1
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Kehoe RA, Lowry A, Light ME, Jones DJ, Byrne PA, McGlacken GP. Regioselective Partial Hydrogenation and Deuteration of Tetracyclic (Hetero)aromatic Systems Using a Simple Heterogeneous Catalyst. Chemistry 2024; 30:e202400102. [PMID: 38214926 DOI: 10.1002/chem.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/13/2024]
Abstract
The introduction of added '3-dimensionality' through late-stage functionalisation of extended (hetero)aromatic systems is a powerful synthetic approach. The abundance of starting materials and cross-coupling methodologies to access the precursors allows for highly diverse products. Subsequent selective partial reduction can alter the core structure in a manner of interest to medicinal chemists. Herein, we describe the precise, partial reduction of multicyclic heteroaromatic systems using a simple heterogeneous catalyst. The approach can be extended to introduce deuterium (again at late-stage). Excellent yields can be obtained using simple reaction conditions.
Collapse
Affiliation(s)
- Roberta A Kehoe
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| | - Amy Lowry
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
| | - Mark E Light
- Department of Chemistry, University of, Southampton, SO17 1BJ, United Kingdom
| | - David J Jones
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph-Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter A Byrne
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Gerard P McGlacken
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| |
Collapse
|
3
|
Yang H, Zhang D, Yuan Z, Qiao H, Xia Z, Cao F, Lu Y, Jiang F. Novel 4-Aryl-4H-chromene derivative displayed excellent in vivo anti-glioblastoma efficacy as the microtubule-targeting agent. Eur J Med Chem 2024; 267:116205. [PMID: 38350361 DOI: 10.1016/j.ejmech.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
In this study, a series of novel 4-Aryl-4H-chromene derivatives (D1-D31) were designed and synthesized by integrating quinoline heterocycle to crolibulin template molecule based on the strategy of molecular hybridization. One of these compounds D19 displayed positive antiproliferative activity against U87 cancer cell line (IC50 = 0.90 ± 0.03 μM). Compound D19 was verified as the microtubule-targeting agent through downregulating tubulin related genes of U87 cells, destroying the cytoskeleton of tubulins and interacting with the colchicine-binding site to inhibit the polymerization of tubulins by transcriptome analysis, immune-fluorescence staining, microtubule dynamics and EBI competition assays as well as molecular docking simulations. Moreover, compound D19 induced G2/M phase arrest, resulted in cell apoptosis and inhibited the migration of U87 cells by flow cytometry analysis and wound healing assays. Significantly, compound D19 dose-dependently inhibited the tumor growth of orthotopic glioma xenografts model (GL261-Luc) and effectively prolonged the survival time of mice, which were extremely better than those of positive drug temozolomide (TMZ). Compound D19 exhibited potent in vivo antivascular activity as well as no observable toxicity. Furthermore, the results of in silico simulation studies and P-gp transwell assays verified the positive correlation between compound D19's Blood-Brain Barrier (BBB) permeability and its in vivo anti-GBM activity. Overall, compound D19 can be used as a promising anti-GBM lead compound for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Haoyi Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongyu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziyang Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Nie J, Wu H, Luan Y, Wu J. The Development of HDAC and Tubulin Dual-Targeting Inhibitors for Cancer Therapy. Mini Rev Med Chem 2024; 24:480-490. [PMID: 37461341 DOI: 10.2174/1389557523666230717110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2024]
Abstract
Histone deacetylases (HDACs) are a class of enzymes that are responsible for the removal of acetyl groups from the ε-N-acetyl lysine of histones, allowing histones to wrap DNA more tightly. HDACs play an essential role in many biological processes, such as gene regulation, transcription, cell proliferation, angiogenesis, migration, differentiation and metastasis, which make it an excellent target for anticancer drug discovery. The search for histone deacetylase inhibitors (HDACis) has been intensified, with numerous HDACis being discovered, and five of them have reached the market. However, currently available HDAC always suffers from several shortcomings, such as limited efficacy, drug resistance, and toxicity. Accordingly, dual-targeting HDACis have attracted much attention from academia to industry, and great advances have been achieved in this area. In this review, we summarize the progress on inhibitors with the capacity to concurrently inhibit tubulin polymerization and HDAC activity and their application in cancer treatment.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Huina Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Ma L, Li M, Zhang Y, Liu K. Recent advances of antitumor leading compound Erianin: Mechanisms of action and structural modification. Eur J Med Chem 2023; 261:115844. [PMID: 37804769 DOI: 10.1016/j.ejmech.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Erianin, a bioactive compound extracted from Dendrobium, a traditional Chinese medicine, exhibits remarkable anti-cancer properties through diverse molecular mechanisms and has attracted the attention of medicinal chemists. However, the low solubility in water, rapid metabolism and elimination from the body lead to poor bioavailability of Erianin, and greatly hinder its clinical application. The development of new Erianin derivatives is continuously proceed to improve its anticancer effects. In recent years, although important progress in the development of Erianin and the publication of some reviews in this aspect, the mechanism against various cancers, pharmacokinetic study, structural modification as well as structure-activity relationships have not been thoroughly considered. This review is aimed at providing complete picture regarding the above aspects by reviewing studies from 2000 to 2023.06. This review also supplies some important viewpoints on the design and future directions for the development of Erianin derivatives as possible clinically effective anticancer agents.
Collapse
Affiliation(s)
- Lu Ma
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Ilakiyalakshmi M, Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Wang C, Chang J, Yang S, Shi L, Zhang Y, Liu W, Meng J, Zeng J, Zhang R, Xing D. Advances in antitumor research of CA-4 analogs carrying quinoline scaffold. Front Chem 2022; 10:1040333. [PMID: 36385996 PMCID: PMC9650302 DOI: 10.3389/fchem.2022.1040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2024] Open
Abstract
Combretastatin A-4 (CA-4) is a potent inhibitor of tubulin polymerization and a colchicine binding site inhibitor (CBSI). The structure-activity relationship study of CA-4 showed that the cis double bond configuration and the 3,4,5-trimethoxy group on the A ring were important factors to maintain the activity of CA-4. Therefore, starting from this condition, chemists modified the double bond and also substituted 3,4,5-trimethoxyphenyl with various heterocycles, resulting in a new generation of CA-4 analogs such as chalcone, Flavonoid derivatives, indole, imidazole, etc. Quinoline derivatives have strong biological activity and have been sought after by major researchers for their antitumor activity in recent years. This article reviews the research progress of novel CA-4 containing quinoline analogs in anti-tumor from 1992 to 2022 and expounds on the pharmacological mechanisms of these effective compounds, including but not limited to apoptosis, cell cycle, tubulin polymerization inhibition, immune Fluorescence experiments, etc., which lay the foundation for the subsequent development of CA-4 containing quinoline analogs for clinical use.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Hadizadeh F, Ghodsi R, Mirzaei S, Sahebkar A. In Silico Exploration of Novel Tubulin Inhibitors: A Combination of Docking and Molecular Dynamics Simulations, Pharmacophore Modeling, and Virtual Screening. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4004068. [PMID: 35075369 PMCID: PMC8783753 DOI: 10.1155/2022/4004068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Microtubules play a critical role in mitosis and cell division and are regarded as an excellent target for anticancer therapy. Although microtubule-targeting agents have been widely used in the clinical treatment of different human cancers, their clinical application in cancer therapy is limited by both intrinsic and acquired drug resistance and adverse toxicities. In a previous work, we synthesized compound 9IV-c, ((E)-2-(3,4-dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) that showed potent activity against multiple human tumor cell lines, by targeting spindle formation and/or the microtubule network. Accordingly, in this study, to identify potent tubulin inhibitors, at first, molecular docking and molecular dynamics studies of compound 9IV-c were performed into the colchicine binding site of tubulin; then, a pharmacophore model of the 9IV-c-tubulin complex was generated. The pharmacophore model was then validated by Güner-Henry (GH) scoring methods and receiver operating characteristic (ROC) analysis. The IBScreen database was searched by using this pharmacophore model as a screening query. Finally, five retrieved compounds were selected for molecular docking studies. These efforts identified two compounds (b and c) as potent tubulin inhibitors. Investigation of pharmacokinetic properties of these compounds (b and c) and compound 9IV-c displayed that ligand b has better drug characteristics compared to the other two ligands.
Collapse
Affiliation(s)
- Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salimeh Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
10
|
Ibrahim TS, Hawwas MM, Malebari AM, Taher ES, Omar AM, Neamatallah T, Abdel-Samii ZK, Safo MK, Elshaier YAMM. Discovery of novel quinoline-based analogues of combretastatin A-4 as tubulin polymerisation inhibitors with apoptosis inducing activity and potent anticancer effect. J Enzyme Inhib Med Chem 2021; 36:802-818. [PMID: 33730937 PMCID: PMC7993375 DOI: 10.1080/14756366.2021.1899168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.HighlightsA novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.Compound 12c showed significant antiproliferative activities against different cancer cell lines.Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed M. Hawwas
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thikryat Neamatallah
- Department of Pharmacology and toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zakaria K. Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Martin K. Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
11
|
Wang K, Zhong H, Li N, Yu N, Wang Y, Chen L, Sun J. Discovery of Novel Anti-Breast-Cancer Inhibitors by Synergistically Antagonizing Microtubule Polymerization and Aryl Hydrocarbon Receptor Expression. J Med Chem 2021; 64:12964-12977. [PMID: 34428056 DOI: 10.1021/acs.jmedchem.1c01099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of unreported dual-receptor inhibitors targeting both the tubulin colchicine site and AhR were designed and synthesized, and their anti-breast-cancer activities were evaluated. Compound 12 showed the strongest activity with an IC50 of 0.9 nM in MCF-7 cell lines. Besides, 12 could significantly inhibit cancer growth in MCF-7 xenograft tumor models with no obvious toxic effects and was more effective than the positive control (combretastatin A-4). With the in-depth study, it was found that 12 could induce apoptosis in breast cancer cells by making arrest in G2/M phase, depolarizing mitochondria and inducing intracellular reactive oxygen generation. This evident anticancer effect and the ability to inhibit cell migration were attributed to the synergistic antagonism of 12 on tubulin and AhR. In general, 12 was worthy of further research as an effective and safe anti-breast-cancer drug.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hui Zhong
- Department of Pharmacology of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Nairong Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yujin Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
12
|
Kolandaivel P, Rajendran S, Karnam Jayarampillai RP. Synthesis of novel benzo naphtho naphthyridines from 2,4‐dicloroquinolines. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Prabha Kolandaivel
- Department of Chemistry K. S. Rangasamy College of Technology Tiruchengode India
- Department of Chemistry Bharathiar University Coimbatore India
| | - Satheeshkumar Rajendran
- Department of Chemistry Bharathiar University Coimbatore India
- Departamento de Química Orgánica, Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago de Chile Chile
| | | |
Collapse
|
13
|
Tiwari V, Joshi P, Yadav K, Sharma A, Chowdhury S, Manhas A, Kumar N, Tripathi R, Haq W. Synthesis and Antimalarial Activity of 4-Methylaminoquinoline Compounds against Drug-Resistant Parasite. ACS OMEGA 2021; 6:12984-12994. [PMID: 34056449 PMCID: PMC8158791 DOI: 10.1021/acsomega.0c06053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 05/26/2023]
Abstract
A series of novel 4-aminoquinoline analogues bearing a methyl group at 4-aminoquinoline moiety were synthesized via a new and robust synthetic route comprising in situ tert-butoxycarbonyl (Boc) deprotection-methylation cascade resulting in the corresponding N-methylated secondary amine using Red-Al and an efficient microwave-assisted strategy for the fusion of N-methylated secondary amine with 4-chloroquinoline nucleus to access the series of novel 4-N-methylaminoquinoline analogues. The new series of compounds were evaluated for their antimalarial activity in in vitro and in vivo models. Among 21 tested compounds, 9a-i have shown a half-maximal inhibitory concentration (IC50) value less than 0.5 μM (i.e., <500 nM) against both chloroquine-sensitive strain 3D7 and chloroquine-resistant strain K1 of Plasmodium falciparum with acceptable cytotoxicity. Based on the in vitro antimalarial activity, selected compounds were screened for their in vivo antimalarial activity against Plasmodium yoelii nigeriensis (a multidrug-resistant) parasite in Swiss mice. Most of the compounds have shown significant inhibition on day 4 post infection at the oral dose of 100 mg/kg. Compound 9a has shown 100% parasite inhibition on day 4, and out of five treated mice, two were cured till the end of the experiment. The present study suggests that 4-methylamino substitution is well tolerated for the antiplasmodial activity with reduced toxicity and therefore will be highly useful for the discovery of a new antimalarial agent against drug-resistant malaria.
Collapse
Affiliation(s)
- Vinay
Shankar Tiwari
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Prince Joshi
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanchan Yadav
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anamika Sharma
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sushobhan Chowdhury
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Ashan Manhas
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Niti Kumar
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renu Tripathi
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Wahajul Haq
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Zhu T, Wang SH, Li D, Wang SY, Liu X, Song J, Wang YT, Zhang SY. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37:127698. [PMID: 33468346 DOI: 10.1016/j.bmcl.2020.127698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Tubulin, an important target in tumor therapy, is one of the hotspots in the field of antineoplastic drugs in recent years, and it is of great significance to design and screen new inhibitors for this target. Natural products and chemical synthetic drugs are the main sources of tubulin inhibitors. However, due to the variety of compound structure types, it has always been difficult for researchers to screen out polymerization inhibitors with simple operation, high efficiency and low cost. A large number of articles have reported the screening methods of tubulin inhibitors and their biological activity. In this article, the biological activity detection methods of tubulin polymerization inhibitors are reviewed. Thus, it provides a theoretical basis for the further study of tubulin polymerization inhibitors and the selection of methods for tubulin inhibitors.
Collapse
Affiliation(s)
- Ting Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg Chem 2021; 109:104639. [PMID: 33618829 DOI: 10.1016/j.bioorg.2021.104639] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Quinoline is a versatile pharmacophore, a privileged scaffold and an outstanding fused heterocyclic compound with a wide range of pharmacological prospective such as anticancer, anti-inflammatory, antibacterial, antiviral drug and superlative moiety in drug discovery. The quinoline hybrids have already been shown excellent results with new targets with a different mode of actions as an inhibitor of cell proliferation by cell cycle arrest, apoptosis, angiogenesis, disruption of cell migration and modulation. This review emphasized the mode of action, structure activity relationship and molecular docking to reveal the various active pharmacophores of quinoline hybrids accountable for novel anticancer, anti-inflammatory, antibacterial and miscellaneous activities. Therefore, several quinoline candidates are under clinical trials for the treatment of certain diseases, for example ferroquine (antimalarial), dactolisib (antitumor) and pelitinib (EGFR TK inhibitors) etc. Plenty of research has been summarized the recent advances of quinoline derivatives and explore the various therapeutic prospects of this moiety. This review would help the researchers to strategically design diverse novel quinoline derivatives for the development of clinically viable drug candidates for the treatment of incurable diseases.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India.
| |
Collapse
|
16
|
El-Damasy AK, Haque MM, Park JW, Shin SC, Lee JS, EunKyeong Kim E, Keum G. 2-Anilinoquinoline based arylamides as broad spectrum anticancer agents with B-RAF V600E/C-RAF kinase inhibitory effects: Design, synthesis, in vitro cell-based and oncogenic kinase assessments. Eur J Med Chem 2020; 208:112756. [PMID: 32942186 DOI: 10.1016/j.ejmech.2020.112756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/15/2022]
Abstract
Prompted by the urgent demand for identification of new anticancer agents with improved potency and efficacy, a new series of arylamides incorporating the privileged 2-anilinoquinoline scaffold has been designed, synthesized, and biologically assessed. Aiming at extensive evaluation of the target compounds' potency and spectrum, a panel of 60 clinically important cancer cell lines representing nine cancer types has been used. Compounds 9a and 9c, with piperazine substituted phenyl ring, emerged as the most active members surpassing the anticancer potencies of the FDA-approved drug imatinib. They elicited sub-micromolar or one-digit micromolar GI50 values over the majority of tested cancer cells including multidrug resistant (MDR) cells like colon HCT-15, renal TK-10 and UO-31, and ovarian NCI/ADR-RES. In vitro mechanistic study showed that compounds 9a and 9c could trigger morphological changes, apoptosis and cell cycle arrest in HCT-116 colon cancer cells. Besides, compound 9c altered microtubule polymerization pattern in a similar fashion to paclitaxel. Kinase screening of 9c disclosed its inhibitory activity over B-RAFV600E and C-RAF kinases with IC50 values of 0.888 μM and 0.229 μM, respectively. Taken together, the current report presents compounds 9a and 9c as promising broad-spectrum potent anticancer candidates, which could be considered for further development of new anticancer drugs.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Md Mamunul Haque
- Molecular Recognition Research Center, KIST, Seoul, 02792, Republic of Korea
| | - Jung Woo Park
- Center for Supercomputing Applications, Div. of National Supercomputing R&D, Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, KIST, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, KIST, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, KIST, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
17
|
Lu CF, Wang SH, Pang XJ, Zhu T, Li HL, Li QR, Li QY, Gu YF, Mu ZY, Jin MJ, Li YR, Hu YY, Zhang YB, Song J, Zhang SY. Synthesis and Biological Evaluation of Amino Chalcone Derivatives as Antiproliferative Agents. Molecules 2020; 25:molecules25235530. [PMID: 33255804 PMCID: PMC7728372 DOI: 10.3390/molecules25235530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chalcone is a common scaffold found in many biologically active compounds. The chalcone scaffold was also frequently utilized to design novel anticancer agents with potent biological efficacy. Aiming to continue the research of effective chalcone derivatives to treat cancers with potent anticancer activity, fourteen amino chalcone derivatives were designed and synthesized. The antiproliferative activity of amino chalcone derivatives was studied in vitro and 5-Fu as a control group. Some of the compounds showed moderate to good activity against three human cancer cells (MGC-803, HCT-116 and MCF-7 cells) and compound 13e displayed the best antiproliferative activity against MGC-803 cells, HCT-116 cells and MCF-7 cells with IC50 values of 1.52 μM (MGC-803), 1.83 μM (HCT-116) and 2.54 μM (MCF-7), respectively which was more potent than the positive control (5-Fu). Further mechanism studies were explored. The results of cell colony formatting assay suggested compound 10e inhibited the colony formation of MGC-803 cells. DAPI fluorescent staining and flow cytometry assay showed compound 13e induced MGC-803 cells apoptosis. Western blotting experiment indicated compound 13e induced cell apoptosis via the extrinsic/intrinsic apoptosis pathway in MGC-803 cells. Therefore, compound 13e might be a valuable lead compound as antiproliferative agents and amino chalcone derivatives worth further effort to improve amino chalcone derivatives' potency.
Collapse
Affiliation(s)
- Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Xiao-Jing Pang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.-B.Z.)
| | - Ting Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.-B.Z.)
| | - Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Qing-Rong Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Yu-Fan Gu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
| | - Yang-Yang Hu
- Faculty of Science, The University of Melbourne, Melbourne VIC 3010, Australia;
| | - Yan-Bing Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.-B.Z.)
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.-B.Z.)
- Correspondence: (J.S.); (S.-Y.Z.)
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.-F.L.); (S.-H.W.); (X.-J.P.); (H.-L.L.); (Q.-R.L.); (Q.-Y.L.); (Y.-F.G.); (Z.-Y.M.); (M.-J.J.); (Y.-R.L.)
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.-B.Z.)
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (J.S.); (S.-Y.Z.)
| |
Collapse
|
18
|
Ibrahim TS, Hawwas MM, Malebari AM, Taher ES, Omar AM, O’Boyle NM, McLoughlin E, Abdel-Samii ZK, Elshaier YAMM. Potent Quinoline-Containing Combretastatin A-4 Analogues: Design, Synthesis, Antiproliferative, and Anti-Tubulin Activity. Pharmaceuticals (Basel) 2020; 13:E393. [PMID: 33203182 PMCID: PMC7698209 DOI: 10.3390/ph13110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
A novel series of quinoline derivatives of combretastatin A-4 incorporating rigid hydrazone and a cyclic oxadiazole linkers were synthesized and have demonstrated potent tubulin polymerization inhibitory properties. Many of these novel derivatives have shown significant antiproliferative activities in the submicromolar range. The most potent compound, 19h, demonstrated superior IC50 values ranging from 0.02 to 0.04 µM against four cancer cell lines while maintaining low cytotoxicity in MCF-10A non-cancer cells, thereby suggesting 19h's selectivity towards proliferating cancer cells. In addition to tubulin polymerization inhibition, 19h caused cell cycle arrest in MCF-7 cells at the G2/M phase and induced apoptosis. Collectively, these findings indicate that 19h holds potential for further investigation as a potent chemotherapeutic agent targeting tubulin.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.M.O.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed M. Hawwas
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (M.M.H.); (E.S.T.)
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.M.O.)
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (M.M.H.); (E.S.T.)
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.M.O.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland; (N.M.O.); (E.M.)
| | - Eavan McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland; (N.M.O.); (E.M.)
| | - Zakaria K. Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt;
| |
Collapse
|
19
|
Wang G, Liu W, Tang J, Ma X, Gong Z, Huang Y, Li Y, Peng Z. Design, synthesis, and anticancer evaluation of benzophenone derivatives bearing naphthalene moiety as novel tubulin polymerization inhibitors. Bioorg Chem 2020; 104:104265. [DOI: 10.1016/j.bioorg.2020.104265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
|
20
|
Khelifi I, Pecnard S, Bernadat G, Bignon J, Levaique H, Dubois J, Provot O, Alami M. Synthesis and Anticancer Properties of Oxazepines Related to Azaisoerianin and IsoCoQuines. ChemMedChem 2020; 15:1571-1578. [PMID: 32485077 DOI: 10.1002/cmdc.202000197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 01/07/2023]
Abstract
In this article, we report the synthesis and biological properties of a series of novel oxazepines related to isoCA-4 having significant antitumor properties. Among them, three oxazepin-9-ol derivatives display a nanomolar or a sub-nanomolar cytotoxicity level against five human cancer cell lines (HCT116, U87, A549, MCF7, and K562). It was demonstrated that the lead compound in this series inhibits tubulin assembly with an IC50 value of 1 μM and totally arrests the cellular cycle in the G2/M phase at the low concentration of 5 nM in HCT116 and K562 cells. Molecular modeling studies perfectly corroborates these promising results.
Collapse
Affiliation(s)
- Ilhem Khelifi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Shannon Pecnard
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Jérome Bignon
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Hélène Levaique
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
21
|
Hamze A, Alami M, Provot O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur J Med Chem 2020; 190:112110. [PMID: 32061961 DOI: 10.1016/j.ejmech.2020.112110] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Combretastatin A-4 (CA-4) is a natural anti-cancer agent isolated in 1989 from the African willow tree, Combretum caffrum. Due to its chemical simplicity, this (Z)-stilbene has been the subject of many structural modifications mainly to improve its chemical and metabolic stability. Beside a large number of synthetic analogues, isoCombretastatin A-4 (isoCA-4), has proved to be a solution of choice since this non-natural isomer of CA-4 is stable, easier to synthesize and has equivalent antitumor properties as CA-4. In this review, we will present the structure-activity relationships (SARs) around isoCA-4 since its discovery in 2007. In a first part, we will describe some alternatives to replace the phenol B-ring of isoCA-4, then we will focus on the variations made on the 1,1-ethylene double bond and then, we will evocate very recent exiting results concerning the possible replacements of the 3,4,5-trimethoxyphenyl A-ring of isoCA-4 by suitable heterocycles.
Collapse
Affiliation(s)
- Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
22
|
Zhang Q, Hu X, Wan G, Wang J, Li L, Wu X, Liu Z, Yu L. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur J Med Chem 2019; 184:111728. [PMID: 31610375 DOI: 10.1016/j.ejmech.2019.111728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
A new series of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives were designed, synthesized and demonstrated to act as tubulin polymerization inhibitors. These new derivatives showed significant antitumor activities, among which SKLB0533 demonstrated to be the most potent compound, with IC50 values ranging from 44.5 to 135.5 nM against seven colorectal carcinoma (CRC) cell lines. Remarkably, SKLB0533 exhibited no activity against other potential targets, such as 420 kinases and EZH2. Besides, SKLB0533 inhibited tubulin polymerization, arrested the cell cycle at the G2/M phase and induced apoptosis in CRC cells. Furthermore, SKLB0533 suppressed tumour growth in the HCT116 xenograft model without inducing notable major organ-related toxicity, suggesting that SKLB0533 could be used as a promising lead compound for the development of new antitumor agents.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xiuli Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| |
Collapse
|
23
|
Kwiecień H, Perużyńska M, Stachowicz K, Piotrowska K, Bujak J, Kopytko P, Droździk M. Synthesis and biological evaluation of 3-functionalized 2-phenyl- and 2-alkylbenzo[b]furans as antiproliferative agents against human melanoma cell line. Bioorg Chem 2019; 88:102930. [DOI: 10.1016/j.bioorg.2019.102930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
|
24
|
Liao B, Peng L, Zhou J, Mo H, Zhao J, Yang Z, Guo X, Zhang P, Zhang X, Zhu Z. Synthesis and Activity Evaluation of Nasopharyngeal Carcinoma Inhibitors Based on 6-(Pyrimidin-4-yl)-1H-indazole. Chem Biodivers 2019; 16:e1800598. [PMID: 30788913 DOI: 10.1002/cbdv.201800598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 11/07/2022]
Abstract
Human nasopharyngeal carcinoma is a common head and neck malignancy with high incidence in Southeast Asia and Southern China. It is necessary to develop safe, effective and inexpensive anticancer agents to improve the therapeutics of patients with nasopharyngeal carcinoma. A series of small molecular compounds based on 6-(pyrimidin-4-yl)-1H-indazole were synthesized and evaluated for antiproliferative activities against human nasopharyngeal carcinoma cell lines SUNE1. Compounds 6b, 6c, 6e and 6l showed potent antiproliferative activities similar to positive control drug cisplatin in vitro with lower nephrotoxicity than it. N-[4-(1H-Indazol-6-yl)pyrimidin-2-yl]benzene-1,3-diamine (6l) was selected for further study. It was found that 6l induced mitochondria-mediated apoptosis and G2 /M phase arrest in SUNE1 cells. Furthermore, compound 6l at 10 mg/kg can suppress the growth of an implanted SUNE1 xenograft with a TGI% (tumor growth inhibition) value of 50 % and did not cause serious side effects in BALB/c nude mice. This study suggests that 6-(pyrimidin-4-yl)-1H-indazole derivatives are a series of small molecule compounds with anti-nasopharyngeal carcinoma activities.
Collapse
Affiliation(s)
- Bohong Liao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Lingrong Peng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Jin Zhou
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Huiting Mo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Jialan Zhao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Zike Yang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Xiaowen Guo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Peiquan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xin Zhang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| | - Zhibo Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu District, Guangzhou, 510315, P. R. China
| |
Collapse
|
25
|
Khelifi I, Naret T, Hamze A, Bignon J, Levaique H, Garcia Alvarez MC, Dubois J, Provot O, Alami M. N,N-bis-heteroaryl methylamines: Potent anti-mitotic and highly cytotoxic agents. Eur J Med Chem 2019; 168:176-188. [DOI: 10.1016/j.ejmech.2019.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|
26
|
Khelifi I, Zhao G, Ghermani NE, Provot O, Alami M. Unexpected Oxidative Ring Opening of Electron-Rich 3-Aminobenzofurans into α-Ketoimines Derivatives. J Org Chem 2019; 84:1725-1733. [PMID: 30352149 DOI: 10.1021/acs.joc.8b01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unexpected ring opening of 3-aminobenzofurans promoted by NaO tBu in hot toluene, leading to a variety of α-ketoimines, is described. In the presence of 3-iodobenzofurans, NaO tBu mediates the 3-aminobenzofurans ring opening via a possible radical pathway without the help of any external radical sources.
Collapse
Affiliation(s)
- Ilhem Khelifi
- Univ. Paris-Sud, BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer , F-92296 Châtenay-Malabry , France
| | - Guangkuan Zhao
- Univ. Paris-Sud, BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer , F-92296 Châtenay-Malabry , France
| | - Nour-Eddine Ghermani
- Univ. Paris-Sud, Institut Galien Paris-Sud, CNRS, University Paris-Saclay , F-92296 Châtenay-Malabry , France
| | - Olivier Provot
- Univ. Paris-Sud, BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer , F-92296 Châtenay-Malabry , France
| | - Mouad Alami
- Univ. Paris-Sud, BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue Contre Le Cancer , F-92296 Châtenay-Malabry , France
| |
Collapse
|
27
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|