1
|
Osman NA, Soltan MK, Rezq S, Flaherty J, Romero DG, Abdelkhalek AS. Dual COX-2 and 15-LOX inhibition study of novel 4-arylidine-2-mercapto-1-phenyl-1H-imidazolidin-5(4H)-ones: Design, synthesis, docking, and anti-inflammatory activity. Arch Pharm (Weinheim) 2024; 357:e2300615. [PMID: 38315093 PMCID: PMC11073913 DOI: 10.1002/ardp.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Nermine A. Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mostafa K. Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Oman College of Health Sciences, Muscat, Sultanate Oman
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joseph Flaherty
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ahmed S. Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
K A Abdelall E, Elshemy HAH, Philoppes JN, Abdel-Fattah MM, El-Nahaas ES, Mahmoud RR. Development of safe and antioxidant COX-2 inhibitors; Synthesis, molecular docking analysis and biological evaluation of novel pyrrolizine 5-carboxamides. Bioorg Chem 2024; 143:107098. [PMID: 38185010 DOI: 10.1016/j.bioorg.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the current study, a series of new pyrrolizine-5-carboxamide derivatives (5-8, 9a-d, 10a-d, 11a,b and 12a,b) were developed, synthesized and evaluated in terms of in vitro COX-2 enzyme inhibition. The in vivo anti-inflammatory evaluation was conducted on the most selective compounds (9a,b,d, 10b,c and 11a,b). For the most active five compounds (9a, 10b,c and 11a,b), ulcerogenic liability, histopathological examinations, physicochemical properties study and antioxidant activity were investigated. Also, nitric oxide donor activity was evaluated for compounds (6, 7, 10a-d and 12a,b), while, compounds (10c,d and 12a,b) showed a high significant result relative to the normal control. According to the findings of this study, 2,3-dihydro-1H-pyrrolizine-5-carboxamide (9a) demonstrated high antioxidant (highest beta-carotene concentration (10.825 µg/ml)) and anti-inflammatory activity (EIP = 63.6 %) with lower ulcerogenicity (ulcer index 13.67), presenting it as a promising candidate for treating inflammatory diseases which are complicated by oxidative tissue damage. Furthermore, MOE software tools docking software was used to carry out the in silico studies. Docking study for the most active compounds showed that all compounds made three to four H-bond interactions in COX-2 active site adopting excellent docking scores.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - El-Shaymaa El-Nahaas
- Departement of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rabab R Mahmoud
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
3
|
Pan T, He M, Deng L, Li J, Fan Y, Hao X, Mu S. Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro- 2H-indolin-2-one Derivatives. Molecules 2023; 28:4668. [PMID: 37375225 DOI: 10.3390/molecules28124668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Thirty-three 1,3-dihydro-2H-indolin-2-one derivatives bearing α, β-unsaturated ketones were designed and synthesized via the Knoevenagel condensation reaction. The cytotoxicity, in vitro anti-inflammatory ability, and in vitro COX-2 inhibitory activity of all the compounds were evaluated. Compounds 4a, 4e, 4i-4j, and 9d exhibited weak cytotoxicity and different degrees of inhibition against NO production in LPS-stimulated RAW 264.7 cells. The IC50 values of compounds 4a, 4i, and 4j were 17.81 ± 1.86 μM, 20.41 ± 1.61 μM, and 16.31 ± 0.35 μM, respectively. Compounds 4e and 9d showed better anti-inflammatory activity with IC50 values of 13.51 ± 0.48 μM and 10.03 ± 0.27 μM, respectively, which were lower than those of the positive control ammonium pyrrolidinedithiocarbamate (PDTC). Compounds 4e, 9h, and 9i showed good COX-2 inhibitory activities with IC50 values of 2.35 ± 0.04 µM, 2.422 ± 0.10 µM and 3.34 ± 0.05 µM, respectively. Moreover, the possible mechanism by which COX-2 recognized 4e, 9h, and 9i was predicted by molecular docking. The results of this research suggested that compounds 4e, 9h, and 9i might be new anti-inflammatory lead compounds for further optimization and evaluation.
Collapse
Affiliation(s)
- Taohua Pan
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Maofei He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yanhua Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiaojiang Hao
- Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
4
|
Oggu S, Akshinthala P, Katari NK, Nagarapu LK, Malempati S, Gundla R, Jonnalagadda SB. Design, synthesis, anticancer evaluation and molecular docking studies of 1,2,3-triazole incorporated 1,3,4-oxadiazole-Triazine derivatives. Heliyon 2023; 9:e15935. [PMID: 37206039 PMCID: PMC10189396 DOI: 10.1016/j.heliyon.2023.e15935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
A new library of 1,2,3-triazole-incorporated 1,3,4-oxadiazole-triazine derivatives (9a-j) was designed, synthesized, and tested in vitro for anticancer activity against PC3 and DU-145 (prostate cancer), A549 (lung cancer), and MCF-7 (breast cancer) cancer cell lines using the MTT assay with etoposide as the control drug. The compounds exhibited remarkable anticancer activity, with IC50 values ranging from 0.16 ± 0.083 μM to 11.8 ± 7.46 μM, whereas the positive control ranged from 1.97 0.45 μM to 3.08 0.135 μM. Compound 9 d with a 4-pyridyl moiety shown exceptional anticancer activity against PC3, A549, MCF-7, and DU-145 cell lines, with IC50 values of 0.17 ± 0.063 μM, 0.19 ± 0.075 μM, 0.51 ± 0.083 μM, and 0.16 ± 0.083 μM, respectively.
Collapse
Affiliation(s)
- Sujana Oggu
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
- G. Narayanamma Institute of Technology & Science, Hyderabad, Telangana, 500 104, India
| | - Parameswari Akshinthala
- Department of Science and Humanities, MLR Institute of Technology, Dundigal, Medchal, Hyderabad, Rudraram, 500043, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Laxmi Kumari Nagarapu
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| | - Srimannarayana Malempati
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
- Corresponding author.
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
- Corresponding author.
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
- Corresponding author.
| |
Collapse
|
5
|
Alam MJ, Alam O, Naim MJ, Nawaz F, Manaithiya A, Imran M, Thabet HK, Alshehri S, Ghoneim MM, Alam P, Shakeel F. Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics. Molecules 2022; 27:8708. [PMID: 36557840 PMCID: PMC9780894 DOI: 10.3390/molecules27248708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Pyrazole, an important pharmacophore and a privileged scaffold of immense significance, is a five-membered heterocyclic moiety with an extensive therapeutic profile, viz., anti-inflammatory, anti-microbial, anti-anxiety, anticancer, analgesic, antipyretic, etc. Due to the expansion of pyrazolecent red pharmacological molecules at a quicker pace, there is an urgent need to put emphasis on recent literature with hitherto available information to recognize the status of this scaffold for pharmaceutical research. The reported potential pyrazole-containing compounds are highlighted in the manuscript for the treatment of cancer and inflammation, and the results are mentioned in % inhibition of inflammation, % growth inhibition, IC50, etc. Pyrazole is an important heterocyclic moiety with a strong pharmacological profile, which may act as an important pharmacophore for the drug discovery process. In the struggle to cultivate suitable anti-inflammatory and anticancer agents, chemists have now focused on pyrazole biomolecules. This review conceals the recent expansion of pyrazole biomolecules as anti-inflammatory and anticancer agents with an aim to provide better correlation among different research going around the world.
Collapse
Affiliation(s)
- Md. Jahangir Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Javed Naim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Farah Nawaz
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hamdy Khamees Thabet
- Department of Chemistry, Faculty of Arts and Sciences, Northern Border University, Rafha 91911, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Abdellatif KR, Abdelall EK, Lamie PF, Labib MB, Abdelhakeem MM, Abdel-Fattah MM, El-Nahaas ES. Novel pyrazole-oxadiazole hybrids possessing methanesulphonyl pharmacophore with good gastric safety profile: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Mahore A, Kamboj P, Kaleem M, Amir M. Therapeutic management of arthritis: A review on structural and target‐based approaches. Arch Pharm (Weinheim) 2022; 355:e2200182. [DOI: 10.1002/ardp.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Anjali Mahore
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| | - Mohammad Kaleem
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| |
Collapse
|
8
|
Zhang TY, Bai XQ, Zhou ZJ, Jin LH, Zhao DH, Sun SM. Dihydrotriazine derivatives display high anticancer activity and inducing apoptosis, ROS, and autophagy. Bioorg Chem 2022; 124:105813. [DOI: 10.1016/j.bioorg.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
|
9
|
Abdellatif KR, Abdelall EK, Elshemy HA, Philoppes JN, Hassanein EH, Kahk NM. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study. Bioorg Chem 2022; 120:105627. [DOI: 10.1016/j.bioorg.2022.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
10
|
Asadi P, Alvani M, Hajhashemi V, Rostami M, Khodarahmi G. Design, synthesis, biological evaluation, and molecular docking study on triazine based derivatives as anti-inflammatory agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Dorababu A. Pharmacological report of recently designed multifunctional coumarin and coumarin-heterocycle derivatives. Arch Pharm (Weinheim) 2021; 355:e2100345. [PMID: 34693550 DOI: 10.1002/ardp.202100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Coumarin is a naturally available molecule and has been identified as a potent pharmacophore due to its pharmacological activity. Because of this, coumarin has been exploited synthetically to prepare a wide range of derivatives. In fact, most coumarin derivatives have been found to be less toxic, which is the most essential property for a drug molecule. Such molecules are being prepared for therapeutic use as broad-spectrum pharmacological agents. Microbial diseases including viral diseases have become very common and are responsible for many deaths worldwide. In particular, microbial drug resistance is a problem that needs to be tackled in an effective manner. Also, for Alzheimer's disease, which affects most elderly persons, no efficient chemotherapy exists. In addition, although diabetes, a metabolic syndrome, can be treated with many drugs, there is no complete cure. Thus, more potent antidiabetic agents are required for the management of diabetes. Likewise, for the treatment of a wide range of ailments caused by microbes, genetic factors, or lifestyle-related factors, an efficient drug regimen is needed. In view of this, coumarin derivatives are designed and evaluated. Here, coumarin derivatives that have been reported recently are compiled, classified and evaluated critically. This study briefly takes the structure-activity relationship into consideration and suggests the next suitable step. With a focus on the most potent molecules, the pharmacological activity of the evaluated molecules is described.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
12
|
Design, synthesis of new anti-inflammatory agents with a pyrazole core: COX-1/COX-2 inhibition assays, anti-inflammatory, ulcerogenic, histopathological, molecular Modeling, and ADME studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Abdellatif KRA, Abdelall EKA, Elshemy HAH, Philoppes JN, Hassanein EHM, Kahk NM. Optimization of pyrazole-based compounds with 1,2,4-triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and molecular modeling studies. Bioorg Chem 2021; 114:105122. [PMID: 34243075 DOI: 10.1016/j.bioorg.2021.105122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The cardiovascular side effects associated with COX-2 selective drugs were the worst for coxibs leading to their withdrawal from the market a few years after their discovery. Therefore, the design of new series of pyrazole (4a,b 5a,b, 7a,b, 9a,b, 10a-h, and 11a-f) substituted with a triazole moiety as selective COX-2 inhibitors with cardioprotective effect was aimed in this paper. The target compounds were prepared and evaluated in-vitro against COX-1 and COX-2 enzymes. Compound 5-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)-4H-1,2,4-triazole-3-thiol (7a) showed the highest selectivity towards COX-2 enzyme (S.I. = 27.56) and was the most active anti-inflammatory agent. Interestingly, its cardiovascular profile showed the cardiac biomarkers (ALP, AST, CK-MB, and LDH), as well as inflammatory cytokines named (TNF-α and IL-6) nearly similar to the control. Besides, a histopathological study of the heart muscle and the stomach was also included. The results confirmed that compound 7a has a more favorable cardio profile than celecoxib. Moreover, docking simulation for the most selective compounds 4b, 7a, 10e, 11c, and 11e inside COX-2 active site was performed to explain their binding mode. Finally, an ADME study was applied and proved the promising activity of the new compounds as a new oral anti-inflammatory agent. In conclusion, the newly developed compound 7a represents a potential selective COX-2 NSAID candidate with minimum cardiovascular risks.
Collapse
Affiliation(s)
- Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 7152, Egypt
| | - Nesma M Kahk
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
14
|
Mączyński M, Regiec A, Sochacka-Ćwikła A, Kochanowska I, Kocięba M, Zaczyńska E, Artym J, Kałas W, Zimecki M. Synthesis, Physicochemical Characteristics and Plausible Mechanism of Action of an Immunosuppressive Isoxazolo[5,4-e]-1,2,4-Triazepine Derivative (RM33). Pharmaceuticals (Basel) 2021; 14:ph14050468. [PMID: 34063515 PMCID: PMC8156388 DOI: 10.3390/ph14050468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Previous studies demonstrated strong anti-inflammatory properties of isoxazolo[5,4-e]-1,2,4-triazepine (RM33) in vivo. The aim of this investigation was to describe synthesis, determine physicochemical characteristics, evaluate biological activities in murine and human in vitro models, as well as to propose mechanism of action of the compound. The compound was devoid of cell toxicity up to 100 μg/mL against a reference A549 cell line. Likewise, RM33 did not induce apoptosis in these cells. The compound stimulated concanavalin A (ConA)-induced splenocyte proliferation but did not change the secondary humoral immune response in vitro to sheep erythrocytes. Nevertheless, a low suppressive effect was registered on lipopolysaccharide (LPS)-induced splenocyte proliferation and a stronger one on tumor necrosis factor alpha (TNFα) production by rat peritoneal cells. The analysis of signaling pathways elicited by RM33 in nonstimulated resident cells and cell lines revealed changes associated with cell activation. Most importantly, we demonstrated that RM33 enhanced production of cyclooxygenase 2 in LPS-stimulated splenocytes. Based on the previous and herein presented results, we conclude that RM33 is an efficient, nontoxic immune suppressor with prevailing anti-inflammatory action. Additionally, structural studies were carried out with the use of appropriate spectral techniques in order to unequivocally confirm the structure of the RM33 molecule. Unambiguous assignment of NMR chemical shifts of carbon atoms of RM33 was conducted thanks to full detailed analysis of 1H, 13C NMR spectra and their two-dimensional (2D) variants. Comparison between theoretically predicted chemical shifts and experimental ones was also carried out. Additionally, N-deuterated isotopologue of RM33 was synthesized to eliminate potentially disturbing frequencies (such as NH, NH2 deformation vibrations) in the carbonyl region of the IR (infrared) spectrum to confirm the presence of the carbonyl group.
Collapse
Affiliation(s)
- Marcin Mączyński
- Department of Organic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (A.R.); (A.S.-Ć.)
- Correspondence: ; Tel.: +48-717840340
| | - Andrzej Regiec
- Department of Organic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (A.R.); (A.S.-Ć.)
| | - Aleksandra Sochacka-Ćwikła
- Department of Organic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (A.R.); (A.S.-Ć.)
| | - Iwona Kochanowska
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland; (I.K.); (M.K.); (E.Z.); (J.A.); (W.K.); (M.Z.)
| | - Maja Kocięba
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland; (I.K.); (M.K.); (E.Z.); (J.A.); (W.K.); (M.Z.)
| | - Ewa Zaczyńska
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland; (I.K.); (M.K.); (E.Z.); (J.A.); (W.K.); (M.Z.)
| | - Jolanta Artym
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland; (I.K.); (M.K.); (E.Z.); (J.A.); (W.K.); (M.Z.)
| | - Wojciech Kałas
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland; (I.K.); (M.K.); (E.Z.); (J.A.); (W.K.); (M.Z.)
| | - Michał Zimecki
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland; (I.K.); (M.K.); (E.Z.); (J.A.); (W.K.); (M.Z.)
| |
Collapse
|
15
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
16
|
Li J, Zuo Z, Chen Y, Liu Y, Yin D. The crystal structure of 2-(naphthalen-2-yloxy)-4-phenyl-6-(prop-2-yn-1-yloxy)-1,3,5-triazine, C22H15N3O2. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H15N3O2, triclinic,
P
1
‾
$P‾{1}$
(no. 2), a = 5.7613(4) Å, b = 12.3545(7) Å, c = 13.3427(8) Å, α = 110.002(2)°, β = 98.837(2)°, γ = 94.263(2)°, V = 873.55(9) Å3, Z = 2, Rgt
(F) = 0.0471, wRref
(F
2) = 0.1376, T = 293 K.
Collapse
Affiliation(s)
- Jin Li
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi’an 710072 , Shaanxi , PR China
- Shaanxi Key Laboratory of Basic and New Herbal Medicament Research , Xi’an , 712046 , PR China
| | - Zhenyu Zuo
- College of Pharmacy, Shaanxi University of Chinese Medicine , Xi’an , Shaanxi , 712046 , PR China
- Shaanxi Key Laboratory of Basic and New Herbal Medicament Research , Xi’an , 712046 , PR China
| | - Yan Chen
- Shaanxi Key Laboratory of Basic and New Herbal Medicament Research , Xi’an , 712046 , PR China
| | - Yali Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi’an 710072 , Shaanxi , PR China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi’an 710072 , Shaanxi , PR China
| |
Collapse
|
17
|
Abdellatif KRA, Abdelall EKA, Elshemy HAH, El-Nahass ES, Abdel-Fattah MM, Abdelgawad YYM. New indomethacin analogs as selective COX-2 inhibitors: Synthesis, COX-1/2 inhibitory activity, anti-inflammatory, ulcerogenicity, histopathological, and docking studies. Arch Pharm (Weinheim) 2020; 354:e2000328. [PMID: 33314237 DOI: 10.1002/ardp.202000328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 11/10/2022]
Abstract
New indomethacin analogs 4a-g, 5, 6, 8a, and 8b were synthesized to overcome the nonselectivity and ulcer liability of indomethacin. All newly synthesized compounds were more potent against cyclooxygenase 2 (COX-2; IC50 value range: 0.09-0.4 μМ) as compared with celecoxib (IC50 = 0.89 μМ). Compounds 4a, 4b, 4d, 5, and 6 showed the highest COX-2 selectivity index (SI range = 4.07-6.33) as compared with indomethacin (SI = 1.14) and celecoxib (SI = 3.52). Additionally, 4a, 4b, 4d, 5, and 7 showed good anti-inflammatory activity with edema inhibition (79.36-88.8%), relative to celecoxib (78.96%) and indomethacin (90.43%), after 5 h. Also, ulcerogenic effects and histopathological examination were assessed for the most potent analogs, 4b, 4d, 5, and 6, to determine their safety. The results can shed light on indomethacin analog 5 as a remarkable anti-inflammatory lead compound with a good safety profile (ulcer index = 10.62) close to the nonulcerogenic drug celecoxib (ulcer index = 10.53) and better than indomethacin (ulcer index = 18.50). Docking studies were performed in the COX-2 active site for the most active compounds, to test their selectivity and to confirm their mechanism of action.
Collapse
Affiliation(s)
- Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutical Science, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia
| | - Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin Y M Abdelgawad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
18
|
Patil V, Noonikara-Poyil A, Joshi SD, Patil SA, Patil SA, Lewis AM, Bugarin A. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Shaker AMM, Abdelall EKA, Abdellatif KRA, Abdel-Rahman HM. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem 2020; 14:23. [PMID: 32259135 PMCID: PMC7106896 DOI: 10.1186/s13065-020-00675-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/16/2020] [Indexed: 01/03/2023] Open
Abstract
Three series of 2-(4-methylsulfonylphenyl) indole derivatives have been designed and synthesized. The synthesized compounds were assessed for their antimicrobial, COX inhibitory and anti-inflammatory activities. Compound 7g was identified to be the most potent antibacterial candidate against strains of MRSA, E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, respectively, with safe therapeutic dose. Compounds 7a-k, 8a-c, and 9a-c showed good anti-inflammatory activity with excessive selectivity towards COX-2 in comparison with reference drugs indomethacin and celecoxib. Compounds 9a-c were found to release moderate amounts of NO to decrease the side effects associated with selective COX-2 inhibitors. A molecular modeling study for compounds 7b, 7h, and 7i into COX-2 active site was correlated with the results of in vitro COX-2 inhibition assays.
Collapse
Affiliation(s)
- Ahmed M M Shaker
- 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62517 Egypt
| | - Eman K A Abdelall
- 2Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Khaled R A Abdellatif
- 2Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt.,Pharmaceutical Sciences Department, IbnSina National College for Medical Studies, Jeddah, 21418 Kingdom of Saudi Arabia
| | - Hamdy M Abdel-Rahman
- 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62517 Egypt.,4Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
20
|
Abdellatif KRA, Abdelall EKA, Lamie PF, Labib MB, El-Nahaas ES, Abdelhakeem MM. New pyrazole derivatives possessing amino/methanesulphonyl pharmacophore with good gastric safety profile: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. Bioorg Chem 2019; 95:103540. [PMID: 31911297 DOI: 10.1016/j.bioorg.2019.103540] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/16/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
New series of pyrazole derivatives Va-c, VIa-c, VIIa-f, and VIII possessing amino/methanesulphonyl moiety as COX-2 pharmacophore were designed and synthesized. All compounds were evaluated for both in vitro COX inhibition and in vivo anti-inflammatory activities and all of them were more potent against COX-2 than COX-1 isozyme and showed good in vivo anti-inflammatory activity. Compounds Va, VIa, VIc and VIIa-c showed good COX-2 SI (246.8-353.8) in comparison with the COX-2 selective drug; celecoxib (326.7). Also, they showed good anti-inflammatory activity with edema inhibition (51-86 and 83-96%) relative to celecoxib (60.6 and 82.8%) after 3 and 5 h respectively. Additionally, these potent derivatives Va, VIa, VIc and VIIa-c were significantly less ulcerogenic (ulcer indexes = 0.7-2.0) than indomethacin (ulcer index = 21.3) and were of acceptable ulcerogenicity when compared with the non-ulcerogenic reference drug celecoxib (ulcer index = 1.3). The obtained ulcerogenic liability data revealed the gastric safety of these derivatives which was confirmed by the histopathological studies. Docking study was performed for all synthesized derivatives to explain their interaction with COX-2 receptor active site.
Collapse
Affiliation(s)
- Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt; Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia.
| | - Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - El-Shaymaa El-Nahaas
- Departement of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa M Abdelhakeem
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
21
|
Abdelall EKA. Synthesis and biological evaluations of novel isoxazoles and furoxan derivative as anti-inflammatory agents. Bioorg Chem 2019; 94:103441. [PMID: 31859011 DOI: 10.1016/j.bioorg.2019.103441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/02/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022]
Abstract
Novel isoxazoles (10, 12a&b, 15a-c) and the furoxan derivative (14) have been prepared as new safe anti-inflammatory agents from the hydroximoyl 9. All compounds were evaluated for COX-1\COX-2 and most of them showed promising selectivity. The furoxan derivative 14 gave 59% inhibitory activity using carrageenan induced paw rat edema model. Ulcer index experiment and histo-pathological study of stomach samples were also included. Also the proposed binding mode of certain newly synthesized compounds with COX-2 isoform was briefly discussed.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
22
|
Lee Y, Chung B, Ko D, Lim HS. A solid-phase method for synthesis of dimeric and trimeric ligands: Identification of potent bivalent ligands of 14-3-3σ. Bioorg Chem 2019; 91:103141. [DOI: 10.1016/j.bioorg.2019.103141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
|
23
|
Design, synthesis of celecoxib-tolmetin drug hybrids as selective and potent COX-2 inhibitors. Bioorg Chem 2019; 90:103029. [DOI: 10.1016/j.bioorg.2019.103029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/01/2019] [Accepted: 06/01/2019] [Indexed: 11/23/2022]
|
24
|
Harras MF, Sabour R, Alkamali OM. Discovery of new non-acidic lonazolac analogues with COX-2 selectivity as potent anti-inflammatory agents. MEDCHEMCOMM 2019; 10:1775-1788. [PMID: 31803395 DOI: 10.1039/c9md00228f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022]
Abstract
Herein, the design and synthesis of some novel 1,3,4-trisubstituted pyrazole derivatives was carried out through the structural modification of lonazolac. All the synthesized compounds were investigated for in vitro COX-1 & COX-2 inhibition and in vivo anti-inflammatory activity by a carrageenan rat paw edema model. Among them, the chalcones 2a and 2b were the most COX-2 selective derivatives (S.I. = 8.22 and 9.31, respectively) and revealed very good in vivo anti-inflammatory potency. Similarly, the compounds 4a, 6b, 7a and 8a exhibited good COX-2 selectivity and in vivo anti-inflammatory activity. The active compounds were selected to further investigate their ulcerogenic activity, and they were found to be less ulcerogenic (ulcer indices = 2.4-8.4) as compared to indomethacin (ulcer index = 17.6) and nearly as ulcerogenic as celecoxib (ulcer index = 8.1). Moreover, histological studies were performed to evaluate the safety of these compounds on the stomach, liver and kidney. Furthermore, a docking study was performed to determine possible binding of the most active compounds 2a and 2b, which showed high docking scores (-9.461 and -7.962 kcal mol-1, respectively) that were comparable to that of celecoxib (-8.692 kcal mol-1).
Collapse
Affiliation(s)
- Marwa F Harras
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Omkulthom Mohamed Alkamali
- Department of Pharmaceutical Sciences , College of Pharmacy , Princess Nourah bint Abdulrahman University , Riyadh , Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Abdelall EK, Lamie PF, Ahmed AK, EL-Nahass ELS. COX-1/COX-2 inhibition assays and histopathological study of the new designed anti-inflammatory agent with a pyrazolopyrimidine core. Bioorg Chem 2019; 86:235-253. [DOI: 10.1016/j.bioorg.2019.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/31/2018] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
|
26
|
E. Ali T, A. Assiri M, A. Ibrahim M, M. El-Amin E, S. Yahia I. 4,6-Diacetylresorcinol in Heterocyclic Synthesis Part II: Synthesis of Some Novel 4,6-Bis(azolyl/azinyl/azepinyl)resorcinols. HETEROCYCLES 2019. [DOI: 10.3987/com-18-14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Isoxazole Derivatives as Regulators of Immune Functions. Molecules 2018; 23:molecules23102724. [PMID: 30360408 PMCID: PMC6222914 DOI: 10.3390/molecules23102724] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023] Open
Abstract
In this review, we present reports on the immunoregulatory properties of isoxazole derivatives classified into several categories, such as immunosuppressive, anti-inflammatory, immunoregulatory, and immunostimulatory compounds. The compounds were tested in various models using resident cells from rodents and humans, cell lines, and experimental animal disease models corresponding to human clinical situations. Beneficial features of the described isoxazole derivatives include low toxicity and good bioactivity at low doses. In a majority of studies, the activities of investigated compounds were comparable or even higher than registered reference drugs. Whenever possible, a plausible mechanism of action of the investigated compounds and their potential therapeutic utility were proposed. Among the described compounds, particular attention was paid to the class of immune stimulators with a potential application in chemotherapy patients.
Collapse
|
28
|
Moreno LM, Quiroga J, Abonia R, Ramírez-Prada J, Insuasty B. Synthesis of New 1,3,5-Triazine-Based 2-Pyrazolines as Potential Anticancer Agents. Molecules 2018; 23:E1956. [PMID: 30082588 PMCID: PMC6222643 DOI: 10.3390/molecules23081956] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
A new series of 1,3,5-triazine-containing 2-pyrazoline derivatives (8⁻11)a⁻g was synthesized by cyclocondensation reactions of [(4,6-bis((2-hydroxyethyl)amino)-1,3,5-triazin-2-yl)amine]chalcones 7a⁻g with hydrazine hydrate and derivatives. Chalcones 7a⁻g were obtained by Claisen-Schmidt condensation between aromatic aldehydes and triazinic derivative 5, which was synthesized in high yield by a microwave-assisted reaction. Seventeen of the synthesized compounds were selected and tested by the US National Cancer Institute (NCI) for their anticancer activity against 58 different human tumor cell lines. Compounds 7g and 10d,e,g showed important GI50 values ranging from 0.569 to 16.6 µM and LC50 values ranging from 5.15 to >100 µM.
Collapse
Affiliation(s)
- Leydi M Moreno
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
- Centre for Bioinformatics and Photonics-CIBioFI, Calle 13 No. 100-00, Edificio 320, No. 1069, A.A. 25360 Cali, Colombia.
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
- Centre for Bioinformatics and Photonics-CIBioFI, Calle 13 No. 100-00, Edificio 320, No. 1069, A.A. 25360 Cali, Colombia.
| | - Jonathan Ramírez-Prada
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia.
- Centre for Bioinformatics and Photonics-CIBioFI, Calle 13 No. 100-00, Edificio 320, No. 1069, A.A. 25360 Cali, Colombia.
| |
Collapse
|
29
|
Synthesis and PI3 Kinase Inhibition Activity of Some Novel Trisubstituted Morpholinopyrimidines. Molecules 2018; 23:molecules23071675. [PMID: 29996482 PMCID: PMC6100461 DOI: 10.3390/molecules23071675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
A number of new substituted morpholinopyrimidines were prepared utilizing sequential nucleophilic aromatic substitution and cross-coupling reactions. One of the disubstituted pyrimidines was converted into two trisubstituted compounds which were screened as PI3K inhibitors relative to the well-characterized PI3K inhibitor ZSTK474, and were found to be 1.5⁻3-times more potent. A leucine linker was attached to the most active inhibitor since it would remain on any peptide-containing prodrug after cleavage by prostate-specific antigen, and it did not prevent inhibition of AKT phosphorylation and hence the inhibition of PI3K by the modified inhibitor.
Collapse
|
30
|
Synthesis and PI 3-Kinase Inhibition Activity of Some Novel 2,4,6-Trisubstituted 1,3,5-Triazines. Molecules 2018; 23:molecules23071628. [PMID: 29973512 PMCID: PMC6100378 DOI: 10.3390/molecules23071628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 01/20/2023] Open
Abstract
A number of new trisubstituted triazine phosphatidylinositol 3-kinase (PI3K) inhibitors were prepared via a three-step procedure utilizing sequential nucleophilic aromatic substitution and cross-coupling reactions. All were screened as PI3K inhibitors relative to the well-characterized PI3K inhibitor, ZSTK474. The most active inhibitors prepared here were 2–4 times more potent than ZSTK474. A leucine linker was attached to the most active inhibitor since it would remain on any peptide-containing prodrug after cleavage by a prostate-specific antigen, and it did not prevent inhibition of protein kinase B (Akt) phosphorylation, and hence, the inhibition of PI3K by the modified inhibitor.
Collapse
|
31
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
32
|
Abdelall EKA, Abdelhamid AO, Azouz AA. Synthesis and biological evaluations of new nitric oxide-anti-inflammatory drug hybrids. Bioorg Med Chem Lett 2017; 27:4358-4369. [PMID: 28844389 DOI: 10.1016/j.bmcl.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022]
Abstract
Three novel series of nitroso derivatives (11-15), isoxazolopyrazoles (17a-c) and isoxazolo[3,4-d]pyridazines (18a-c) were prepared from the hydroxyimoyl chloride 10. In vitro COX1⧹2 inhibition activities were evaluated, both of 17b and 18a proved a promising inhibitory activity with IC50=1.12, 0.78μM in sequent. Carrageenan induced Paw edema, ulcer liability, nitric oxide (NO) release and histopathological study were determined. Most of the prepared compounds showed excellent activities. Reactions of 2-aminopyridine and enaminone with hydroxyimoyl chloride 10 were investigated and proved by 2D NMR. Molecular docking for most active compounds was operated giving a hint for compound-receptor interactions.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Abdou O Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Amany A Azouz
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
33
|
Design and synthesis of some new 2,3′-bipyridine-5-carbonitriles as potential anti-inflammatory/antimicrobial agents. Future Med Chem 2017; 9:1413-1450. [DOI: 10.4155/fmc-2017-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. Results: This work describes synthesis of new series of 2,3′-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. Conclusion: This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.
Collapse
|