1
|
Svobodova B, Moravcova Z, Misiachna A, Novakova G, Marek A, Finger V, Odvarkova J, Pejchal J, Karasova JZ, Netolicky J, Ladislav M, Hrabinova M, Sorf A, Muckova L, Fikejzlova L, Benkova M, Novak M, Prchal L, Capek J, Handl J, Rousar T, Greber KE, Ciura K, Horak M, Soukup O, Korabecny J. Novel tacrine-based multi-target directed Ligands: Enhancing cholinesterase inhibition, NMDA receptor antagonism, and CNS bioavailability for Alzheimer's disease treatment. Eur J Med Chem 2025; 292:117678. [PMID: 40288120 DOI: 10.1016/j.ejmech.2025.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder for which current treatments provide only symptomatic relief, primarily through cholinesterase (ChE) inhibition and N-methyl-d-aspartate receptor (NMDAR) antagonism. To improve therapeutic efficacy and safety, we designed and synthesized 16 novel tacrine derivatives modified at position 7 with various (hetero)aryl groups or deuterium substitution. Initially, in silico screening predicted favorable CNS permeability and oral bioavailability. Subsequent in vitro evaluations demonstrated significant inhibitory potency against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with derivatives 5i and 5m displaying particularly promising profiles. Metabolic stability assessed using human liver microsomes revealed enhanced stability for compound 5e, whereas 5i and 5m underwent rapid metabolism. Notably, compound 7 showed improved metabolic stability attributed to deuterium incorporation. The newly synthesized compounds were further tested for antagonistic activity on the GluN1/GluN2B subtype of NMDAR, with compound 5m exhibiting the most potent and voltage-independent inhibition. The ability of these compounds to permeate the blood-brain barrier (BBB) was confirmed through in vitro PAMPA assays. In preliminary hepatotoxicity screening (HepG2 cells), most derivatives exhibited higher cytotoxicity than tacrine, emphasizing the ongoing challenge in hepatotoxicity management. Based on its overall favorable profile, compound 5m advanced to in vivo pharmacokinetic studies in mice, demonstrating efficient CNS penetration, with brain concentrations exceeding plasma levels (brain-to-plasma ratio 2.36), indicating active transport across the BBB. These findings highlight compound 5m as a promising tacrine-based multi-target-directed ligand, supporting further preclinical development as a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Barbora Svobodova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zuzana Moravcova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2, 12843, Czech Republic
| | - Gabriela Novakova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Vladimir Finger
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jitka Odvarkova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Netolicky
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2, 12843, Czech Republic
| | - Marek Ladislav
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2, 12843, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ales Sorf
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Lenka Fikejzlova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Aleja Generała Jozefa Hallera 107, 80-416, Gdansk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Aleja Generała Jozefa Hallera 107, 80-416, Gdansk, Poland; Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Martin Horak
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
3
|
He J, Sun S, Wang H, Ying Z, Tam KY. Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease. Neurosci Bull 2025; 41:821-836. [PMID: 39907971 PMCID: PMC12014999 DOI: 10.1007/s12264-025-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/06/2024] [Indexed: 02/06/2025] Open
Abstract
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Collapse
Affiliation(s)
- Junqiu He
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shan Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, China
| | - Hongfeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, China.
| | - Zheng Ying
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, China.
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
4
|
Kulkarni AS, Ramana SR, Nuthakki VK, Bhatt S, Jamwal A, Nandawadekar LD, Jotshi A, Kumar A, Nandi U, Bharate SB, Reddy DS. Silicon incorporated tacrine: design, synthesis, and evaluation of biological and pharmacokinetic parameters. RSC Med Chem 2025:d5md00019j. [PMID: 40177641 PMCID: PMC11959489 DOI: 10.1039/d5md00019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Tacrine, an orally bioavailable cholinesterase inhibitor, was previously used to treat Alzheimer's disease but was withdrawn due to hepatotoxicity. The unique structural features of tacrine have once again captured the interest of medicinal chemists. However, the blood-brain barrier (BBB) permeability hampered the development of the majority of its new analogs. Herein, we employed a silicon switch approach for improving the BBB permeability of CNS drugs with tacrine as a tool compound. The replacement of C2 methylene of tacrine with dimethyl silicon yielded 'sila-tacrine' that inhibits acetylcholinesterase as well as butyrylcholinesterase with IC50 values of 3.18 and 6.09 μM, respectively. Sila-tacrine competitively inhibits acetylcholinesterase while it is a non-competitive inhibitor of butyrylcholinesterase. The molecular docking results corroborated with the in vitro cholinesterase inhibition activity of tacrine vs. sila-tacrine. Sila-tacrine demonstrated metabolic stability in HLM and MLM and exhibited superior plasma exposure in an oral pharmacokinetic study in Swiss albino mice. However, tissue distribution studies revealed lower-than-expected brain levels due to efflux pump-mediated transport. This study offers a proof-of-concept for the silicon switch approach in improving the BBB permeability of CNS-active compounds.
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sreenivasa Rao Ramana
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Vijay K Nuthakki
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Shipra Bhatt
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Ashiya Jamwal
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Laxman D Nandawadekar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad-500007 India
| | - Anshika Jotshi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Ajay Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Utpal Nandi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Bose Institute Unified Academic Campus Kolkata 700091 India
| | - Sandip B Bharate
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad-500007 India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad-500007 India
| |
Collapse
|
5
|
Said MA, Riyadh SM, Al-Kaff NS, Zaki ME, Abolibda TZ, Gomha SM. Novel Bis-thiazoles with pyridine and 1,4-Dihydropyridine linkers as potential anti-Alzheimer agents. J Mol Struct 2025; 1322:140347. [DOI: 10.1016/j.molstruc.2024.140347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
6
|
Bouone YO, Bouzina A, Djemel A, Bardaweel SK, Ibrahim-Ouali M, Bakchiche B, Benaceur F, Aouf NE. Investigation of the anticancer activity of modified 4-hydroxyquinolone analogues: in vitro and in silico studies. RSC Adv 2025; 15:3704-3720. [PMID: 39911545 PMCID: PMC11796557 DOI: 10.1039/d5ra00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
A set of nitrogen-based heterocycles derived from the quinoline ring as well as cyclohexanedione and dimedone cores were subjected to in vitro anticancer activity evaluation against four different cancerous cell lines namely; HCT116, A549, PC3, and MCF-7 respectively to colon, lung, prostate, and breast cancers. Compound 3g presented promising results exhibiting the best IC50 values among the investigated compounds for the four tested cell lines. In vitro results were supported with in silico studies including molecular docking simulation in order to learn more about the binding mode of the studied derivatives with relevant drug targets in cancer treatment, namely; anaplastic lymphoma kinase and cyclin-dependent kinase 2. Compound 3g showing the best in vitro results exhibited the most promising docking scores among the studied compounds. Moreover, molecular dynamics simulation was performed to the best ligand studying its stability inside the selected enzymes. Furthermore, a DFT study was performed to investigate the structural composition, electron density, and reactivity of tested compounds to identify the most important parts of the derivatives and elaborate a structure-activity relationship.
Collapse
Affiliation(s)
- Yousra Ouafa Bouone
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Abdelhak Djemel
- Laboratory of Phytochemistry and Pharmacology, Department of Chemistry, Faculty of Exact Sciences and Informatics, University of Jijel BP 98 18000 Jijel Algeria
- Research Unit of Medicinal Plants, RUMP, Attached to Biotechnology Research Center, CRBt 03000 Laghouat 25000, Constantine Algeria
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | | | - Boulanouar Bakchiche
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University Laghouat 03000 Algeria
| | - Farouk Benaceur
- Research Unit of Medicinal Plants, RUMP, Attached to Biotechnology Research Center, CRBt 03000 Laghouat 25000, Constantine Algeria
| | - Nour-Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| |
Collapse
|
7
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
8
|
Chrzanowska E, Denisow B, Strzałkowska-Abramek M, Dmitruk M, Winiarczyk K, Bożek M. Nectar and pollen in Acer trees can contribute to improvement of food resources for pollinators. Sci Rep 2024; 14:27705. [PMID: 39532982 PMCID: PMC11557956 DOI: 10.1038/s41598-024-78355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, we quantified floral resources (nectar and pollen production) and their quality (nectar sugar composition, pollen protein content, pollen amino acid composition) in five Acer species (f. Sapindaceae) growing in forests and commonly planted in urban areas in the temperate zone. Acer trees provide high amounts of sugars and/or pollen. No nectar was produced by A. negundo flowers. The other species produced nectar in functionally female flowers. The floral nectar was composed of sucrose, glucose, and fructose and was classified as hexose-rich or sucrose-rich. The pollen of all the Acer species contained essential amino acids. Acer trees should be planted for improvement of cost-effective food resources in various landscape types (agroforestry, urban areas), with the exception of A. negundo (an invasive species with no nectar available). However, maple trees alone are not sufficient to support pollinators, and other plant species flowering before and after Acer spp. should be planted to ensure a continued supply of food for pollinators.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Bożena Denisow
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland.
| | - Monika Strzałkowska-Abramek
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Marta Dmitruk
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland.
| | - Krystyna Winiarczyk
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033, Lublin, Poland
| | - Małgorzata Bożek
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| |
Collapse
|
9
|
Luzet V, Allemand F, Richet C, Dehecq B, Bonet A, Harakat D, Refouvelet B, Martin H, Cardey B, Pudlo M. Synthesis and evaluation of lipoic acid - donepezil hybrids for Alzheimer's disease using a straightforward strategy. Bioorg Med Chem Lett 2024; 112:129938. [PMID: 39222891 DOI: 10.1016/j.bmcl.2024.129938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is associated with a progressive loss of neurons and synaptic connections in the cholinergic system. Oxidative stress contributes to neuronal damages and to the development of amyloid plaques and neurofibrillary tangles. Therefore, antioxidants have been widely studied to mitigate the progression of Alzheimer's disease, and among these, lipoic acid has demonstrated a neuroprotective effect. Here, we present the synthesis, the molecular modelling, and the evaluation of lipoic acid-donepezil hybrids based on O-desmethyldonepezil. As compounds 5 and 6 display a high inhibition of acetylcholinesterase (IC50 = 7.6 nM and 9.1 nM, respectively), selective against butyrylcholinesterase, and a notable neuroprotective effect, slightly better than that of lipoic acid, the present study suggests that O-desmethyldonepezil could serve as a platform for the straightforward design of donepezil hybrids.
Collapse
Affiliation(s)
- Vincent Luzet
- Université de Franche-Comté, FEMTO-ST, F-25000 Besançon, France.
| | - Florentin Allemand
- Université de Franche-Comté, Chrono-environnement UMR6249, CNRS, F-25000 Besançon, France.
| | - Chloé Richet
- Université de Franche-Comté, Chrono-environnement UMR6249, CNRS, F-25000 Besançon, France.
| | - Barbara Dehecq
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| | - Alexandre Bonet
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| | - Dominique Harakat
- URCATech, ICMR, CNRS UMR 7312, URCA Bât 18, BP 1039, 51687 Reims Cedex 2, France.
| | - Bernard Refouvelet
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25030 Besançon Cedex, France.
| | - Hélène Martin
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| | - Bruno Cardey
- Université de Franche-Comté, Chrono-environnement UMR6249, CNRS, F-25000 Besançon, France.
| | - Marc Pudlo
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| |
Collapse
|
10
|
Listratova AV, Borisov RS, Polovkov NY, Kulikova LN. Synthesis and Biological Activity of Chromeno[3,2- c]Pyridines. Molecules 2024; 29:4997. [PMID: 39519637 PMCID: PMC11547192 DOI: 10.3390/molecules29214997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The review summarizes all synthetic methodologies for the preparation of chromeno[3,2-c]pyridines and chromeno[3,2-c]quinolines. The proposed approaches are systemized based on ways for the construction of the heterocyclic system. The presence of these compounds in nature and their bioactivity are also discussed. Natural products with an annelated chromeno[3,2-c]pyridine fragment are well-known and a number of alkaloids derived from this system as a key core have been recently isolated. These compounds demonstrate antimicrobial, antivirus, and cytotoxic activities, making chromeno[3,2-c]pyridine structural motifs promising for medicinal chemistry.
Collapse
Affiliation(s)
- Anna V. Listratova
- Organic Chemistry Department, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Roman S. Borisov
- A.V.Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (R.S.B.); (N.Y.P.)
| | - Nikolay Yu. Polovkov
- A.V.Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (R.S.B.); (N.Y.P.)
| | - Larisa N. Kulikova
- Organic Chemistry Department, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
11
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
12
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
13
|
Mahnashi MH, Ali S, M Alshehri O, Almazni IA, Asiri SA, Sadiq A, Zafar R, Jan MS. Pharmacological evaluations of amide carboxylates as potential anti-Alzheimer agents: anti-radicals, enzyme inhibition, simulation and behavioral studies in animal models. J Biomol Struct Dyn 2024; 42:9249-9268. [PMID: 37642974 DOI: 10.1080/07391102.2023.2251052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that progresses gradually but irreversibly leading to dementia and is difficult to prevent and treat. There is a considerable time window in which the progression of the disease can be intervened. Scientific advances were required to help the researchers to identify the effective methods for the prevention and treatment of disease. This research was designed to investigate potential mediators for the remedy of AD, five new carboxylate amide zinc complexes (AAZ9-AAZ13) were synthesized and characterized by spectroscopic and physicochemical techniques. The biological evaluation was carried out based on the cholinesterase inhibitory mechanism. The preparation methodology provided the effective synthesis of targeted moieties. The in vitro pharmacological activities were evaluated involving AChE/BChE inhibition and antioxidant potential. All synthesized compounds displayed activity against both enzymes in higher or comparable to the standard drug Galantamine, a reversible inhibitor but the results displayed by compound AAZ10 indicated IC50 of 0.0013 µM (AChE) and 0.061 µM (BChE) as high values for dual AChE/BChE inhibition with potent anti-oxidant results. Structure activity relationship (SAR) indicated that the potent activity of compound AAZ10 appeared due to the presence of nitro clusters at the ortho position of an aromatic ring. The potent synthesized compound AAZ10 was also explored for the in-vivo Anti-Alzheimer activity and anti-oxidant activity. Binding approaches of all synthesized compounds were revealed through molecular docking studies concerning binding pockets of enzymes that analyzed the best posture interaction with amino acid (AA) residues providing an appreciable understanding of enzyme inhibitory mechanisms. Results indicate that synthesized zinc (II) amide carboxylates can behave as an effective remedy in the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Osama M Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | | |
Collapse
|
14
|
Peixoto NC, Bernardi JS, Oliveira CS, Santos MSC, Marion SL, Silva RS, Rosa RM, Rodrigues OED, Pereira ME. Hippocampal acetylcholinesterase activation induced by streptozotocin in mice is protected by an organotellurium compound without evidence of toxicity. AN ACAD BRAS CIENC 2024; 96:e20221048. [PMID: 38597499 DOI: 10.1590/0001-3765202420221048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/19/2023] [Indexed: 04/11/2024] Open
Abstract
The cognitive deficit, which is like Alzheimer's disease and is associated with oxidative damage, may be induced by exposure to streptozotocin. This study aimed to evaluate if the tellurium-containing organocompound, 3j, 5'-arylchalcogeno-3-aminothymidine derivative, interferes with the effects of streptozotocin, as well as to investigate its toxicity in adult mice. Cognitive deficit was induced by two doses of streptozotocin (2.25 mg/kg/day, 48 h interval) intracerebroventricularly. After, the mice were subcutaneously treated with 3j (8.62 mg/kg/day) for 25 days. The effects were assessed by evaluating hippocampal and cortical acetylcholinesterase and behavioral tasks. 3j toxicity was investigated for 10 (0, 21.55, or 43.10 mg/kg/day) and 37 (0, 4.31, or 8.62 mg/kg/day) days by assessing biometric parameters and glucose and urea levels, and alanine aminotransferase activity in blood plasma. 3j exposure did not alter the behavioral alterations induced by streptozotocin exposure. On the other hand, 3j exposure normalized hippocampus acetylcholinesterase activity, which is enhanced by streptozotocin exposure. Toxicity evaluation showed that the administration of 3j for either 10 or 37 days did not cause harmful effects on the biometric and biochemical parameters analyzed. Therefore, 3j does not present any apparent toxicity and reverts acetylcholinesterase activity increase induced by streptozotocin in young adult mice.
Collapse
Affiliation(s)
- Nilce C Peixoto
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
- Departamento de Ciências da Saúde, Campus de Palmeira das Missões, Avenida Independência, 3751, Vista Alegre, 98300-000 Palmeira das Missões, RS, Brazil
| | - Jamile S Bernardi
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Cláudia S Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Mariana Suelen C Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Sara L Marion
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Rafael S Silva
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Raquel M Rosa
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
- Departamento de Química, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Maria Ester Pereira
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Campus Sede, Avenida Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
15
|
Misiachna A, Svobodova B, Netolicky J, Chvojkova M, Kleteckova L, Prchal L, Novak M, Hrabinova M, Kucera T, Muckova L, Moravcova Z, Karasova JZ, Pejchal J, Blazek F, Malinak D, Hakenova K, Krausova BH, Kolcheva M, Ladislav M, Korabecny J, Pahnke J, Vales K, Horak M, Soukup O. Phenoxytacrine derivatives: Low-toxicity neuroprotectants exerting affinity to ifenprodil-binding site and cholinesterase inhibition. Eur J Med Chem 2024; 266:116130. [PMID: 38218127 DOI: 10.1016/j.ejmech.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.
Collapse
Affiliation(s)
- Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague, Czech Republic
| | - Barbora Svobodova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zuzana Moravcova
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Filip Blazek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kristina Hakenova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| | - Barbora Hrcka Krausova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Shirisha T, Majhi S, Divakar K, Kashinath D. Metal-free synthesis of functionalized tacrine derivatives and their evaluation for acetyl/butyrylcholinesterase and α-glucosidase inhibition. Org Biomol Chem 2024; 22:790-804. [PMID: 38167698 DOI: 10.1039/d3ob01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A mild and greener protocol was developed for C-C (C(sp3)-H functionalization) and C-N bond formation to synthesize functionalized tacrine derivatives using a biodegradable and reusable deep eutectic solvent [(DES) formed from N,N'-dimethyl urea and L-(+)-tartaric acid in a 3 : 1 ratio at 80 °C]. The condensation of 9-chloro-1,2,3,4-tetrahydroacridines with a variety of aromatic aldehydes gave unsaturated compounds via C(sp3)-H functionalization (at the C-4 position) with good yields. The substituted N-aryl tacrine derivatives were obtained from the condensed products of 9-chloro-1,2,3,4-tetrahydroacridine with substituted anilines via the nucleophilic substitution reaction (SN2 type) in the DES with good yields. This is the first example of C4-functionalized tacrine derivatives, highlighting the dual capacity of the DES to serve as both a catalyst and a solvent for facilitating C-N bond formation on acridine. The generated compounds were evaluated for acetyl/butyrylcholinesterase (AChE/BChE) and α-glucosidase inhibitory activity. It was found that the majority of the compounds reported here were significantly more potent inhibitors than the standard inhibitor tacrine (AChE IC50 = 203.51 nM; BChE IC50 = 204.01 nM). Among the compounds screened, 8m was found to be more potent with IC50 = 125.06 nM and 119.68 nM towards AChE and BChE inhibition respectively. The α-glucosidase inhibitory activity of the compounds was tested using acarbose as a standard drug (IC50 = 23 100 nM) and compound 8j was found to be active with IC50 = 19 400 nM.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Kalivarathan Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur, Tamilnadu-602 117, India.
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
17
|
Dong S, Xia J, Wang F, Yang L, Xing S, Du J, Zhang T, Li Z. Discovery of novel deoxyvasicinone derivatives with benzenesulfonamide substituents as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2024; 264:116013. [PMID: 38052155 DOI: 10.1016/j.ejmech.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
A series of deoxyvasicinone derivatives with benzenesulfonamide substituents were designed and synthesized to find a multifunctional anti-Alzheimer's disease (AD) drug. The results of the biological activity evaluation indicated that most compounds demonstrated selective inhibition of acetylcholinesterase (AChE). Among them, g17 exhibited the most potent inhibitory effect on AChE (IC50 = 0.24 ± 0.04 μM). Additionally, g17 exhibited promising properties as a metal chelator and inhibitor of amyloid β peptides self-aggregation (68.34 % ± 1.16 %). Research on oxidative stress has shown that g17 displays neuroprotective effects and effectively suppresses the intracellular accumulation of reactive oxygen species. Besides, g17 demonstrated remarkable anti-neuroinflammatory effects by significantly reducing the production of pro-inflammatory cytokines (such as NO, IL-1β, and TNF-α) and inhibiting the expression of inflammatory mediators iNOS and COX-2. In vivo studies showed that g17 significantly improved AD model mice's cognitive and memory abilities. Histological examination of mouse hippocampal tissue sections using hematoxylin and eosin staining revealed that g17 effectively mitigates neuronal damage. Considering the multifunctional properties of g17, it is regarded as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Shuanghong Dong
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siqi Xing
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiyu Du
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tingting Zhang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
18
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serkov IV, Proshin AN, Soldatova YV, Poletaeva DA, Faingold II, Mumyatova VA, Terentiev AA, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Combining Experimental and Computational Methods to Produce Conjugates of Anticholinesterase and Antioxidant Pharmacophores with Linker Chemistries Affecting Biological Activities Related to Treatment of Alzheimer's Disease. Molecules 2024; 29:321. [PMID: 38257233 PMCID: PMC10820264 DOI: 10.3390/molecules29020321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced β-amyloid (Aβ) aggregation. Hybrids also exhibited the inhibition of Aβ self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Viktoriya A. Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Alexey A. Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
20
|
Hatami M, Basri Z, Sakhvidi BK, Mortazavi M. Thiadiazole – A promising structure in design and development of anti-Alzheimer agents. Int Immunopharmacol 2023; 118:110027. [PMID: 37011500 DOI: 10.1016/j.intimp.2023.110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
The design and development of effective multitargeted agents in treating Alzheimer disease (AD) has always been a hot topic in the field of drug discovery. Since AD is a multifactorial disorder, various key hidden players such as deficit of acetylcholine (ACh), tau-protein aggregation, and oxidative stress have been associated with the incidence and progress of AD. In pursuit of improving efficacy and expanding the range of pharmacological activities of current AD drugs, the molecular hybridization method is also used intensively. Five-membered heterocyclic systems such as thiadiazole scaffolds have previously been shown to have therapeutic activity. Thiadiazole analogs as an anti-oxidant compound have been known to include a wide range of biological activity from anti-cancer to anti-Alzheimer properties. The suitable pharmacokinetic and physicochemical properties of the thiadiazole scaffold have introduced it as a therapeutic target in medicinal chemistry. The current review portrays the critical role of the thiadiazole scaffold in the design of various compounds with potential effects in the treatment of Alzheimer's disease. Furthermore, the rationale used behind hybrid-based design strategies and the outcomes achieved through the hybridization of Thiadiazole analogs with various core structures have been discussed. In addition, the data in the present review may help researchers in the design of new multidrug combinations that may provide new options for the treatment of AD.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Basri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Batool Khani Sakhvidi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
21
|
Yu D, Yang C, Liu Y, Lu T, Li L, Chen G, Liu Z, Li Y. Synthesis and biological evaluation of substituted acetamide derivatives as potential butyrylcholinestrase inhibitors. Sci Rep 2023; 13:4877. [PMID: 36966194 PMCID: PMC10039877 DOI: 10.1038/s41598-023-31849-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of age-related dementia. Inhibition of butyrylcholinesterase (BChE) emerge as an effective therapeutic target for AD. A series of new substituted acetamide derivatives were designed, synthesized and evaluated for their ability to inhibit BChE. The bioassay results revealed that several compounds displayed attractive inhibition against BChE). Among them, compound 8c exhibited the highest BChE inhibition with IC50 values of 3.94 μM. Lineweaver Burk plot indicated that 8c acted as a mixed-type BChE inhibitor. In addition, docking studies confirmed the results obtained through in vitro experiments, and showed that 8c bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. Meanwhile, its ADME parameters were approximated using in silico method. Molecular dynamics simulation studies on the complex of 8c-BChE were performed, RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds were calculated as well. These results implied that 8c could serve as appropriate lead molecule for the development of BChE inhibitor.
Collapse
Affiliation(s)
- Dehong Yu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Can Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Tao Lu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Lizi Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Gang Chen
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646106, China
- Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646106, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646106, China
- Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646106, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
22
|
Study on Absorption, Distribution and Excretion of a New Candidate Compound XYY-CP1106 against Alzheimer's Disease in Rats by LC-MS/MS. Molecules 2023; 28:molecules28052377. [PMID: 36903623 PMCID: PMC10005075 DOI: 10.3390/molecules28052377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
XYY-CP1106, a candidate compound synthesized from a hybrid of hydroxypyridinone and coumarin, has been shown to be remarkably effective in treating Alzheimer's disease. A simple, rapid and accurate high-performance liquid chromatography coupled with the triple quadrupole mass spectrometer (LC-MS/MS) method was established in this study to elucidate the pharmacokinetics of XYY-CP1106 after oral and intravenous administration in rats. XYY-CP1106 was shown to be rapidly absorbed into the blood (Tmax, 0.57-0.93 h) and then eliminated slowly (T1/2, 8.26-10.06 h). Oral bioavailability of XYY-CP1106 was (10.70 ± 1.72)%. XYY-CP1106 could pass through the blood-brain barrier with a high content of (500.52 ± 260.12) ng/g at 2 h in brain tissue. The excretion results showed that XYY-CP1106 was mainly excreted through feces, with an average total excretion rate of (31.14 ± 0.05)% in 72 h. In conclusion, the absorption, distribution and excretion of XYY-CP1106 in rats provided a theoretical basis for subsequent preclinical studies.
Collapse
|
23
|
Sharma K, Kumar H. Formation of nitrogen-containing six-membered heterocycles on steroidal ring system: A review. Steroids 2023; 191:109171. [PMID: 36581085 DOI: 10.1016/j.steroids.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Steroidal heterocyclic compounds constitute interesting and promising scaffolds for drug discovery as they have displayed diverse chemical reactivity and several types of biological activities. This study is a concise report on the most recent advancements in the chemistry of the steroid skeleton, including reactions at the A, B, and D ring systems. The modern synthetic methods for the steroidal nitrogen-containing six-membered heterocyclic derivatives from 3-keto-, 6-keto-, 17-keto-, and 20-keto-steroids, as well as 2-Aldo-, 4-Aldo-, 6-Aldo-, and 16-Aldo-steroids, are discussed. However, some other methods for the synthesis of steroidal N-containing 6-membered heterocyclic derivatives are also included. These compounds have shown therapeutic potential as cytotoxic agents against various cell lines and have also shown antiproliferative, anti-inflammatory, and antioxidant activities. Therefore, they could be used as prospective candidates for the development of various medications. This paper not only describes synthetic details involved in creating N-containing 6-membered heterocyclic steroid derivatives, but also provides a brief overview of the medicinal applications of these compounds. This information will be highly useful for the medicinal chemists conducting research in this field.
Collapse
Affiliation(s)
- Kamlesh Sharma
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India.
| | - Himanshi Kumar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India
| |
Collapse
|
24
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
25
|
Du Z, Liu C, Liu Z, Song H, Scott P, Du X, Ren J, Qu X. In vivo visualization of enantioselective targeting of amyloid and improvement of cognitive function by clickable chiral metallohelices. Chem Sci 2023; 14:506-513. [PMID: 36741518 PMCID: PMC9847640 DOI: 10.1039/d2sc05897a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is closely related to several contributing factors, especially amyloid-β (Aβ) aggregation. Bioorthogonal reactions provide a general, facile, and robust route for the localization and derivatization of Aβ-targeted agents. Herein, a pair of chiral alkyne-containing metallohelices (ΛA and ΔA) were demonstrated to enantioselectively target and modulate Aβ aggregation, which has been monitored in triple-transgenic AD model mice and proved to improve cognitive function. Compared with its enantiomer ΔA, ΛA performed better in blocking Aβ fibrillation, relieving Aβ-triggered toxicity, and recovering memory deficits in vivo. Moreover, clickable ΛA could act as a functional module for subsequent visualization and versatile modification of amyloid via bioorthogonal reaction. As a proof-of-concept, thioflavin T, tacrine, and magnetic nanoparticles were conjugated with ΛA to realize Aβ photo-oxygenation, acetylcholinesterase inhibition, and Aβ clearance, respectively. This proof-of-principle work provided new insights into the biolabeling and bioconjugation of multifunctional metallosupramolecules through click reactions for AD therapy.
Collapse
Affiliation(s)
- Zhi Du
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Chun Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Zhenqi Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Hualong Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Peter Scott
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen University Shenzhen 518060 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
26
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
27
|
El-Hussieny M, ElMansy MF, Ewies EF, El-Rashedy AA, Ibrahim AY, El-Sayed NF. Synthesis, biological evaluation, and molecular dynamics of novel coumarin based phosphorothioates as cholinesterase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Yang M, Zhang X, Qiao O, Ji H, Zhang Y, Han X, Wang W, Li X, Wang J, Guo L, Huang L, Gao W. Rosmarinic acid potentiates and detoxifies tacrine in combination for Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154600. [PMID: 36610144 DOI: 10.1016/j.phymed.2022.154600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is no doubt that Alzheimer's disease (AD) is one of the greatest threats facing mankind today. Within the next few decades, Acetylcholinesterase inhibitors (AChEIs) will be the most widely used treatment for Alzheimer's disease. The withdrawal of the first generation AChEIs drug Tacrine (TAC)/ Cognex from the market as a result of hepatotoxicity has always been an interesting case study. Rosmarinic acid (RA) is a natural compound of phenolic acids that has pharmacological activity for inhibiting Alzheimer's disease, as well as liver protection. PURPOSE AND STUDY DESIGN In this study, we determined that RA can reduce the hepatotoxicity of TAC, and both of them act synergistically to inhibit the progression of AD in mice. METHODS In addition to the wild type mice (WT) group, the 6-month-old APP/PS1 (APPswe/PSEN1dE9) double-transgenic (Tg) mice were randomly divided into 6 groups: Tg group, TAC group, RA group, TAC+Silymarin (SIL) group, TAC+RA-L (Rosmarinic Acid Low Dose) goup and TAC+RA-H (Rosmarinic Acid High Dose) group. A series of experiments were carried out, including open field test, Morris water maze test, Hematoxylin - Eosin (HE) staining, Nissl staining, biochemical analysis, immunofluorescence analysis, western blotting analysis and so on. RESULTS RA combined with TAC could enter the brain tissue of AD mice, and the combination of drugs could better improve the cognitive behavior and brain pathological damage of AD mice, reduce the expression of A β oligomer, inhibit the deposition of A β, inhibit the activity of AChE and enhance the level of Ach in hippocampus. Both in vivo and in vitro experiments showed that RA could alleviate the hepatotoxicity or liver injury induced by TAC. The Western blot analysis of the liver of AD mice showed that RA combined with TAC might inhibit the apoptosis of Bcl-2/Bax, reduce the programmed apoptosis mediated by caspase-3 and reduce the burden of liver induced by TAC, could inhibit the development of liver apoptosis by alleviating the hepatotoxicity of TAC and inhibiting the phosphorylation of JNK. CONCLUSION The potential drug combination that combines rosmarinic acid with tacrine could reduce tacrine's hepatotoxicity as well as enhance its therapeutic effect on Alzheimer's disease.
Collapse
Affiliation(s)
- Mingjuan Yang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xinyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Haixia Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Yi Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaoying Han
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Wenzhe Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
29
|
Djafarou S, Amine Khodja I, Boulebd H. Computational design of new tacrine analogs: an in silico prediction of their cholinesterase inhibitory, antioxidant, and hepatotoxic activities. J Biomol Struct Dyn 2023; 41:91-105. [PMID: 34825629 DOI: 10.1080/07391102.2021.2004232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tacrine, the first drug approved for the treatment of Alzheimer's disease (AD), is a non-competitive cholinesterase inhibitor withdrawn due to its acute hepatotoxicity. However, new non-hepatotoxic forms of tacrine have been actively researched. Moreover, several recent reports have shown that oxidative stress is the cause of damage and plays a role in the pathogenesis of several neurodegenerative diseases including AD. The aim of the present study is the design of new easily synthesized tacrine analogs with less hepatotoxicity and potent antioxidant activity. In this context, a library of 34 novel tacrine analogs bearing an antioxidant fragment was designed and evaluated for its hepatotoxicity as well as anticholinesterase and antioxidant activities using computational methods. As a result, six new tacrine analogs have been proposed as potential inhibitors of cholinesterase with antioxidant activity and low or no hepatotoxicity. Furthermore, ADME calculations suggest that these compounds are promising oral drug candidates. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Selsabil Djafarou
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
30
|
Xu X, Wang H, Zhang QY, Meng XY, Li XX, Zhang HY. Dissecting Mitochondrial Mechanisms of Alzheimer's Disease Using Gene Dependency Network and Its Implications for Discovering Nutrients Combatting the Disease. J Alzheimers Dis 2023; 95:1709-1722. [PMID: 37718803 DOI: 10.3233/jad-230366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, with its prevalence increasing as the global population ages. AD is a multifactorial and intricate neurodegenerative disease with pathological changes varying from person to person. Because the mechanism of AD is highly controversial, effective treatments remain a distant prospect. Currently, one of the most promising hypotheses posits mitochondrial dysfunction as an early event in AD diagnosis and a potential therapeutic target. OBJECTIVE Here, we adopted a systems medicine strategy to explore the mitochondria-related mechanisms of AD. Then, its implications for discovering nutrients combatting the disease were demonstrated. METHODS We employed conditional mutual information (CMI) to construct AD gene dependency networks. Furthermore, the GeneRank algorithm was applied to prioritize the gene importance of AD patients and identify potential anti-AD nutrients targeting crucial genes. RESULTS The results suggested that two highly interconnected networks of mitochondrial ribosomal proteins (MRPs) play an important role in the regulation of AD pathology. The close association between mitochondrial ribosome dysfunction and AD was identified. Additionally, we proposed seven nutrients with potential preventive and ameliorative effects on AD, five of which have been supported by experimental reports. CONCLUSIONS Our study explored the important regulatory role of MRP genes in AD, which has significant implications for AD prevention and treatment.
Collapse
Affiliation(s)
- Xuan Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
- College of Life Sciences, Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiang-Yu Meng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
- Health Science Center, Hubei Minzu University, Enshi, China
| | - Xin-Xing Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Cortes Vazquez J, Alharbi WS, Davis J, Moore A, Nesterov VN, Cundari TR, Wang H, Luo W. Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles. ACS OMEGA 2022; 7:45341-45346. [PMID: 36530259 PMCID: PMC9753174 DOI: 10.1021/acsomega.2c05909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Waad S. Alharbi
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Alexia Moore
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Vladimir N. Nesterov
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Hong Wang
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Weiwei Luo
- School
of Chemistry and Chemical Engineering, Changsha
University of Science and Technology, Changsha 410114, China
| |
Collapse
|
32
|
Moreira NCDS, Tamarozzi ER, Lima JEBDF, Piassi LDO, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel Dual AChE and ROCK2 Inhibitor Induces Neurogenesis via PTEN/AKT Pathway in Alzheimer's Disease Model. Int J Mol Sci 2022; 23:ijms232314788. [PMID: 36499116 PMCID: PMC9737254 DOI: 10.3390/ijms232314788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by β-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.
Collapse
Affiliation(s)
| | - Elvira Regina Tamarozzi
- Department of Biotechnology, School of Arts, Sciences and Humanities—USP, São Paulo 03828-000, Brazil
| | | | - Larissa de Oliveira Piassi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-900, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-901, Brazil
- Correspondence: ; Tel.: +55-16-3315-3827
| |
Collapse
|
33
|
KARASAKAL A, YALÇIN GÜRKAN Y, PARLAR S. Candidate drug molecule-DNA interaction and molecular modelling of candidate drug molecule. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: 1,4-dihydropyridine derivative, 1-(3-phenyl propyl)-4-(2-(2-hydroxybenzylidene) hydrazone)-1,4-dihydropyridine (abbreviated as DHP) was synthesized as potential agent for Alzheimer’s disease which is a progressive neurodegenerative brain disorder affecting millions of elderly people. With this study, the electrochemical properties of DHP were investigated and its interaction with DNA was analyzed by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements. In addition, this study aims to determine degradation mechanism of the DHP molecule by Density-functional theory (DFT) in gas and in aqueous phase.
Material and Method: Experimental conditions such as immobilization time, the effect of the scan rate, concentration, and the effect of pH were optimized. The method was validated according to validation parameters such as range, precision, linearity, limit of detection (LOD), limit of quantitation (LOQ) and inter/intraday.
Results: Linearity study for the calibration curve of DNA and DHP with DPV was calculated in the calibration range 10-100 µg/mL. The LOD and LOQ values were calculated as 3 and 10 µg/mL and intra-day and inter-day repeatability (RSD %) were 1.85 and 3.64 µg/mL, respectively. After the DHP-DNA interaction, the oxidation currents of guanine decreased as a proof of interaction. The activation energy of the most possible path of reaction was calculated, and their thermodynamically most stable state was determined in gas phase.
Conclusion: We developed to improve a sensitive, fast and easy detection process for determination of interaction between DHP and DNA.
Collapse
|
34
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
36
|
Arrué L, Cigna-Méndez A, Barbosa T, Borrego-Muñoz P, Struve-Villalobos S, Oviedo V, Martínez-García C, Sepúlveda-Lara A, Millán N, Márquez Montesinos JCE, Muñoz J, Santana PA, Peña-Varas C, Barreto GE, González J, Ramírez D. New Drug Design Avenues Targeting Alzheimer's Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics 2022; 14:1914. [PMID: 36145662 PMCID: PMC9503559 DOI: 10.3390/pharmaceutics14091914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time due to their multifactorial character. Among these pathologies, Alzheimer's disease (AD) is of special relevance, and despite the existence of approved drugs for its treatment, there is still no efficient pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many physiological pathways involved, the most effective approach to modulate more than one of them in a relevant manner and without undesirable consequences is through polypharmacology. In this field, there has been significant progress in recent years in terms of pharmacoinformatics tools that allow the discovery of bioactive molecules with polypharmacological profiles without the need to spend a long time and excessive resources on complex experimental designs, making the drug design and development pipeline more efficient. In this review, we present from different perspectives how pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence and new trends, as well as different databases and software with their main results, emphasizing the importance of coupling wet and dry approaches in drug design and development processes.
Collapse
Affiliation(s)
- Lily Arrué
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile
| | - Alexandra Cigna-Méndez
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paola Borrego-Muñoz
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | - Silvia Struve-Villalobos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Victoria Oviedo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Claudia Martínez-García
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Sepúlveda-Lara
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Natalia Millán
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Juana Muñoz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paula A. Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
37
|
Obaid RJ, Mughal EU, Naeem N, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
39
|
Kumar B, Dwivedi AR, Arora T, Raj K, Prashar V, Kumar V, Singh S, Prakash J, Kumar V. Design, Synthesis, and Pharmacological Evaluation of N-Propargylated Diphenylpyrimidines as Multitarget Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2122-2139. [PMID: 35797244 DOI: 10.1021/acschemneuro.2c00132] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD), a multifactorial complex neural disorder, is categorized with progressive memory loss and cognitive impairment as main clinical features. The multitarget directed ligand (MTDL) strategy is explored for the treatment of multifactorial diseases such as cancer and AD. Herein, we report the synthesis and screening of 24 N-propargyl-substituted diphenylpyrimidine derivatives as MTDLs against acetylcholine/butyrylcholine esterases and monoamine oxidase enzymes. In this series, VP1 showed the most potent MAO-B inhibitory activity with an IC50 value of 0.04 ± 0.002 μM. VP15 with an IC50 value of 0.04 ± 0.003 μM and a selectivity index of 626 (over BuChE) displayed the most potent AChE inhibitory activity in this series. In the reactive oxygen species (ROS) inhibition studies, VP1 reduced intercellular ROS levels in SH-SY5Y cells by 36%. This series of compounds also exhibited potent neuroprotective potential against 6-hydroxydopamine-induced neuronal damage in SH-SY5Y cells with up to 90% recovery. In the in vivo studies in the rats, the hydrochloride salt of VP15 was orally administered and found to cross the blood-brain barrier and reach the target site. VP15·HCl significantly attenuated the spatial memory impairment and improved the cognitive deficits in the mice. This series of compounds were found to be irreversible inhibitors and showed no cytotoxicity against neuronal cells. In in silico studies, the compounds attained thermodynamically stable orientation with complete occupancy at the active site of the receptors. Thus, N-propargyl-substituted diphenylpyrimidines displayed drug-like characteristics and have the potential to be developed as MTDLs for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India.,Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Jyoti Prakash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
40
|
Velueta-Viveros M, Martínez-Bailén M, Puerta A, Romero-Hernández LL, Křen V, Merino-Montiel P, Montiel-Smith S, Fernandes MX, Moreno-Vargas AJ, Padrón JM, López Ó, Fernández-Bolaños JG. Carbohydrate-derived bicyclic selenazolines as new dual inhibitors (cholinesterases/OGA) against Alzheimer’s disease. Bioorg Chem 2022; 127:105983. [DOI: 10.1016/j.bioorg.2022.105983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
41
|
Effects of Linkers and Substitutions on Multitarget Directed Ligands for Alzheimer’s Diseases: Emerging Paradigms and Strategies. Int J Mol Sci 2022; 23:ijms23116085. [PMID: 35682763 PMCID: PMC9181730 DOI: 10.3390/ijms23116085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is multifactorial, progressive and the most predominant cause of cognitive impairment and dementia worldwide. The current “one-drug, one-target” approach provides only symptomatic relief to the condition but is unable to cure the disease completely. The conventional single-target therapeutic approach might not always induce the desired effect due to the multifactorial nature of AD. Hence, multitarget strategies have been proposed to simultaneously knock out multiple targets involved in the development of AD. Herein, we provide an overview of the various strategies, followed by the multitarget-directed ligand (MTDL) development, rationale designs and efficient examples. Furthermore, the effects of the linkers and substitutional functional groups on MTDLs against various targets of AD and their modes of action are also discussed.
Collapse
|
42
|
Synthesis, and in vitro biological evaluations of novel naphthoquinone conjugated to aryl triazole acetamide derivatives as potential anti-Alzheimer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Demkowicz S, Daśko M, Inkielewicz-Stepniak I. Design, synthesis and biological evaluation of novel N-phosphorylated and O-phosphorylated tacrine derivatives as potential drugs against Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:1012-1022. [PMID: 35361039 PMCID: PMC8979514 DOI: 10.1080/14756366.2022.2045591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this work, we designed, synthesised and biologically investigated a novel series of 14 N- and O-phosphorylated tacrine derivatives as potential anti-Alzheimer’s disease agents. In the reaction of 9-chlorotacrine and corresponding diamines/aminoalkylalcohol we obtained diamino and aminoalkylhydroxy tacrine derivatives. Next, the compounds were acid to give final products 6–13 and 16–21 that were characterised by 1H, 13 C, 31 P NMR and MS. The results of the docking studies revealed that the designed phosphorus hybrids, in theory can bind to AChE and BChE. All compounds exhibited significantly lower AutoDock Vina scores compared to tacrine. The inhibitory potency evaluation was performed using the Ellman’s method. The most inhibitory activity against AChE exhibited compound 8 with an IC50 value of 6.11 nM and against BChE 13 with an IC50 value of 1.97 nM and they were 6- and 12-fold potent than tacrine. Compound 19 showed the lack of hepatocytotoxicity in MTT assay.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
44
|
Zhang Z, Cheng M, Guo J, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, synthesis and biological evaluation of novel pyrazolone derivatives as selective butyrylcholinesterase inhibitors with antioxidant activity against Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Zeng F, Lu T, Wang J, Nie X, Xiong W, Yin Z, Peng D. Design, Synthesis and Bioactivity Evaluation of Coumarin-BMT Hybrids as New Acetylcholinesterase Inhibitors. Molecules 2022; 27:molecules27072142. [PMID: 35408542 PMCID: PMC9000719 DOI: 10.3390/molecules27072142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Coumarin possesses the aromatic group and showed plentiful activities, such as antioxidant, preventing asthma and antisepsis. In addition, coumarin derivatives usually possess good solubility, low cytotoxicity and excellent cell permeability. In our study, we synthesized the compound bridge methylene tacrine (BMT), which has the classical pharmacophore structure of Tacrine (THA). Based on the principle of active substructure splicing, BMT was used as a lead compound and synthesized coumarin-BMT hybrids by introducing coumarin to BMT. In this work, 21 novel hybrids of BMT and coumarin were synthesized and evaluated for their inhibitory activity on AChE. All obtained compounds present preferable inhibition. Compound 8b was the most active compound, with the value of Ki as 49.2 nM, which was higher than Galantamine (GAL) and lower than THA. The result of molecular docking showed that the highest binding free energy was -40.43 kcal/mol for compound 8b, which was an identical trend with the calculated Ki.
Collapse
Affiliation(s)
- Fanxin Zeng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Tao Lu
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
| | - Jie Wang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Xuliang Nie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Wanming Xiong
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Zhongping Yin
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (Z.Y.); (D.P.)
| | - Dayong Peng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
- Correspondence: (Z.Y.); (D.P.)
| |
Collapse
|
46
|
Grishchenko MV, Makhaeva GF, Burgart YV, Rudakova EV, Boltneva NP, Kovaleva NV, Serebryakova OG, Lushchekina SV, Astakhova TY, Zhilina EF, Shchegolkov EV, Richardson RJ, Saloutin VI. Conjugates of Tacrine with Salicylamide as Promising Multitarget Agents for Alzheimer's Disease. ChemMedChem 2022; 17:e202200080. [PMID: 35322571 PMCID: PMC9314152 DOI: 10.1002/cmdc.202200080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Indexed: 12/29/2022]
Abstract
New conjugates of tacrine and salicylamide with alkylene spacers were synthesized and evaluated as potential multifunctional agents for Alzheimer's disease (AD). The compounds exhibited high acetylcholinesterase (AChE, IC50 to 0.224 μM) and butyrylcholinesterase (BChE, IC50 to 0.0104 μM) inhibitory activities. They were also rather poor inhibitors of carboxylesterase, suggesting a low tendency to exert potential unwanted drug-drug interactions in clinical use. The conjugates were mixed-type reversible inhibitors of both cholinesterases and demonstrated dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking that, along with experimental results on propidium iodide displacement, suggest their potential to block AChE-induced β-amyloid aggregation. The new conjugates exhibited high ABTS.+ -scavenging activity. N-(6-(1,2,3,4-Tetrahydroacridin-9-ylamino)hexyl)salicylamide is a lead compound that also demonstrates metal chelating ability toward Cu2+ , Fe2+ and Zn2+ . Thus, the new conjugates have displayed the potential to be multifunctional anti-AD agents for further development.
Collapse
Affiliation(s)
- Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Tatiana Y Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Rudy J Richardson
- Departments of Environmental Health Sciences and Neurology, University of Michigan, 48109, Ann Arbor, MI, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, MI, USA
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| |
Collapse
|
47
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
48
|
Discovery of novel β-carboline derivatives as selective AChE inhibitors with GSK-3β inhibitory property for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 229:114095. [PMID: 34995924 DOI: 10.1016/j.ejmech.2021.114095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
The natural product harmine, a representative β-carboline alkaloid from the seeds of Peganum harmala L. (Zygophyllaceae), possesses a broad spectrum of biological activities. In this study, a novel series of harmine derivatives containing N-benzylpiperidine moiety were identified for the treatment of Alzheimer's disease (AD). The results showed that all the derivatives possessed significant anti-acetylcholinesterase (AChE) activity and good selectivity over butyrylcholinesterase (BChE). In particular, compound ZLWH-23 exhibited potent anti-AChE activity (IC50 = 0.27 μM) and selective BChE inhibition (IC50 = 20.82 μM), as well as acceptable glycogen synthase kinase-3 (GSK-3β) inhibition (IC50 = 6.78 μM). Molecular docking studies and molecular dynamics simulations indicated that ZLWH-23 could form stable interaction with AChE and GSK-3β. Gratifyingly, ZLWH-23 exhibited good selectivity for GSK-3β over multi-kinases and very low cytotoxicity towards SH-SY5Y, HEK-293T, HL-7702, and HepG2 cell lines. Importantly, ZLWH-23 displayed efficient reduction against tau hyperphosphorylation on Ser-396 site in Tau (P301L) 293T cell model. Collectively, harmine-based derivatives could be considered as possible drug leads for the development of AD therapies.
Collapse
|
49
|
Malūkaitė D, Grybaitė B, Vaickelionienė R, Vaickelionis G, Sapijanskaitė-Banevič B, Kavaliauskas P, Mickevičius V. Synthesis of Novel Thiazole Derivatives Bearing β-Amino Acid and Aromatic Moieties as Promising Scaffolds for the Development of New Antibacterial and Antifungal Candidates Targeting Multidrug-Resistant Pathogens. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010074. [PMID: 35011308 PMCID: PMC8746625 DOI: 10.3390/molecules27010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Rapidly growing antimicrobial resistance among clinically important bacterial and fungal pathogens accounts for high morbidity and mortality worldwide. Therefore, it is critical to look for new small molecules targeting multidrug-resistant pathogens. Herein, in this paper we report a synthesis, ADME properties, and in vitro antimicrobial activity characterization of novel thiazole derivatives bearing β-amino acid, azole, and aromatic moieties. The in silico ADME characterization revealed that compounds 1-9 meet at least 2 Lipinski drug-like properties while cytotoxicity studies demonstrated low cytotoxicity to Vero cells. Further in vitro antimicrobial activity characterization showed the selective and potent bactericidal activity of 2a-c against Gram-positive pathogens (MIC 1-64 µg/mL) with profound activity against S. aureus (MIC 1-2 µg/mL) harboring genetically defined resistance mechanisms. Furthermore, the compounds 2a-c exhibited antifungal activity against azole resistant A. fumigatus, while only 2b and 5a showed antifungal activity against multidrug resistant yeasts including Candida auris. Collectively, these results demonstrate that thiazole derivatives 2a-c and 5a could be further explored as a promising scaffold for future development of antifungal and antibacterial agents targeting highly resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Dovilė Malūkaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
- Correspondence: ; Tel.: +370-6001-6958
| | - Giedrius Vaickelionis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
- Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| |
Collapse
|
50
|
Lopes JPB, Silva L, Lüdtke DS. An overview on the synthesis of carbohydrate-based molecules with biological activity related to neurodegenerative diseases. RSC Med Chem 2021; 12:2001-2015. [PMID: 35028560 PMCID: PMC8672812 DOI: 10.1039/d1md00217a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
In the context of the search for multitarget drugs with improved efficacy against neurodegenerative disorders, carbohydrate derivatives have emerged as promising candidates for Alzheimer's therapy. Herein we describe the synthesis and biological evaluation of several classes of sugar-based compounds, where most of them contain heterocyclic aromatic moieties that bear known biological properties and high affinity for the cholinesterase active site. This general idea led to the synthesis of compounds with high inhibitory potency against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), enzymatic selectivity and combined properties such as antioxidant and neuroprotection, in addition to the absence of toxicity.
Collapse
Affiliation(s)
- João Paulo B Lopes
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| | - Luana Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| |
Collapse
|