543360 DOI: 10.2174/1568026620666200616142120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/01/2019] [Accepted: 12/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemoinformatics has several applications in the field of drug design, helping to identify new compounds against a range of ailments. Among these are Leishmaniasis, effective treatments for which are currently limited. OBJECTIVE To construct new indole 2-aminothiophene molecules using computational tools and to test their effectiveness against Leishmania amazonensis (sp.). METHODS Based on the chemical structure of thiophene-indol hybrids, we built regression models and performed molecular docking, and used these data as bases for design of 92 new molecules with predicted pIC50 and molecular docking. Among these, six compounds were selected for the synthesis and to perform biological assays (leishmanicidal activity and cytotoxicity). RESULTS The prediction models and docking allowed inference of characteristics that could have positive influences on the leishmanicidal activity of the planned compounds. Six compounds were synthesized, one-third of which showed promising antileishmanial activities, with IC50 ranging from 2.16 and 2.97 μM (against promastigote forms) and 0.9 and 1.71 μM (against amastigote forms), with selectivity indexes (SI) of 52 and 75. CONCLUSION These results demonstrate the ability of Quantitative Structure-Activity Relationship (QSAR)-based rational drug design to predict molecules with promising leishmanicidal potential, and confirming the potential of thiophene-indole hybrids as potential new leishmanial agents.
Collapse
Affiliation(s)
- Mayara Barbalho Félix
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa- PB 58051-900, Brazil
| | | | - Renata Priscila Costa Barros
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa- PB 58051-900, Brazil
| | - Carlos Alberto de Simone
- Departamento de Fisica e Informatica, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo - USP, 13560-970 Sao Carlos-SP, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratorio de Doencas Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaiba, 64202-020 Parnaiba, PI, Brazil
| | - Thaís Amanda de Lima Nunes
- Laboratorio de Doencas Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaiba, 64202-020 Parnaiba, PI, Brazil
| | | | | | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Luciana Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa- PB 58051-900, Brazil
| | - Marcus Tullius Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa- PB 58051-900, Brazil
| |
Collapse
|
30
|
Gonçalves DS, de S Melo SM, Jacomini AP, J V da Silva M, Pianoski KE, Ames FQ, Aguiar RP, Oliveira AF, Volpato H, Bidóia DL, Nakamura CV, Bersani-Amado CA, Back DF, Moura S, Paula FR, Rosa FA. Synthesis of novel 3,5,6-trisubstituted 2-pyridone derivatives and evaluation for their anti-inflammatory activity. Bioorg Med Chem 2020; 28:115549. [PMID: 32503692 DOI: 10.1016/j.bmc.2020.115549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
The inflammatory response is the reaction of living tissue to an injury of a foreign nature, such as infection and irritants, and occurs as part of the body's natural defence response. Compounds capable of inhibiting cyclooxygenase (COX) enzymes, especially COX-2, have great potential as anti-inflammatory agents. Herein we present the regioselective synthesis of 49 novel compounds based on the 2-pyridone nucleus. The topical anti-inflammatory activity of seventeen compounds was evaluated in mice by croton oil (CO) induced ear edema assay. Most of the compounds exhibited a high level of in vivo anti-inflammatory activity, reducing ear edema and myeloperoxidase (MPO) activity. The most active compounds (2a and 7a) were inhibitors of COX enzymes. Compound 2a selectively inhibited the COX-2, while 7a was nonselective. Further, the compound 2a showed effective binding at the active site of COX-2 co-crystal by docking molecular study.
Collapse
Affiliation(s)
- Davana S Gonçalves
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Samara M de S Melo
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Andrey P Jacomini
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Michael J V da Silva
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Karlos E Pianoski
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Franciele Q Ames
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Rafael P Aguiar
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Alisson Felipe Oliveira
- Departamento de Farmácia, Universidade Federal do Pampa (UNIPAMPA), 97500-970 Uruguaiana, RS, Brazil
| | - Hélito Volpato
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Danielle L Bidóia
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Celso V Nakamura
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Ciomar A Bersani-Amado
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Davi F Back
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 Santa Maria, RS, Brazil
| | - Sidnei Moura
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), 295070-560 Caxias do Sul, RS, Brazil
| | - Fávero R Paula
- Departamento de Farmácia, Universidade Federal do Pampa (UNIPAMPA), 97500-970 Uruguaiana, RS, Brazil
| | - Fernanda A Rosa
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil.
| |
Collapse
|
31
|
Battista T, Colotti G, Ilari A, Fiorillo A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020; 25:E1924. [PMID: 32326257 PMCID: PMC7221613 DOI: 10.3390/molecules25081924] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
The protozoans Leishmania and Trypanosoma, belonging to the same Trypanosomatidae family, are the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis. Overall, these infections affect millions of people worldwide, posing a serious health issue as well as socio-economical concern. Current treatments are inadequate, mainly due to poor efficacy, toxicity, and emerging resistance; therefore, there is an urgent need for new drugs.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy;
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (G.C.); (A.I.)
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (G.C.); (A.I.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy;
| |
Collapse
|
32
|
Singh A, Singh G, Bedi PMS. Thiophene derivatives: A potent multitargeted pharmacological scaffold. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical SciencesGuru Nanak Dev University Amritsar Punjab India
| | - Gurvinder Singh
- Department of Pharmaceutical ChemistryKhalsa College of Pharmacy Amritsar Punjab India
| | | |
Collapse
|
33
|
Poletto J, Ribeiro GM, da Silva MJV, Jacomini AP, Basso EA, Back DF, Moura S, Rosa FA. One-Pot Highly Regioselective Synthesis of α-Ketoamide N-Arylpyrazoles from Secondary β-Enamino Diketones. Org Lett 2019; 21:6325-6328. [DOI: 10.1021/acs.orglett.9b02206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Poletto
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Gessica M. Ribeiro
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Michael J. V. da Silva
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Andrey P. Jacomini
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Ernani A. Basso
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Davi F. Back
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 Santa Maria, RS, Brazil
| | - Sidnei Moura
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), 295070-560 Caxias do Sul, RS, Brazil
| | - Fernanda A. Rosa
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| |
Collapse
|
34
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
35
|
Synthesis, anticancer activity and mechanism of iron chelator derived from 2,6-diacetylpyridine bis(acylhydrazones). J Inorg Biochem 2019; 193:1-8. [DOI: 10.1016/j.jinorgbio.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
36
|
A new pyridazinone exhibits potent cytotoxicity on human cancer cells via apoptosis and poly-ubiquitinated protein accumulation. Cell Biol Toxicol 2019; 35:503-519. [PMID: 30825052 DOI: 10.1007/s10565-019-09466-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In the last 15 years, pyridazinone derivatives have acquired extensive attention due to their widespread biological activities and pharmacological applications. Pyridazinones are well known for their anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and cardiovascular activities, among others. In this study, we evaluated the anti-cancer activity of a new pyridazinone derivative and propose it as a potential anti-neoplastic agent in acute promyelocytic leukemia cells. Pyr-1 cytotoxicity was assessed on several human cancer and two non-cancerous cell lines by the DNS assay. Pyr-1 demonstrated potent cytotoxicity against 22 human cancer cell lines, exhibiting the most favorable selective cytotoxicity on leukemia (CEM and HL-60), breast (MDA-MB-231 and MDA-MB-468), and lung (A-549) cancer cell lines, when compared with non-cancerous breast epithelial MCF-10A cells. Analyses of apoptosis/necrosis pathways, reactive oxygen species (ROS) production, mitochondria health, caspase-3 activation, and cell cycle profile were performed via flow cytometry. Both hmox-1 RNA and protein expression levels were evaluated by quantitative real-time PCR and Western blotting assays, respectively. Pyr-1 induced apoptosis in acute promyelocytic leukemia cells as confirmed by phosphatidylserine externalization, mitochondrial depolarization, caspase-3 activation, DNA fragmentation, and disrupted cell cycle progression. Additionally, it was determined that Pyr-1 generates oxidative and proteotoxic stress by provoking the accumulation of ROS, resulting in the overexpression of the stress-related hmox-1 mRNA transcripts and protein and a marked increase in poly-ubiquitinated proteins. Our data demonstrate that Pyr-1 induces cell death via the intrinsic apoptosis pathway by accumulating ROS and by impairing proteasome activity.
Collapse
|
37
|
Volpato H, Scariot DB, Soares EFP, Jacomini AP, Rosa FA, Sarragiotto MH, Ueda-Nakamura T, Rubira AF, Pereira GM, Manadas R, Leitão AJ, Borges O, Nakamura CV, Sousa MDC. In vitro anti-Leishmania activity of T6 synthetic compound encapsulated in yeast-derived β-(1,3)-d-glucan particles. Int J Biol Macromol 2018; 119:1264-1275. [PMID: 30096400 DOI: 10.1016/j.ijbiomac.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/16/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to encapsulate a synthetic compound, the 4-[(2E)-N'-(2,2'-bithienyl-5-methylene)hydra-zinecarbonyl]-6,7-dihydro-1-phenyl-1H-pyrazolo[3,4-d]pyridazin-7-one (T6) in glucan-rich particles mainly composed by the cell wall of Saccharomyces cerevisiae (GPs) and to study their individual and combined activity on Leishmania infantum. The possible mechanism of action of T6 was also investigated. Our results showed the activity of T6 compound in both promastigote (IC50 = 2.5 μg/mL) and intracellular amastigote (IC50 = 1.23 μg/mL) forms. We also found activity against intracellular amastigote forms (IC50 = 8.20 μg/mL) when the T6 compound was encapsulated in GPs. Another interesting finding was the fact that T6 encapsulated in GPs showed a significant decrease in J774A1 macrophage toxicity (CC50 ≥ 18.53 μg/mL) compared to the T6 compound alone (IC50 = 2.27 μg/mL). Through electron microscopy and biochemical methodologies, we verified that the activity of T6 in promastigote forms of L. infantum was characterized by events of cell death by apoptosis like increased ROS production, cell shrinkage, phosphatidylserine exposure and DNA fragmentation. We conclude that T6 can be considered a promising anti-Leishmania compound, and that the use of GPs for drug encapsulation is an interesting approach to the development of new effective and less toxic formulations.
Collapse
Affiliation(s)
- Hélito Volpato
- Postgraduate Program in Biological Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | - Débora Botura Scariot
- Postgraduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | - Edna Filipa Pais Soares
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Andrey Petita Jacomini
- Postgraduate Program in Chemistry, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | - Fernanda Andreia Rosa
- Postgraduate Program in Chemistry, State University of Maringá (UEM), Maringá, Paraná, Brazil.
| | | | - Tânia Ueda-Nakamura
- Postgraduate Program in Biological Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.
| | - Adley Forti Rubira
- Postgraduate Program in Chemistry, State University of Maringá (UEM), Maringá, Paraná, Brazil.
| | | | - Rui Manadas
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal.
| | - Alcino J Leitão
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
| | - Celso Vataru Nakamura
- Postgraduate Program in Biological Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
38
|
Naaz F, Srivastava R, Singh A, Singh N, Verma R, Singh VK, Singh RK. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg Med Chem 2018; 26:3414-3428. [DOI: 10.1016/j.bmc.2018.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022]
|
39
|
Vijayakumar S, Das P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop 2018; 181:95-104. [PMID: 29452111 DOI: 10.1016/j.actatropica.2018.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Lesihmaniasis is one of the major neglected tropical disease caused by the parasite of the genus Leishmania. The disease has more than one clinical forms and the visceral form is considered fatal. With the lack of potential vaccine, chemotherapy is the major treatment source considered for the control of the disease in the infected people. Drugs including amphotericin B and miltefosine are widely used for the treatment, however, development of resistance by the parasite towards the administered drug and high-toxicity of the drug are of major concern. Hence, more attention has been shown on identifying new targets, effective inhibitors, and better drug delivery system against the disease. This review deals with recent studies on drug targets and exploring their essentiality for the survival of Leishmania. Further, new inhibitors for those targets, novel anti-leishmanial peptides and vaccines against leishmaniasis were discussed. We believe that this pool of information will ease the researchers to gain knowledge and help in choosing right targets and design of new inhibitors against Leishmaniasis.
Collapse
|
40
|
Sheikhmoradi V, Saberi S, Saghaei L, Pestehchian N, Fassihi A. Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands. Res Pharm Sci 2018; 13:111-120. [PMID: 29606965 PMCID: PMC5842482 DOI: 10.4103/1735-5362.223793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A novel series of antimony (V) complexes with the hydroxypyranone and hydroxypyridinone ligands were synthesized and characterized by 1HNMR, FT-IR and electron spin ionization mass spectroscopic (ESI-MS) techniques. The synthesis process involved protection of hydroxyl group followed by the reaction of the intermediate with primary amines and finally deprotection. All compounds were evaluated for in vitro activities against the amastigote and promastigote forms of Leishmania major. Most of the synthesized compounds exhibited good antileishmanial activity against both forms of L. major. IC50 values of the most active compounds; 9d, 9d and 9e, after 24, 48 and 72 h against amastigote model were 15, 12.5 and 5.5 μg/mL, respectively. 9e, 11 and 9e inhibited the promastigote form of parasite after 24, 48 and 72 h with IC50 values of 10, 2 and 1 μg/mL, respectively.
Collapse
Affiliation(s)
- Vafa Sheikhmoradi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Sedigheh Saberi
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nader Pestehchian
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
41
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
42
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
43
|
Silva RGM, da Silva MJV, Jacomini AP, Moura S, Back DF, Basso EA, Rosa FA. Development of methodologies for the regioselective synthesis of four series of regioisomer isoxazoles from β-enamino diketones. RSC Adv 2018; 8:4773-4778. [PMID: 35539545 PMCID: PMC9077875 DOI: 10.1039/c7ra13343j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
Four methodologies are reported for the regioselective synthesis of four series of regioisomer isoxazoles from cyclocondensation of β-enamino diketones and hydroxylamine hydrochloride. Regiochemical control was achieved by varying reaction conditions and substrate structure. The mild reaction conditions used to access 4,5-disubstituted, 3,4-disubtituted, and 3,4,5-trisubstituted regioisomer isoxazoles, as well as the pharmacological and synthetic potential of the products, make these novel methodologies very powerful. Efficient and regioselective synthesis of isoxazoles was demonstrated through cyclocondensation of β-enamino diketones with hydroxylamine: four of the six possible regioisomers were obtained.![]()
Collapse
Affiliation(s)
- Raí G. M. Silva
- Departamento de Química
- Universidade Estadual de Maringá (UEM)
- Brazil
| | | | | | - Sidnei Moura
- Laboratório de Produtos Naturais e Sintéticos
- Instituto de Biotecnologia
- Universidade de Caxias do Sul (UCS)
- Caxias do Sul
- Brazil
| | - Davi F. Back
- Departamento de Química
- Universidade Federal de Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Ernani A. Basso
- Departamento de Química
- Universidade Estadual de Maringá (UEM)
- Brazil
| | - Fernanda A. Rosa
- Departamento de Química
- Universidade Estadual de Maringá (UEM)
- Brazil
| |
Collapse
|
44
|
da Silva MJV, Poletto J, Jacomini AP, Pianoski KE, Gonçalves DS, Ribeiro GM, de S. Melo SM, Back DF, Moura S, Rosa FA. Unconventional Method for Synthesis of 3-Carboxyethyl-4-formyl(hydroxy)-5-aryl-N-arylpyrazoles. J Org Chem 2017; 82:12590-12602. [DOI: 10.1021/acs.joc.7b02361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. V. da Silva
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Julia Poletto
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Andrey P. Jacomini
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Karlos E. Pianoski
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Davana S. Gonçalves
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Gessica M. Ribeiro
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Samara M. de S. Melo
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Davi F. Back
- Departamento
de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 Santa Maria, RS, Brazil
| | - Sidnei Moura
- Instituto
de Biotecnologia, Universidade de Caxias do Sul (UCS), 295070-560 Caxias do Sul, RS, Brazil
| | - Fernanda A. Rosa
- Departamento
de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| |
Collapse
|
45
|
Souza TF, Silva MJV, Silva RGM, Gonçalves DS, Simon PA, Jacomini AP, Basso EA, Moura S, Martins MAP, Back DF, Rosa FA. Regiochemical Control of Pyrazoles by Solvent and β-Enamino Diketone Structure: Regioselective Synthesis of 4,5-Disubstituted N
-Phenylpyrazoles. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thiago F. Souza
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Michael J. V. Silva
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Raí G. M. Silva
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Davana S. Gonçalves
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Paula A. Simon
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Andrey P. Jacomini
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Ernani A. Basso
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| | - Sidnei Moura
- Laboratório de Produtos Naturais e Sintéticos, Instituto de Biotecnologia; Universidade de Caxias do Sul (UCS); 95070-560 Caxias do Sul RS Brazil
| | - Marcos A. P. Martins
- Departamento de Química; Universidade Federal de Santa Maria (UFSM); 97110-970 Santa Maria, RS Brazil
| | - Davi F. Back
- Departamento de Química; Universidade Federal de Santa Maria (UFSM); 97110-970 Santa Maria, RS Brazil
| | - Fernanda A. Rosa
- Estereoquímica de Compostos Orgânicos e Docking Molecular; Departamento de Química; Universidade Estadual de Maringá (UEM); 87030-900 Maringá PR Brazil
| |
Collapse
|
46
|
Anand D, Yadav PK, Patel OPS, Parmar N, Maurya RK, Vishwakarma P, Raju KSR, Taneja I, Wahajuddin M, Kar S, Yadav PP. Antileishmanial Activity of Pyrazolopyridine Derivatives and Their Potential as an Adjunct Therapy with Miltefosine. J Med Chem 2017; 60:1041-1059. [DOI: 10.1021/acs.jmedchem.6b01447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Pawan Kumar Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Naveen Parmar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Preeti Vishwakarma
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Kanumuri S. R. Raju
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Isha Taneja
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - M. Wahajuddin
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Susanta Kar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Prem P. Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| |
Collapse
|