1
|
Masood N, Younes KM, Alshammari RS, Abunayyan NM, Alanazi TYA, Magam S. Phytochemical Screening and Biological Activities of Convolvulus oxyphyllus Extracts. Chem Biodivers 2025; 22:e202402302. [PMID: 39665866 DOI: 10.1002/cbdv.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
As a member of the Convolvulaceae family, Convolvulus oxyphyllus is used in many medicinal contexts. The purpose of this study was to investigate the biological potency of plant methanolic extracts and determine the main bioactive components that give them their potencies. Using in vitro biological tests, the effects of plant extracts on cytotoxicity, antioxidant, and antibacterial activity were investigated. The results showed that C. oxyphyllus methanolic extracts exhibited potent antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Proteus vulgaris, as well as good antioxidant activity comparable to ascorbic acid. Methanolic leaf extract exhibited maximum cytotoxic activity against HepG2 cancer cells, producing cell cycle arrest at the S phase. In addition, gas chromatography-mass spectrometry (GC-MS) was used to further analyze chemical makeup of leaf extract. 3-Hydroxyphenyl acetic acid, quercetin, myricetin, and kaempferol were among the bioactive substances discovered. In conclusion, C. oxyphyllus leaves extract showed encouraging antioxidant, antibacterial, and cytotoxic properties. More research is needed to determine C. oxyphyllus's therapeutic potential for treating liver cancer.
Collapse
Affiliation(s)
- Najat Masood
- Chemistry Department, College of Science, University of Hail, Hail, Saudi Arabia
| | - Kareem M Younes
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Tahani Y A Alanazi
- Chemistry Department, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sami Magam
- Basic science Department, Preparatory Year, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Rezaeianzadeh O, Asghari S, Tajbakhsh M, Khalilpour A, Shityakov S. Synthesis and application of diazenyl sulfonamide-based schiff bases as potential BRCA2 active inhibitors against MCF-7 breast cancer cell line. Sci Rep 2025; 15:6661. [PMID: 39994448 PMCID: PMC11850876 DOI: 10.1038/s41598-025-91113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, a library of novel sulfonamide-based Schiff bases 3a-j was synthesized in high yield (75 to 89%). The FTIR, 1H NMR, and 13C NMR spectroscopic techniques and mass analysis were used to characterize the synthesized compounds. Their anticancer activity was assessed in vitro on the breast cancer (MCF-7) and healthy human breast epithelial (MCF-10 A) cell lines over 48 and 72 h using the MTT assay. Most of the synthesized compounds demonstrated promising activity, with compound 3i showing particularly high efficacy at 48 and 72 h (IC50 = 4.85 ± 0.006 and 4.25 ± 0.009 µM) against the MCF-7 breast cancer cell line. Furthermore, molecular docking studies were performed for compounds 3a-j with the PDB: (3UV7) protein of the breast cancer susceptibility gene 2 (BRCA2). The obtained results revealed that compound 3i has the strongest binding affinity energy (-7.99 kcal/mol), consistent with the obtained experimental data. Additionally, molecular dynamics (MD) simulation assays confirm the formation of a stable 3i-BRCA2 complex with strong binding affinity through the formation of hydrogen bonds. Antioxidant activities were determined by in vitro assay DPPH cation radical activity method. Interestingly, the compound 3j (IC50 = 12.36 ± 0.55 µM) had comparable activity with ascorbic acid (IC50 = 13.58 ± 0.38 µM) in the antioxidant assay. The results of this research could potentially contribute to the development of new therapeutic agents useful in fighting caused by breast cancer.
Collapse
Affiliation(s)
- Olia Rezaeianzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416- 95447, Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416- 95447, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416- 95447, Iran
| | - Asieh Khalilpour
- Department of Environmental Health Engineering, Babol University of Medicinal Sciences, Babol, Iran
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| |
Collapse
|
3
|
Abdelaal HI, Mohamed AR, Abo-Ashour MF, Giovannuzzi S, Fahim SH, Abdel-Aziz HA, Supuran CT, Abou-Seri SM. Mitigating the resistance of MCF-7 cancer cells to Doxorubicin under hypoxic conditions with novel coumarin based carbonic anhydrase IX and XII inhibitors. Bioorg Chem 2024; 152:107759. [PMID: 39213797 DOI: 10.1016/j.bioorg.2024.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In the present study, the design and synthesis of novel coumarin derivatives 8a-h, 11a-d and 16a-c as potential selective inhibitors for the tumor associated human carbonic anhydrase isoforms (hCA IX and XII) was reported. All the newly synthesized derivatives showed potent to mild activity against the targeted CA IX (KI = 0.08-9.57 µM), with selectivity indices over CA I (SI = 2.0-21.9) and over CA II (SI = 1.1-15.7). They showed similar activities against CA XII (KI = 0.06-9.48 µM) with selectivity indices over CA I (SI = 1.4-21.2) and CA II (SI = 0.9-15.5). Compound 16b featuring sulfonamide function possessed promising inhibitory activities against the targeted isoforms CA IX and XII with KI values of 0.08 and 0.06 µM, respectively. Interestingly, it was found that using compound 16b at a nontoxic concentration as an adjuvant with Doxorubicin against MCF-7 cells enhanced the cytotoxicity under hypoxia by almost 3.5 folds; IC50 decreased from 25.74 to 7.43 µM. Therefore, compound 16b restored the cytotoxicity of Doxorubicin against MCF-7 cells under hypoxia, almost as normoxia. Furthermore, flow cytometry analysis of a combination treatment of compound 16b and Doxorubicin to the MCF7 cell line revealed an increase in cell cycle arrest at the G2/M phase and a more efficient apoptotic effect than Doxorubicin alone. Furthermore, compound 16b showed no cytotoxicity against normal breast MCF-10A cell line (IC50 = 296.25 µM).
Collapse
Affiliation(s)
- Hend I Abdelaal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Abdalla R Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pahros University in Alexandria, Canal El Mahmoudia Street, Alexandria 21648, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
4
|
Abdel-Aziz AAM, El-Azab AS, Brogi S, Ayyad RR, Alkahtani HM, Abuelizz HA, Al-Suwaidan IA, Al-Obaid AM. Synthesis, enzyme inhibition assay, and molecular modeling study of novel pyrazolines linked to 4-methylsulfonylphenyl scaffold: antitumor activity and cell cycle analysis. RSC Adv 2024; 14:22132-22146. [PMID: 39005246 PMCID: PMC11240878 DOI: 10.1039/d4ra03902e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Antitumor activity using 59 cancer cell lines and enzyme inhibitory activity of a newly synthesized pyrazoline-linked 4-methylsulfonylphenyl scaffold (compounds 18a-q) were measured and compared with those of standard drugs. Pyrazolines 18b, 18c, 18f, 18g, 18h, and 18n possessed significant antitumor activity, with a positive cytotoxic effect (PCE) of 22/59, 21/59, 21/59, 48/59, 51/59, and 20/59, respectively. The cancer cell lines HL60, MCF-7, and MDA-MB-231 were used to measure the IC50 values of derivatives 18c, 18g, and 18hvia the MTT assay method, and the results were compared with those of reference drugs. Derivatives 18g and 18h showed potent and broad-spectrum antitumor activities against HL60 (IC50 of 10.43, 8.99 μM, respectively), MCF-7 (IC50 of 11.7 and 12.4 μM, respectively), and MDA-MB-231 (IC50 of 4.07 and 7.18 μM, respectively). Compound 18c exhibited strong antitumor activity against HL60 and MDA-MB-231 cell lines with IC50 values of 8.43 and 12.54 μM, respectively, and moderate antitumor activity against MCF-7 cell lines with an IC50 value of 16.20 μM. Compounds 18c, 18g, and 18h remarkably inhibited VEGFR2 kinase (IC50 = 0.218, 0.168, and 0.135 μM, respectively) compared with the reference drug sorafenib (IC50 = 0.041 μM). Compounds 18g and 18h effectively inhibited HER2 kinase (IC50 = 0.496 and 0.253 μM, respectively) compared with erlotinib (IC50 = 0.085 μM). Compound 18h inhibited EGFR kinase (IC50 = 0.574 μM) with a potency comparable with that of the reference drug erlotinib (IC50 = 0.105 μM). Pyrazolines 18c, 18f, and 18h arrested the S/G2 phase of the cell cycle in HL-60 cells. In addition, derivatives 18c, 18f, and 18h revealed lower Bcl-2 protein expression anti-apoptotic levels and higher Bax, caspase-3, and caspase-9 expression levels. Molecular docking studies of derivative 18h into the binding sites of EGFR, HER2, and VEGFR2 kinases explored the interaction mode of these pyrazoline derivatives and their structural requirements for antitumor activity.
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Simone Brogi
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-AzharUniversity Cairo Egypt
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ibrahim A Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman M Al-Obaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
5
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
6
|
Swidan MM, Marzook F, Sakr TM. pH-Sensitive doxorubicin delivery using zinc oxide nanoparticles as a rectified theranostic platform: in vitro anti-proliferative, apoptotic, cell cycle arrest and in vivo radio-distribution studies. J Mater Chem B 2024; 12:6257-6274. [PMID: 38845545 DOI: 10.1039/d4tb00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 μg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.
Collapse
Affiliation(s)
- Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Fawzy Marzook
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt
| |
Collapse
|
7
|
Gamal MA, Fahim SH, Giovannuzzi S, Fouad MA, Bonardi A, Gratteri P, Supuran CT, Hassan GS. Probing benzenesulfonamide-thiazolidinone hybrids as multitarget directed ligands for efficient control of type 2 diabetes mellitus through targeting the enzymes: α-glucosidase and carbonic anhydrase II. Eur J Med Chem 2024; 271:116434. [PMID: 38653067 DOI: 10.1016/j.ejmech.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by improper expression/function of a number of key enzymes that can be regarded as targets for anti-diabetic drug design. Herein, we report the design, synthesis, and biological assessment of two series of thiazolidinone-based sulfonamides 4a-l and 5a-c as multitarget directed ligands (MTDLs) with potential anti-diabetic activity through targeting the enzymes: α-glucosidase and human carbonic anhydrase (hCA) II. The synthesized sulfonamides were evaluated for their inhibitory activity against α-glucosidase where most of the compounds showed good to potent activities. Compounds 4d and 4e showed potent inhibitory activities (IC50 = 0.440 and 0.3456 μM), comparable with that of the positive control (acarbose; IC50 = 0.420 μM). All the synthesized derivatives were also tested for their inhibitory activities against hCA I, II, IX, and XII. They exhibited different levels of inhibition against these isoforms. Compound 4d outstood as the most potent one against hCA II with Ki equals to 7.0 nM, more potent than the reference standard (acetazolamide; Ki = 12.0 nM). In silico studies for the most active compounds within the active sites of α-glucosidase and hCA II revealed good binding modes that can explain their biological activities. MM-GBSA refinements and molecular dynamic simulations were performed on the top-ranking docking pose of the most potent compound 4d to confirm the formation of stable complex with both targets. Compound 4d was screened for its in vivo antihyperglycemic efficacy by using the oral glucose tolerance test. Compound 4d decreased blood glucose level to 217 mg/dl, better than the standard acarbose (234 mg/dl). Hence, this revealed its synergistic mode of action on post prandial hyperglycemia and hepatic gluconeogenesis. Thus, these benzenesulfonamide thiazolidinone hybrids could be considered as promising multi-target candidates for the treatment of type II diabetes mellitus.
Collapse
Affiliation(s)
- Mona A Gamal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Samar H Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, New Giza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| |
Collapse
|
8
|
Singh A, Singh K, Sharma A, Sharma S, Batra K, Joshi K, Singh B, Kaur K, Chadha R, Bedi PMS. Mechanistic insight and structure activity relationship of isatin-based derivatives in development of anti-breast cancer agents. Mol Cell Biochem 2024; 479:1165-1198. [PMID: 37329491 DOI: 10.1007/s11010-023-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sambhav Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kevin Batra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kaustubh Joshi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Brahmjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
9
|
Najafi M, Marandi G. Synthesis of novel organophosphorus compounds via reaction of substituted 2-oxoindoline-3-ylidene with acetylenic diesters and triphenylphosphine or triphenyl phosphite. Sci Rep 2024; 14:6314. [PMID: 38491081 PMCID: PMC10943016 DOI: 10.1038/s41598-024-56774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
An efficient reaction between triphenylphosphine or triphenyl phosphite and 2-oxoindoline-3-ylidene derivatives in the presence of acetylenic esters leads to functionalized 2-oxoindoline-3-ylidene containing phosphorus ylieds or phosphonate esters. All compounds obtained in these reactions are stable and have good yields.
Collapse
Affiliation(s)
- Mahsa Najafi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ghasem Marandi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
10
|
Eissa IH, Elkady H, Rashed M, Elwan A, Hagras M, Dahab MA, Taghour MS, Ibrahim IM, Husein DZ, Elkaeed EB, Al-ghulikah HA, Metwaly AM, Mahdy HA. Discovery of new thiazolidine-2,4-dione derivatives as potential VEGFR-2 inhibitors: In vitro and in silico studies. Heliyon 2024; 10:e24005. [PMID: 38298627 PMCID: PMC10828660 DOI: 10.1016/j.heliyon.2024.e24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 μM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 μM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Hanan A. Al-ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
11
|
Shaldam MA, Almahli H, Angeli A, Badi RM, Khaleel EF, Zain-Alabdeen AI, Elsayed ZM, Elkaeed EB, Salem R, Supuran CT, Eldehna WM, Tawfik HO. Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2023; 38:2203389. [PMID: 37122176 PMCID: PMC10134960 DOI: 10.1080/14756366.2023.2203389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In this work, new isatin-based sulphonamides (6a-i, 11a-c, 12a-c) were designed and synthesised as potential dual VEGFR-2 and carbonic anhydrase inhibitors with anticancer activities. Firstly, all target isatins were examined for in vitro antitumor action on NCI-USA panel (58 tumour cell lines). Then, the most potent derivatives were examined for the potential CA inhibitory action towards the physiologically relevant hCA isoforms I, II, and tumour-linked hCA IX isoform, in addition, the VEGFR-2 inhibitory activity was evaluated. The target sulphonamides failed to inhibit the CA isoforms that could be attributable to the steric effect of the neighbouring methoxy group, whereas they displayed potent VEGFR-2 inhibitory effect. Following that, isatins 11b and 12b were tested for their influence on the cell cycle disturbance, and towards the apoptotic potential. Finally, detailed molecular modelling analyses, including docking and molecular dynamics, were carried out to assess the binding mode and stability of target isatins.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh Uinversity, Kafrelsheikh, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Eissa IH, Yousef RG, Sami M, Elkaeed EB, Alsfouk BA, Ibrahim IM, Husein DZ, Elkady H, Metwaly AM. Exploring the anticancer properties of a new nicotinamide analogue: Investigations into in silico analysis, antiproliferative effects, selectivity, VEGFR-2 inhibition, apoptosis induction, and migration suppression. Pathol Res Pract 2023; 252:154924. [PMID: 37956639 DOI: 10.1016/j.prp.2023.154924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND This study focuses on the development and evaluation of (E)-N-(3-(1-(2-(4-bromobenzoyl)hydrazono)ethyl)phenyl)nicotinamide (BHEPN) as a potential inhibitor of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). METHODS Computational investigations as density function theory (DFT), docking, molecular dynamics (MD) simulations, and ADMET) in addition to in vitro (VEGFR-2 inhibition, cytotoxicity against HepG2 and MCF-7 cancer cell lines, selectivity index, cells cycle analysis, apoptosis investigation, and cells migration assay) studies were conducted. RESULTS DFT calculations determined the three-dimensional structure and indicated the reactivity of BHEPN. Molecular docking, and MD simulations analysis showed the BHEPN's binding affinity and its potential as a VEGFR-2 inhibitor. ADMET assessments predicted BHEPN's safety and drug-like characteristics. In vitro investigations confirmed the inhibition of VEGFR-2 with an IC50 value of 0.320 ± 0.012 µM. BHEPN also exhibited remarkable cytotoxic effects against HepG2 and MCF-7 cancer cell lines, with IC50 values of 0.19 ± 0.01 µM and 1.18 ± 0.01 µM, respectively, outperforming Sorafenib's IC50 values (2.24 ± 0.06 µM and 3.17 ± 0.01 µM), respectively. Notably, BHEPN displayed a higher IC50 value of 4.11 ± 0 µM against the non-carcinogenic Vero cell lines, indicating selectivity index values of 21.6 and 3.4 against the tested cancer cell lines, respectively. In a flow cytometry assay, BHEPN induced HepG2 cell cycle arrest at the G1/S phase. Moreover, BHEPN increased the incidence of early and late apoptosis in HepG2 cell lines (from 1.38% and 0.22%) in control cells to (4.11-26.02%) in the treated cells, respectively. Additionally, the percentage of necrosis raised to 13.39%, in contrast to 0.62% in control cells. Finally, BHEPN was able to reduce the migration and wound healing abilities in HepG2 cells to 38.89% compared to 87.92% in untreated cells after 48 h. These in vitro results aligned with the computational predictions, providing strong evidence of BHEPN's efficacy and safety in anticancer applications. CONCLUSIONS BHEPN is a promising candidate for the development of novel anticancer agents through further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Muhammad Sami
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| |
Collapse
|
13
|
El-Metwally SA, Elkady H, Hagras M, Elkaeed EB, Alsfouk BA, Doghish AS, Ibrahim IM, Taghour MS, Husein DZ, Metwaly AM, Eissa IH. Discovery of new VEGFR-2 inhibitors and apoptosis inducer-based thieno[2,3- d]pyrimidine. Future Med Chem 2023; 15:2065-2086. [PMID: 37955128 DOI: 10.4155/fmc-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Background: VEGFR-2 is a key regulator of cancer cell proliferation, migration and angiogenesis. Aim: Development of thieno[2,3-d]pyrimidine derivatives as potential anti-cancer agents targeting VEGFR-2. Methods: Seven in vitro and nine in silico studies were conducted. Results: Compound 10d demonstrated strong anticancer potential, boosting apoptosis based on VEGFR-2 inhibition. It arrested the S phase of the cell cycle and upregulated the apoptotic factors. Docking and molecular dynamics simulation studies confirm the stability of the VEGFR-2-10d complex and suggest that these compounds have good binding affinities to VEGFR-2. In addition, the drug-likeness was confirmed. Conclusion: Thieno[2,3-d]pyrimidines, particularly compound 10d, has good anticancer effects and may contribute to the development of new anticancer therapies.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| |
Collapse
|
14
|
Ahmed MF, El-Haggar R, Almalki AH, Abdullah O, El Hassab MA, Masurier N, Hammad SF. Novel hydrazone-isatin derivatives as potential EGFR inhibitors: Synthesis and in vitro pharmacological profiling. Arch Pharm (Weinheim) 2023; 356:e2300244. [PMID: 37404064 DOI: 10.1002/ardp.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Merging isatin and arylhydrazone moieties constitutes an efficient strategy to access new potential anticancer derivatives. Consequently, 14 hydrazone-isatin derivatives were synthesized and evaluated for their antiproliferative activity against the NCI-60 cancer cell line panel. A kinase assay demonstrated that compound VIIIb inhibited the epidermal growth factor receptor (EGFR), which was confirmed by docking studies, molecular dynamics, and binding free energy calculations. Further characterizations showed that this compound possesses drug-likeness properties, showed a significant decrease of the cell population in the G2/M phase and led to a significant increase in early and late apoptosis, comparable to erlotinib. Also, VIIIb increased the expression of caspase-3 and Bax and decreased the expression of Bcl-2, confirming its potential as a new proapoptotic compound.
Collapse
Affiliation(s)
- Marwa F Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addition and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Al-Hawiah, Saudi Arabia
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sherif F Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
15
|
Elanany MA, Osman EEA, Gedawy EM, Abou-Seri SM. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci Rep 2023; 13:4144. [PMID: 36914702 PMCID: PMC10011602 DOI: 10.1038/s41598-023-30885-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
To exploit the advantageous properties of approved drugs to hasten anticancer drug discovery, we designed and synthesized a series of fluoroquinolone (FQ) analogs via functionalization of the acid hydrazides of moxifloxacin, ofloxacin, and ciprofloxacin. Under the NCI-60 Human Tumor Cell Line Screening Assay, (IIIf) was the most potent among moxifloxacin derivatives, whereas (VIb) was the only ofloxacin derivative with significant effects and ciprofloxacin derivatives were devoid of activity. (IIIf) and (VIb) were further selected for five-dose evaluation, where they showed potent growth inhibition with a mean GI50 of 1.78 and 1.45 µM, respectively. (VIb) elicited a more potent effect reaching sub-micromolar level on many cell lines, including MDA-MB-468 and MCF-7 breast cancer cell lines (GI50 = 0.41 and 0.42 µM, respectively), NSCLC cell line HOP-92 (GI50 = 0.50 µM) and CNS cell lines SNB-19 and U-251 (GI50 = 0.51 and 0.61 µM, respectively). (IIIf) and (VIb) arrested MCF-7 cells at G1/S and G1, respectively, and induced apoptosis mainly through the intrinsic pathway as shown by the increased ratio of Bax/Bcl-2 and caspase-9 with a lesser activation of the extrinsic pathway through caspase-8. Both compounds inhibited topoisomerase (Topo) with preferential activity on type II over type I and (VIb) was marginally more potent than (IIIf). Docking study suggests that (IIIf) and (VIb) bind differently to Topo II compared to etoposide. (IIIf) and (VIb) possess high potential for oral absorption, low CNS permeability and low binding to plasma proteins as suggested by in silico ADME calculations. Collectively, (IIIf) and (VIb) represent excellent lead molecules for the development of cytotoxic agents from quinolone scaffolds.
Collapse
Affiliation(s)
- Mohamed A Elanany
- Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| | - Essam Eldin A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ehab Mohamed Gedawy
- Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
16
|
Challenging breast cancer through novel sulfonamide-pyridine hybrids: design, synthesis, carbonic anhydrase IX inhibition and induction of apoptosis. Future Med Chem 2023; 15:147-166. [PMID: 36762576 DOI: 10.4155/fmc-2022-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background: Among the important key modulators of the tumor microenvironment and hypoxia is a family of enzymes named carbonic anhydrases. Herein, 11 novel sulfonamide-pyridine hybrids (2-12) were designed, synthesized and biologically evaluated for their potential use in targeting breast cancer. Methods & results: The para chloro derivative 7 reported the highest cytotoxic activity against the three breast cancer cell lines used. In addition, compound 7 was found to induce cell cycle arrest and autophagy as well as delaying wound healing. The IC50 of compound 7 against carbonic anhydrase IX was 253 ± 12 nM using dorzolamide HCl as control. Conclusion: This study encourages us to expand the designed library, where more sulfonamide derivatives would be synthesized and studied for their structure-activity relationships.
Collapse
|
17
|
Elzahabi HSA, Nossier ES, Alasfoury RA, El-Manawaty M, Sayed SM, Elkaeed EB, Metwaly AM, Hagras M, Eissa IH. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2022; 37:1053-1076. [PMID: 35821615 PMCID: PMC9291687 DOI: 10.1080/14756366.2022.2062752] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania A Alasfoury
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - May El-Manawaty
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sara M Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Khalifa MM, Al-Karmalawy AA, Elkaeed EB, Nafie MS, Tantawy MA, Eissa IH, Mahdy HA. Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: design, synthesis, anti-proliferative, docking, and in vivo studies. J Enzyme Inhib Med Chem 2022; 37:299-314. [PMID: 34894955 PMCID: PMC8667898 DOI: 10.1080/14756366.2021.2007905] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.
Collapse
Affiliation(s)
- Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed A. Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Hagras M, Saleh MA, Ezz Eldin RR, Abuelkhir AA, Khidr EG, El-Husseiny AA, El-Mahdy HA, Elkaeed EB, Eissa IH. 1,3,4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:380-396. [PMID: 34923885 PMCID: PMC8725909 DOI: 10.1080/14756366.2021.2015342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rogy R. Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | | | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Roszczenko P, Holota S, Szewczyk OK, Dudchak R, Bielawski K, Bielawska A, Lesyk R. 4-Thiazolidinone-Bearing Hybrid Molecules in Anticancer Drug Design. Int J Mol Sci 2022; 23:13135. [PMID: 36361924 PMCID: PMC9654980 DOI: 10.3390/ijms232113135] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/16/2023] Open
Abstract
Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| |
Collapse
|
21
|
In Silico Pharmacokinetic Profiling of the Identified Bioactive Metabolites of Pergularia tomentosa L. Latex Extract and In Vitro Cytotoxic Activity via the Induction of Caspase-Dependent Apoptosis with S-Phase Arrest. Pharmaceuticals (Basel) 2022; 15:ph15091132. [PMID: 36145353 PMCID: PMC9501251 DOI: 10.3390/ph15091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The in vitro cytotoxic efficacy of plant latex from Pergularia tomentosa L. was studied using five human cancer cell lines: HeLa cells (cervical carcinoma cells), A-549 (lung carcinoma), Panc-1 (pancreatic carcinoma cells), MDA-MB-231 (metastatic mammary adenocarcinoma), and MRC-5 (lung fibroblast cell line) cells. The phytonutrient content of plant latex was identified using the liquid chromatography/mass spectra-quadrupole time of flight (LC/MS-QTOF) technique. In silico studies of polyphenols were carried out to clarify the potential mode of action of the plant latex’s constituents. The treatment of different tumor cell lines with different concentrations of plant latex revealed a potent efficacy on the human lung carcinoma cell line (A-549) (IC50 = 3.89 µg/mL) compared with that with vinblastine as a positive control (IC50 = 7.12 µg/mL). The effect of the potent concentration of plant latex on the A-549 cell line induced cell arrest, upregulated the expression of pre-apoptotic markers, and downregulated the expression of antiapoptotic markers. Seven identified polyphenols were selected for the in silico study. A docking assessment using the epidermal growth factor receptor kinase (EGFRk) and eltronib as a positive control showed a higher affinity for the enzyme receptor of the selected polyphenols, except for methyl orsellinate and ginkgotoxin. The ADMET assessment demonstrated the inhibitory effect of the polyphenols on CYP450, except for ouabagenin and xanthyletine. The selected polyphenols obey Lipinski’s drug-likeness with no significant toxicity effect. In conclusion, the plant latex of P. tomentosa L. showed cytotoxic activity on the A-549 cell line, and the selected polyphenols showed a promising prodrug agent with a low profile of toxicity in the study.
Collapse
|
22
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
23
|
Rabeeb SIE, Deeb MAE, Sarg MT, Hassan AY. Imidazo[1,2,4]triazolone and Fused Imidazo[1,2,4]triazolone Derivatives: Synthesis,
In Vitro
Anticancer screening, CDK2 inhibitory activity, and Molecular modelling studies. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaimaa I. El Rabeeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Moshira A. El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Modern University for Technology & Information
| | - Marwa T. Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Aisha Y. Hassan
- Organic Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| |
Collapse
|
24
|
Eraslan-Elma P, Akdemir A, Berrino E, Bozdağ M, Supuran CT, Karalı N. New 1H-indole-2,3-dione 3-thiosemicarbazones with 3-sulfamoylphenyl moiety as selective carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200023. [PMID: 35500156 DOI: 10.1002/ardp.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
1-Methyl/ethyl/benzyl-5-(un)substituted 1H-indole-2,3-diones (2, 3, and 4) were synthesized by reaction of 5-(un)substituted 1H-indole-2,3-diones (1) with methyl iodide, ethyl chloride, and benzyl bromide. (3-Sulfamoylphenyl)isothiocyanate (6) was obtained by the treatment of 3-aminobenzenesulfonamide (5) with thiophosgene. Compound 6 was reacted with hydrazine to yield 4-(3-sulfamoylphenyl)thiosemicarbazide (7). Novel 1-(un)substituted/methyl/ethyl/benzyl-5-(un)substituted 1H-indole-2,3-dione 3-[4-(3-sulfamoylphenyl)thiosemicarbazone] derivatives (8-11) were prepared by condensation of 7 and 1-4. The structures of the synthesized compounds were confirmed by elemental analysis and spectral data. Inhibition of the widely distributed cytosolic off-targets human carbonic anhydrases (hCAs) I and II, and two tumor-associated membrane-bound isoforms (hCAs IX and XII), by 8-11 was investigated. The hCA II inhibitory effects of all tested compounds were in the subnanomolar to low nanomolar levels (Ki = 0.32-83.3 nM), and generally high selectivity for hCA II isoenzyme over hCA I, IX, and XII isoenzymes was observed. The strongest inhibitors of hCA II, 1-benzyl-5-(trifluoromethoxy)-substituted 11c (Ki = 0.32 nM) and 1-ethyl-5-chloro-substituted 10e (Ki = 0.35 nM), were docked within the enzyme active site. Molecular modeling studies with the most effective hCA IX and XII inhibitors were also carried out.
Collapse
Affiliation(s)
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Emanuela Berrino
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Murat Bozdağ
- Department of Pharmaceutical Science, University of Antwerp, Antwerp, Belgium
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Nilgün Karalı
- Health Sciences Institute, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
25
|
Abdelnaby RM, Rateb HS, Ali O, Saad AS, Nadeem RI, Abou-Seri SM, Amin KM, Younis NS, Abdelhady R. Dual PI3K/Akt Inhibitors Bearing Coumarin-Thiazolidine Pharmacophores as Potential Apoptosis Inducers in MCF-7 Cells. Pharmaceuticals (Basel) 2022; 15:ph15040428. [PMID: 35455425 PMCID: PMC9027131 DOI: 10.3390/ph15040428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V–VI) and thiazolidin-4-one moieties (VII–VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.
Collapse
Affiliation(s)
- Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence: ; Tel.: +20-1270551779
| | - Heba S. Rateb
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt;
| | - Omaima Ali
- Egyptian Drug Authority, Cairo 12618, Egypt;
| | - Ahmed S. Saad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt;
| | - Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Sahar M. Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Kamilia M. Amin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
26
|
Nematpour M, Rezaee E, Nazari M, Hosseini O, Tabatabai SA. Targeting EGFR Tyrosine Kinase: Design, Synthesis and Biological Evaluation of Novel Quinazolinone Derivatives. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123826. [PMID: 35765503 PMCID: PMC9191221 DOI: 10.5812/ijpr.123826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Impaired cell cycle regulation and disturbance in signal transduction pathway are two major causes of a condition defined as cancer, one of the significant reasons for mortality worldwide. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been commonly used as anticancer agents, and the majority of this medications possess quinazoline moiety as a heteroaromatic core. In this study, two novel series of EGFR-TKIs containing quinazolinone core were designed and synthesized. Most compounds showed reasonable inhibitory activity against EGFR-TK compared to that of erlotinib, a reversible inhibitor of this enzyme. Compound 8b, 2-((2-chlorobenzyl)amino)-6-phenoxyquinazolin-4(1H)-one, with an IC50 value of 1.37 nM exhibited the highest potency. Molecular docking study of compound 8b showed that it had the same direction of erlotinib and formed proper hydrogen bonds and hydrophobic interactions with the important amino acid residues of the active site. Based on in-silico calculations of ADME properties, our novel compounds have the potential to be orally active agents.
Collapse
Affiliation(s)
- Manijeh Nematpour
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Nazari
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Central Research Labretories, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Cheke RS, Patil VM, Firke SD, Ambhore JP, Ansari IA, Patel HM, Shinde SD, Pasupuleti VR, Hassan MI, Adnan M, Kadri A, Snoussi M. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals (Basel) 2022; 15:272. [PMID: 35337070 PMCID: PMC8950263 DOI: 10.3390/ph15030272] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/22/2022] Open
Abstract
Isatin (1H indole 2, 3-dione) is a heterocyclic, endogenous lead molecule recognized in humans and different plants. The isatin nucleus and its derivatives are owed the attention of researchers due to their diverse pharmacological activities such as anticancer, anti-TB, antifungal, antimicrobial, antioxidant, anti-inflammatory, anticonvulsant, anti-HIV, and so on. Many research chemists take advantage of the gentle structure of isatins, such as NH at position 1 and carbonyl functions at positions 2 and 3, for designing biologically active analogues via different approaches. Literature surveys based on reported preclinical, clinical, and patented details confirm the multitarget profile of isatin analogues and thus their importance in the field of medicinal chemistry as a potent chemotherapeutic agent. This review represents the recent development of isatin analogues possessing potential pharmacological action in the years 2016-2020. The structure-activity relationship is also discussed to provide a pharmacophoric pattern that may contribute in the future to the design and synthesis of potent and less toxic therapeutics.
Collapse
Affiliation(s)
- Rameshwar S. Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, Uttar Pradesh, India;
| | - Sandip D. Firke
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Jaya P. Ambhore
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
| | - Iqrar A. Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Sachin D. Shinde
- Department of Pharmacology, Shri. R. D. Bhakt College of Pharmacy, Jalna 431213, Maharashtra, India;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu 44800, Sabah, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru 28291, Riau, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore 560064, Karnataka, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia;
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
28
|
Krymov SK, Scherbakov AM, Salnikova DI, Sorokin DV, Dezhenkova LG, Ivanov IV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Synthesis, biological evaluation, and in silico studies of potential activators of apoptosis and carbonic anhydrase inhibitors on isatin-5-sulfonamide scaffold. Eur J Med Chem 2022; 228:113997. [PMID: 34902732 DOI: 10.1016/j.ejmech.2021.113997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/09/2023]
Abstract
Carbonic anhydrase IX is a promising target for the search for new antitumor compounds with improved properties. Using the molecular hybridization approach, on the basis of structures of a selective carbonic anhydrase IX inhibitor 3 and an activator of apoptosis 2 (1), a series of 1-substituted isatin-5-sulfonamides 5a-5u were designed and synthesized. The study of the inhibitory activity of isatin-5-sulfonamides showed the ability to inhibit I, II, IX, XII isoforms at nano- and micromolar concentrations. Docking of compounds 5e and 5k into the active site of II and IX carbonic anhydrase isoforms showed the coordination of sulfonamidate anions with zinc cations, as well as a number of additional hydrophobic interactions. The trifluoromethylthio derivative 5r suppressed the growth of tumor cells at low micromolar concentrations, maintaining activity on resistant lines and under hypoxic conditions. Immunoblotting of MCF7 cells treated with the 5r revealed its antiestrogenic activity and ability to activate apoptosis in tumor cells.
Collapse
Affiliation(s)
- Stepan K Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Scherbakov
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Diana I Salnikova
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Danila V Sorokin
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Ivan V Ivanov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| | | |
Collapse
|
29
|
Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem 2021; 226:113837. [PMID: 34530384 DOI: 10.1016/j.ejmech.2021.113837] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Currently, the arise of drug resistance and undesirable off-target effects of anti-cancer agents are major challenges for cancer treatment, which energizes medicinal chemists to develop more anti-cancer agents with high efficiency and low toxicity continuously. Sulfonamide derivatives are a class of promising compounds with diverse biological activities including anti-cancer, and parts of them have been marketed for cancer therapy, such as Belinostat, ABT-199 and Amsacrine. In this review, we summed up the recent advances of sulfonamide derivatives as potential anti-cancer agents based on the anti-cancer targets, such as aromatase, carbonic anhydrase (CA), anti-apoptotic B-cell lymphoma-2 (Bcl-2) proteins, topoisomerase and phosphatidylinositol 3-kinase (PI3K), and elucidated the corresponding structure-activity relationships (SARs) of most sulfonamide derivatives. We hope this review could provide a clear insight for medicinal chemists in the rational design of more potent and bio-target specific anti-cancer agents.
Collapse
|
30
|
Alanazi MM, Alaa E, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Taghour MS, Eissa IH. Discovery of new 3-methylquinoxalines as potential anti-cancer agents and apoptosis inducers targeting VEGFR-2: design, synthesis, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:1732-1750. [PMID: 34325596 PMCID: PMC8330740 DOI: 10.1080/14756366.2021.1945591] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
There is an urgent need to design new anticancer agents that can prevent cancer cell proliferation even with minimal side effects. Accordingly, two new series of 3-methylquinoxalin-2(1H)-one and 3-methylquinoxaline-2-thiol derivatives were designed to act as VEGFR-2 inhibitors. The designed derivatives were synthesised and evaluated in vitro as cytotoxic agents against two human cancer cell lines namely, HepG-2 and MCF-7. Also, the synthesised derivatives were assessed for their VEGFR-2inhibitory effect. The most promising member 11e were further investigated to reach a valuable insight about its apoptotic effect through cell cycle and apoptosis analyses. Moreover, deep investigations were carried out for compound 11e using western-plot analyses to detect its effect against some apoptotic and apoptotic parameters including caspase-9, caspase-3, BAX, and Bcl-2. Many in silico investigations including docking, ADMET, toxicity studies were performed to predict binding affinity, pharmacokinetic, drug likeness, and toxicity of the synthesised compounds. The results revealed that compounds 11e, 11g, 12e, 12g, and 12k exhibited promising cytotoxic activities (IC50 range is 2.1 - 9.8 µM), comparing to sorafenib (IC50 = 3.4 and 2.2 µM against MCF-7 and HepG2, respectively). Moreover, 11b, 11f, 11g, 12e, 12f, 12g, and 12k showed the highest VEGFR-2 inhibitory activities (IC50 range is 2.9 - 5.4 µM), comparing to sorafenib (IC50 = 3.07 nM). Additionally, compound 11e had good potential to arrest the HepG2 cell growth at G2/M phase and to induce apoptosis by 49.14% compared to the control cells (9.71%). As well, such compound showed a significant increase in the level of caspase-3 (2.34-fold), caspase-9 (2.34-fold), and BAX (3.14-fold), and a significant decrease in Bcl-2 level (3.13-fold). For in silico studies, the synthesised compounds showed binding mode similar to that of the reference compound (sorafenib).
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Elwan Alaa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan M. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
31
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3',4'- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1093-1114. [PMID: 34056992 PMCID: PMC8168755 DOI: 10.1080/14756366.2021.1915303] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).
Collapse
Affiliation(s)
- Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldawas
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
32
|
Rabie EM, Khalil MMH, Elaasser MM, Ismail EH. Macro‐ and nano‐oligomers ternary metal complexes preparation, structural elucidation: Antimicrobial, anticancer activities, and mechanistic study of Cu nanocomplexes on liver carcinoma. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eman M. Rabie
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | | | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology Al‐Azhar University Cairo Egypt
| | - Eman H. Ismail
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
33
|
Eldeeb AH, Abo-Ashour MF, Angeli A, Bonardi A, Lasheen DS, Elrazaz EZ, Nocentini A, Gratteri P, Abdel-Aziz HA, Supuran CT. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2021; 221:113486. [PMID: 33965860 DOI: 10.1016/j.ejmech.2021.113486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
New series of benzenesulfonamide and benzoic acid derivatives were designed and synthesized using tail/dual tail approach to improve potency and selectivity as carbonic anhydrase inhibitors. The synthesized compounds evaluated as CAIs against isoforms hCA I, II, IV and IX with acetazolamide (AAZ) as standard inhibitor. The benzenesulfonamide derivatives 7a-d, 8a-h, 12a-c, 13a and 15a-c showed moderate to potent inhibitory activity with selectivity toward isoform hCA II, especially, compound 13a with (Ki = 7.6 nM), while the benzoic acid analogues 12d-f, 13b and 15d-f didn't show any activity except compounds 12d,f and 15e that showed weak activity. Additionally, molecular docking was performed for compounds 7a, 8a, 8e, 12a, 13a and 15a on isoform hCA I, II to illustrate the possible interaction with the active site to justify the inhibitory activity.
Collapse
Affiliation(s)
- Assem H Eldeeb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
34
|
Ma C, Taghour MS, Belal A, Mehany ABM, Mostafa N, Nabeeh A, Eissa IH, Al-Karmalawy AA. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma: In Silico, In Vitro, and SAR Studies. Front Chem 2021; 9:725135. [PMID: 34631658 PMCID: PMC8493129 DOI: 10.3389/fchem.2021.725135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Guided by the structural optimization principle and the promising anticancer effect of the quinoxaline nucleus, a new series of novel HDAC inhibitors were designed and synthesized. The synthesized compounds were designed to bear the reported pharmacophoric features of the HDAC inhibitors in addition to an extra moiety to occupy the non-used vacant deep pocket of the HDAC receptor. The newly prepared compounds were evaluated for their in vitro anti-proliferative activities against HepG-2 and HuH-7 liver cancer cell lines. The tested compounds showed promising anti-proliferative activities against both cell lines. The most active ten candidates (6 c , 6 d , 6 f , 6 g , 6 k , 6 l , 7 b , 8, 10 h , and 12) were further evaluated for their effect on the gene expression levels of Bax as an apoptotic marker and Bcl-2 as an anti-apoptotic one. Moreover, they were evaluated for their ability to inhibit histone deacetylase (HDAC1, HDAC4, and HDAC6) activities. Compound 6 c achieved the best cytotoxic activities on both HepG-2 and HuH-7 cell lines with IC50 values of 1.53 and 3.06 µM, respectively, and also it showed the most inhibitory activities on HDAC1, HDAC4, and HDAC6 with IC50 values of 1.76, 1.39, and 3.46 µM, respectively, compared to suberoylanilide hydroxamic acid (SAHA) as a reference drug (IC50 = 0.86, 0.97, and 0.93 µM, respectively). Furthermore, it achieved a more characteristic arrest in the growth of cell population of HepG-2 at both G0/G1 and S phases with 1.23-, and 1.18-fold, respectively, compared to that of the control, as determined by cell cycle analysis. Also, compound 6 c showed a marked elevation in the AnxV-FITC apoptotic HepG-2 cells percentage in both early and late phases increasing the total apoptosis percentage by 9.98-, and 10.81-fold, respectively, compared to the control. Furthermore, docking studies were carried out to identify the proposed binding mode of the synthesized compounds towards the prospective target (HDAC4). In silico ADMET and toxicity studies revealed that most of the synthesized compounds have accepted profiles of drug-likeness with low toxicity. Finally, an interesting SAR analysis was concluded to help the future design of more potent HDACIs in the future by medicinal chemists.
Collapse
Affiliation(s)
- Chao Ma
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Naglaa Mostafa
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
35
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alkahtani HM, Alanazi MM, Alharbi MA, Eissa IH, Dahab MA. New quinoxaline-based VEGFR-2 inhibitors: design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies. RSC Adv 2021; 11:30315-30328. [PMID: 35493991 PMCID: PMC9044819 DOI: 10.1039/d1ra05925d] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023] Open
Abstract
A new series of 3-methylquinoxaline-based derivatives having the same essential pharmacophoric features as VEGFR-2 inhibitors have been synthesized and evaluated for their antiproliferative activities against two human cancer cell lines, MCF-7 and HepG-2. Compounds 15b and 17b demonstrated a significant antiproliferative effect with IC50 ranging from 2.3 to 5.8 μM. An enzymatic assay was carried out for all the tested candidates against VEGFR-2. Compound 17b was the most potent VEGFR-2 inhibitor (IC50 = 2.7 nM). Mechanistic investigation including cell cycle arrest and apoptosis was performed for compound 17b against HepG-2 cells, and the results revealed that 17b induced cell apoptosis and arrested cell cycle in the G2/M phase. Moreover, apoptosis analyses were conducted for compound 17b to evaluate its apoptotic potential. The results showed upregulation in caspase-3 and caspase-9 levels, and improving the Bax/Bcl-2 ratio by more than 10-fold. Docking studies were performed to determine the possible interaction with the VEGFR-2 active site. Further docking studies were carried out for compound 17b against cytochrome P450 to present such compounds as non-inhibitors. In silico ADMET, toxicity, and physico-chemical properties revealed that most of the synthesized members have acceptable values of drug-likeness. Finally, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Madhawi A Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
36
|
Li H, Liu Y, Tang S, Hu J, Wu Q, Wei Y, Niu M. Carbonic Anhydrase III Attenuates Hypoxia-Induced Apoptosis and Activates PI3K/Akt/mTOR Pathway in H9c2 Cardiomyocyte Cell Line. Cardiovasc Toxicol 2021; 21:914-926. [PMID: 34387844 DOI: 10.1007/s12012-021-09683-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia can cause insufficient oxygen and functional damage to myocardial cells. Carbonic anhydrase III (CAIII) has been found to be closely related to the abnormality of cardiomyocytes. To investigate the role of CAIII in the apoptosis of myocytes under hypoxic conditions and facilitate the strategy for treating hypoxia-induced damage, in vitro experiments in H9c2 were employed. The protein expression of CAIII in H9c2 cells after hypoxia or normoxia treatment was determined by western blotting and immunohistochemistry. MTT assay was employed for cells viability measurement and LDH release was monitored. The apoptotic cells were observed using immunofluorescence assay, flow cytometric analysis, and TUNEL assay. CAIII-overexpression or -knockdown cells were constructed to determine the role of CAIII in regulating apoptosis-related proteins caspase-3, Bax, Bcl-2, and anti-apoptosis pathway PI3K/Akt/mTOR. The mRNA levels of CAIII and genes related to CAIII synthesis including REN, IGHM, APOBEC 3F, and SKOR2 were significantly upregulated in hypoxia fetal sheep. The expression of CAIII protein and content of apoptotic H9c2 cells were increased at 1, 3, 6, and 12 h after hypoxia treatment. Overexpression of CAIII significantly upregulated Bcl2 level and downregulated Bax and caspase-3 cleavage levels, while its knockdown led to the contrary results. Overexpressed CAIII promoted the HIF-1α level and activated the PI3K/Akt/mTOR pathway, thereby exerting an inhibitory effect on hypoxia-induced apoptosis. In conclusion, our findings revealed that CAIII could protect cell from hypoxia-apoptosis of H9c2 cells, in which, activated PI3K/Akt/mTOR signaling pathway may be involved.
Collapse
Affiliation(s)
- Hua Li
- Cardiac Ultrasonic Department, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, No. 116 Huanghe Road, Shayibake District, Ürümqi, 830002, Xinjiang, China.
| | - Yibin Liu
- Ultrasonic Department, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830011, Xinjiang, China
| | - Sha Tang
- Cardiac Ultrasonic Department, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, No. 116 Huanghe Road, Shayibake District, Ürümqi, 830002, Xinjiang, China
| | - Jie Hu
- Cardiac Ultrasonic Department, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, No. 116 Huanghe Road, Shayibake District, Ürümqi, 830002, Xinjiang, China
| | - Qiuling Wu
- Cardiac Ultrasonic Department, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, No. 116 Huanghe Road, Shayibake District, Ürümqi, 830002, Xinjiang, China
| | - Yang Wei
- Cardiac Ultrasonic Department, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, No. 116 Huanghe Road, Shayibake District, Ürümqi, 830002, Xinjiang, China
| | - Ming Niu
- Cardiac Ultrasonic Department, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, No. 116 Huanghe Road, Shayibake District, Ürümqi, 830002, Xinjiang, China
| |
Collapse
|
37
|
Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg Chem 2021; 114:105105. [PMID: 34175720 DOI: 10.1016/j.bioorg.2021.105105] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
VEGF/VEGFR2 pathway is the crucial therapeutic target in the treatment of cancer. So that, a new series of quinoxaline-2(1H)-one derivatives were designed and synthesized. The synthesized compounds were tested against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) aiming to evaluate its anti-proliferative activities. Doxorubicin as a universal anticancer drug and sorafenib as a potent VEGFR-2 inhibitor were used as positive controls. The data obtained from biological activity were found highly correlated with that obtained from molecular modeling studies. The most sensitive cell line to the influence of our new derivatives was HCT-116. Compounds 13b, 15, 16e and 17b exert the highest cytotoxic activities against the tested cell lines. Overall, compound 15 was the most active member with IC50 values of 5.30, 2.20, 5.50 µM against HepG-2, MCF-7 and HCT-116, respectively. Compounds 15 and 17b showed better anti-proliferative activities than doxorubicin and sorafenib against the three cancer cell lines. Additionally, compound 16e showed better anti-proliferative activities than doxorubicin and sorafenib against HepG-2 and HCT-116 but exhibited lower activity against MCF-7 cell line. In addition, the most promising members were further evaluated for their inhibitory activities against VEGFR-2. Compounds 15 and 17b potently inhibited VEGFR-2 at lower IC50 values of 1.09 and 1.19 µM, respectively, compared to sorafenib (IC50 = 1.27 µM). Moreover, docking studies were conducted to investigate the binding pattern of the synthesized compounds against the prospective molecular target VEGFR-2.
Collapse
|
38
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
39
|
Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi AZ, Eissa SI, Mehany ABM, Beauchemin AM. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem 2021; 112:104965. [PMID: 34020238 DOI: 10.1016/j.bioorg.2021.104965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt; Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada.
| | - Mohamed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of pharmacology and toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sally I Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
40
|
Alanazi MM, Mahdy HA, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Dahab MA, Eissa IH. New bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg Chem 2021; 112:104949. [PMID: 34023640 DOI: 10.1016/j.bioorg.2021.104949] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
A new series of bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives were designed and synthesized to have the main essential pharmacophoric features of VEGFR-2 inhibitors. VEGFR-2 inhibitory activities were assessed for the designed compounds. In addition, cytotoxic activity was evaluated for all derivatives against two human cancer cell lines namely, HepG-2 and MCF-7. The most cytotoxic compound 20 h was subjected to further biological investigations including cell cycle, apoptosis, caspase-3, caspase-9, BAX, and Bcl-2 analyses. Different in silico studies as docking, ADMET and toxicity were carried out. The results exhibited that compounds 20b, 20e, 20h and20mshowed promising VEGFR-2 inhibitory activities with IC50values of 5.7, 6.7, 3.2, and 3.1 µM, respectively. Moreover, these promising members exhibited the highest antiproliferative activities against the two cell lines with IC50values ranging from 3.3 to 14.2 µM, comparing to sorafenib (IC50 = 2.17 and 3.43 µM against HepG2 and MCF-7, respectively). Additionally, compound 20h induced cell cycle arrest of HepG2 cells at G2/M phase. Also, such compound increased the progress of apoptosis by 3.5-fold compared to the control. As well, compound 20h showed a significant increase in the level of caspase-3 (2.07-fold), caspase-9 (1.72-fold), and BAX (1.83-fold), and a significant decrease in Bcl-2 level (1.92-fold). The in silico studies revealed that the synthesized compounds have binding pattern like that of sorafenib.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Sultan M Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
41
|
El-Metwally SA, Abou-El-Regal MM, Eissa IH, Mehany ABM, Mahdy HA, Elkady H, Elwan A, Elkaeed EB. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg Chem 2021; 112:104947. [PMID: 33964580 DOI: 10.1016/j.bioorg.2021.104947] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor-2 (VEGFR-2) is considered one of the most important factors in tumor angiogenesis, and consequently a number of anticancer therapeutics have been developed to inhibit VEGFR-2 signaling. Accordingly, eighteen derivatives of thieno[2,3-d]pyrimidines having structural characteristics similar to VEGFR-2 inhibitors were designed and synthesized. Anticancer activities of the new derivatives were assessed against three human cancer cell lines (HCT-116, HepG2, and MCF-7) using MTT. Sorafenib was used as positive control. Compounds 17c-i, and 20b showed excellent anticancer activities against HCT-116 and HepG2 cell lines, while compounds 17i and 17g was found to be active against MCF-7 cell line. Compound 17f exhibited the highest cytotoxic activities against the examined cell lines, HCT-116 and HepG2, with IC50 values of 2.80 ± 0.16 and 4.10 ± 0.45 µM, respectively. Aiming at exploring the mechanism of action of these compounds, the most active cytotoxic derivatives were in vitro tested for their VEGFR-2 inhibitory activity. Compound 17f showed high activity against VEGFR-2 with an IC50 value of 0.23 ± 0.03 µM, that is equal to that of reference, sorafenib (IC50 = 0.23 ± 0.04 µM). Molecular docking studies also were performed to investigate the possible binding interactions of the target compounds with the active sites of VEGFR-2. The synthesized compounds were analyzed for their ADMET and toxicity properties. Results showed that most of the compounds have low to very low BBB penetration levels and they have non-inhibitory effect against CYP2D6. All compounds were predicted to be non-toxic against developmental toxicity potential model except compounds 17b and 20b.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City 228, Egypt
| | - Mohsen M Abou-El-Regal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
42
|
Elbadawi MM, Eldehna WM, Nocentini A, Abo-Ashour MF, Elkaeed EB, Abdelgawad MA, Alharbi KS, Abdel-Aziz HA, Supuran CT, Gratteri P, Al-Sanea MM. Identification of N-phenyl-2-(phenylsulfonyl)acetamides/propanamides as new SLC-0111 analogues: Synthesis and evaluation of the carbonic anhydrase inhibitory activities. Eur J Med Chem 2021; 218:113360. [PMID: 33773285 DOI: 10.1016/j.ejmech.2021.113360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
As a front-runner selective CA IX inhibitor currently in Phase Ib/II clinical trials, SLC-0111 has been herein exploited as a lead molecule for development of new different sets of N-phenyl-2-(phenylsulfonyl)acetamides/propanamides incorporating different functionalities; primary sulfonamide (5a-f), free carboxylic (8a, 8d), ethyl ester (8b, 8e), acetyl (8c, 8f) and nitro (10a, 10b), as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. All the prepared analogues have been examined for their CA inhibitory activities towards four human (h) isoenzymes, hCA I, II, IX and XII. Interestingly, replacement of SLC-0111 ureido linker with the flexible sulfonyl acetamide linker, as well as linker branching and elongation strategies successfully enhanced the inhibitory action toward hCA IX isoform, such as in sulfones 5a-d and 5f which displayed better activity than SLC-0111. Furthermore, sulfonamide-based sulfone (5f) and carboxylic acid-based sulfones (8a and 8d) demonstrated interesting selectivity toward the tumor-related hCA IX isoform over both hCA I and hCA II, which suggests them as promising candidates for further development as potential anticancer candidates. Thereafter, the anti-proliferative action for sulfones 5f, 8a and 8d was examined against breast (MCF-7) and colon (HCT-116) cancer cell lines. Also, sulfone 5f was further assessed for its impact on the cell cycle progression and apoptosis in HCT-116 cells.
Collapse
Affiliation(s)
- Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, 72341, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| |
Collapse
|
43
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
44
|
El-Shahawy AAG. A Highly Cellular Uptake Ternary Nanocomposite Titanate Nano-Tubes/CuFe₂O₄/Zn-Fe Could Induce Intrinsic Apoptosis of Prostate Cancer Cells: An Extended Study. J Biomed Nanotechnol 2021; 17:303-311. [PMID: 33785100 DOI: 10.1166/jbn.2021.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our previously prepared ternary nanocomposite TNT/CuFe₂O₄/Zn-Fe was highly engulfed by PC-3 cells, activated cytotoxicity that was dosage and time-subordinated, and demonstrated morphological alteration, which is one of the common characteristics of apoptotic cells. This prolonged study aimed to investigate other items. The study performed assays as Annexin V-FITC, flow cytometry, DNA ladder electrophoresis, and ROS assay for apoptosis detection, cell cycle analysis, DNA fragmentation, and ROS generation, respectively. In the PC-3-treated cells, the early and late phases of apoptosis with different percentages and DNA fragmentation were determined. Besides, the PC-3 cell cycle revealed the three major cell distribution different phases of the cycle (G1, S, and G2/M), and the Sub G1, which corresponded to apoptotic cells. The results proved the presence of ROS that triggered the intrinsic apoptotic pathway, which was confirmed through a decrease in (Bcl-2), the release of cytochrome c, activation of caspase-9, and caspase-3. To conclude, the ternary nanocomposite TNT/CuFe₂O₄/Zn-Fe achieved biochemical features alterations and could induce intrinsic apoptosis of PC-3 cells. The planned work of the current research will illuminate the arrested phase in the cell cycle through studying tumor suppressor genes such as p53 and Retinoblastoma RB, c-Myc oncogene, and cyclin-dependent kinases (Cdks) as well as their regulators.
Collapse
Affiliation(s)
- Ahmed A G El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
45
|
Khan FM, Abbasi MA, Aziz‐ur‐Rehman, Siddiqui SZ, Sadiq Butt AR, Raza H, Zafar A, Ali Shah SA, Shahid M, Seo S. Convergent synthesis of carbonic anhydrase inhibiting bi‐heterocyclic benzamides: Structure–activity relationship and mechanistic explorations through enzyme inhibition, kinetics, and computational studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Farhan M. Khan
- Department of Chemistry Government College University Lahore Pakistan
| | | | - Aziz‐ur‐Rehman
- Department of Chemistry Government College University Lahore Pakistan
| | | | | | - Hussain Raza
- College of Natural Sciences, Department of Biological Science Kongju National University Gongju South Korea
| | - Ayesha Zafar
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Syed A. Ali Shah
- Faculty of Pharmacy and Atta‐ur‐Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3 Universiti Teknologi MARA, Puncak Alam Campus Bandar Puncak Alam Malaysia
| | - Muhammad Shahid
- Department of Biochemistry University of Agriculture Faisalabad Pakistan
| | - Sung‐Yum Seo
- College of Natural Sciences, Department of Biological Science Kongju National University Gongju South Korea
| |
Collapse
|
46
|
Yousef RG, Sakr HM, Eissa IH, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Abulkhair HS, El-Adl K. New quinoxaline-2(1 H)-ones as potential VEGFR-2 inhibitors: design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. NEW J CHEM 2021. [DOI: 10.1039/d1nj02509k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eleven new quinoxaline derivatives were designed and synthesized as modified VEGFR-2 inhibitors of our previous work.
Collapse
Affiliation(s)
- Reda G. Yousef
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Helmy M. Sakr
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed. B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A. Elhendawy
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mohamed M. Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University – Egypt, International Costal Road, New Damietta, Egypt
| | - Khaled. El-Adl
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
47
|
Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem 2021; 209:112923. [PMID: 33121862 DOI: 10.1016/j.ejmech.2020.112923] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) is an enzyme and a very omnipresent zinc metalloenzyme which catalyzed the reversible hydration and dehydration of carbon dioxide and bicarbonate; a reaction which plays a crucial role in many physiological and pathological processes. Carbonic anhydrase is present in human (h) with sixteen different isoforms ranging from hCA I-hCA XV. All these isoforms are widely distributed in different tissues/organs and are associated with a range of pivotal physiological activities. Due to their involvement in various physiological roles, inhibitors of different human isoforms of carbonic anhydrase have found clinical applications for the treatment of various diseases including glaucoma, retinopathy, hemolytic anemia, epilepsy, obesity, and cancer. However, clinically used inhibitors of CA (acetazolamide, brinzolamide, dorzolamide, etc.) are not selective causing the undesirable side effects. One of the major hurdles in the design and development of carbonic anhydrase inhibitors is the lack of balanced isoform selectivity which thrived to new chemotypes. In this review, we have compiled the recent strategies of various researchers related to the development of carbonic anhydrase inhibitors belonging to different structural classes like pyrimidine, pyrazoline, selenourea, isatin, indole, etc. This review also summarizes the structure-activity relationships, analysis of isoform selectivity including mechanistic and in silico studies to afford ideas and to provide focused direction for the design and development of novel isoform-selective carbonic anhydrase inhibitors with therapeutic implications.
Collapse
Affiliation(s)
- Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sandeep Rulhania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
48
|
Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany ABM, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem 2020; 107:104532. [PMID: 33334586 DOI: 10.1016/j.bioorg.2020.104532] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/09/2023]
Abstract
A series of new VEGFR-2 inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against hepatocellular carcinoma (HepG-2 cell line). Compound 29b (IC50 = 4.33 ± 0.2 µg/ml) was found to be the most potent derivative as it has showed to be more active than doxorubicin (IC50 = 4.50 ± 0.2 µg/ml) and 78% of sorafenib activity (IC50 = 3.40 ± 0.25 µg/ml). The inhibitory profiles against VEGFR-2 were also assessed for the most promising candidates (16b, 20c, 22b, 24a, 24b, 28c, 28e, 29a, 29b and 29c). Compounds 29b, 29c and 29a exhibited potent inhibitory activities towards VEGFR-2 at IC50 values of 3.1 ± 0.04, 3.4 ± 0.05 and 3.7 ± 0.06 µM, respectively, comparing sorafenib (IC50 = 2.4 ± 0.05 µM). Furthermorer, compound 29b induced apoptosis and arrested the cell cycle growth at G2/M phase. Additionally, in vivo antitumor experiments revealed that compounds 29b and 29c have significant tumor growth inhibition. The test of immuno-histochemical expression of activated caspase-3 revealed that there is a time-dependent increase in cleaved caspase-3 protein expression upon exposure of HepG-2 cells to compound 29b. Moreover, the fibroblastic proliferative index test revealed that compound 29b could attenuate liver fibrosis. Docking studies also supported the results concluded from the biological screening via prediction of the possible binding interactions of the target compounds with VEGFR-2 active sites using the crystal structure of VEGFR-2 downloaded from the Protein Data Bank, (PDB ID: 2OH4) using Discovery Studio 2.5 software. Further structural optimization of the most active candidates may serve as a useful strategy for getting new lead compounds in search for powerful and selective antineoplastic agents.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | | | - Mostafa A Elhendawy
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
49
|
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35:1555-1561. [PMID: 32746643 PMCID: PMC7470080 DOI: 10.1080/14756366.2020.1801674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana Sharonova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
50
|
El-Adl K, El-Helby AGA, Ayyad RR, Mahdy HA, Khalifa MM, Elnagar HA, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorg Med Chem 2020; 29:115872. [PMID: 33214036 DOI: 10.1016/j.bmc.2020.115872] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hamdy A Elnagar
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A Elhendawy
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt; National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|