1
|
Manoilenko S, Dippe M, Fuchs T, Eisenschmidt-Bönn D, Ziegler J, Bauer AK, Wessjohann LA. Enzymatic one-step synthesis of natural 2-pyrones and new-to-nature derivatives from coenzyme A esters. J Biotechnol 2024; 388:72-82. [PMID: 38616039 DOI: 10.1016/j.jbiotec.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6'H1 and AtF6'H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile "green" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modeling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.
Collapse
Affiliation(s)
- Svitlana Manoilenko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Martin Dippe
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| | - Tristan Fuchs
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Daniela Eisenschmidt-Bönn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Anne-Katrin Bauer
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| |
Collapse
|
2
|
Paul A, Roy PK, Babu NK, Singh S. Clotrimazole causes membrane depolarization and induces sub G 0 cell cycle arrest in Leishmania donovani. Acta Trop 2024; 252:107139. [PMID: 38307362 DOI: 10.1016/j.actatropica.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 μM, 12.75 ± 0.35 μM and 73 ± 1.41 μM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
3
|
Yuan C, Wang Q, Feng T, Liu J, Cheung W, Wang G, Sun S, Xing Y. Transition‐metal free synthesis of
2‐pyrones
by [3 + 3] annulation of cyclopropenones and sulfur ylides. J Heterocycl Chem 2023. [DOI: 10.1002/jhet.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Cheng Yuan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
| | - Qingqing Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
| | - Tao Feng
- School of Pharmaceutical Sciences South‐Central University for Nationalities Wuhan China
| | - Jikai Liu
- School of Pharmaceutical Sciences South‐Central University for Nationalities Wuhan China
| | - William Cheung
- Department of Chemistry Hofstra University Hempstead New York USA
| | - Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
- School of Pharmaceutical Sciences South‐Central University for Nationalities Wuhan China
| | - Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
| | - Yalan Xing
- Department of Chemistry Hofstra University Hempstead New York USA
| |
Collapse
|
4
|
Wang G, Huang J, Zhang L, Han J, Zhang X, Huang J, Fu Z, Huang W. N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Lima ML, Abengózar MA, Torres-Santos EC, Borborema SET, Godzien J, López-Gonzálvez Á, Barbas C, Rivas L, Tempone AG. Energy metabolism as a target for cyclobenzaprine: A drug candidate against Visceral Leishmaniasis. Bioorg Chem 2022; 127:106009. [PMID: 35841672 DOI: 10.1016/j.bioorg.2022.106009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Leishmaniases have a broad spectrum of clinical manifestations, ranging from a cutaneous to a progressive and fatal visceral disease. Chemotherapy is nowadays the almost exclusive way to fight the disease but limited by its scarce therapeutic arsenal, on its own compromised by adverse side effects and clinical resistance. Cyclobenzaprine (CBP), an FDA-approved oral muscle relaxant drug has previously demonstrated in vitro and in vivo activity against Leishmania sp., but its targets were not fully unveiled. This study aimed to define the role of energy metabolism as a target for the leishmanicidal mechanisms of CBP. Methodology to assess CBP leishmanicidal mechanism variation of intracellular ATP levels using living Leishmania transfected with a cytoplasmic luciferase. Induction of plasma membrane permeability by assessing depolarization with DiSBAC(2)3 and entrance of the vital dye SYTOX® Green. Mitochondrial depolarization by rhodamine 123 accumulation. Mapping target site within the respiratory chain by oxygen consumption rate. Reactive oxygen species (ROS) production using MitoSOX. Morphological changes by transmission electron microscopy. CBP caused on L. infantum promastigotes a decrease of intracellular ATP levels, with irreversible depolarization of plasma membrane, the collapse of the mitochondrial electrochemical potential, mild uncoupling of the respiratory chain, and ROS production, with ensuing intracellular Ca2+ imbalance and DNA fragmentation. Electron microscopy supported autophagic features but not a massive plasma membrane disruption. The severe and irreversible mitochondrial damage induced by CBP endorsed the bioenergetics metabolism as a relevant target within the lethal programme induced by CBP in Leishmania. This, together with the mild-side effects of this oral drug, endorses CBP as an appealing novel candidate as a leishmanicidal drug under a drug repurposing strategy.
Collapse
Affiliation(s)
- Marta Lopes Lima
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil
| | - Maria A Abengózar
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | | | | | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain.
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
| | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Borkar MR, Martis EAF, Nandan S, Patil RH, Shelar A, Iyer KR, Raikuvar K, Desle D, Coutinho EC. Identification of potential antileishmanial 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-ones, in vitro metabolic stability, cytotoxicity and molecular modeling studies. Chem Biol Interact 2022; 351:109758. [PMID: 34826397 DOI: 10.1016/j.cbi.2021.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022]
Abstract
We report the synthesis and in vitro evaluation of 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one derivatives against Leishmania donovani. Amongst the compound library synthesized, molecules 3d, 3f, 3h, 3i, 3l, and 3m demonstrated substantial dose-dependent killing of the promastigotes. Their IC50 values range from 55.0 to 77.0 μg/ml, with 3m (IC50 55.75 μg/ml) being equipotent with amphotericin B (IC50 50.0 μg/ml, used as standard). The most active compound 3m, is metabolically stable in rat liver microsomes. Furthermore, the molecules are highly specific against leishmania as shown by their weak antibacterial and antifungal activity. In vitro cytotoxicity studies show the compounds lack any cytotoxicity. Furthermore, molecular modeling studies show plausibility of binding to Leishmania donovani topoisomerase 1 (LdTop1). Structure activity relationships reveal bulky substitutions on the pyridone nitrogen are well-tolerated, and such compounds have better binding affinity. Intramolecular hydrogen bonds confer some rigidity to the molecules, rendering a degree of planarity akin to topotecan. Taken together, we emphasis the merits of molecules possessing the 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one skeleton as potential antileishmanial agents warranting further investigation.
Collapse
Affiliation(s)
- Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India; Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Sunder Nagar, Kalina, Santacruz (E), Mumbai, 400 098, India.
| | - Elvis A F Martis
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Sunder Nagar, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Santosh Nandan
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, 4110 007, India
| | - Krishna R Iyer
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Sunder Nagar, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Kavita Raikuvar
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Sunder Nagar, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Deepali Desle
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Sunder Nagar, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Evans C Coutinho
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Sunder Nagar, Kalina, Santacruz (E), Mumbai, 400 098, India
| |
Collapse
|
7
|
Lima ML, Amaral M, Borborema SET, Tempone AG. Evaluation of antileishmanial potential of the antidepressant escitalopram in Leishmania infantum. J Pharm Biomed Anal 2021; 209:114469. [PMID: 34838348 DOI: 10.1016/j.jpba.2021.114469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Neglected tropical diseases (NTDs) such as visceral leishmaniasis (VL) present a limited and toxic therapeutic arsenal, and drug repositioning represents a safe and cost-effective approach. In this work, we investigated the antileishmanial potential and the mechanism of lethal action of the antidepressant escitalopram. The efficacy of escitalopram was determined ex-vivo using the intracellular Leishmania (L.) infantum amastigote model and the mammalian cytotoxicity was determined by the colorimetric MTT assay. The cellular and molecular alterations induced by the drug were investigated using spectrofluorimetry, a luminescence assay and flow cytometry. Our data revealed that escitalopram was active and selective against L. infantum parasites, with an IC50 value of 25 µM and a 50% cytotoxic concentration (CC50) of 184 µM. By using the fluorescent probes SYTOX® Green and DiSBAC2(3), the drug showed no alterations in the plasma membrane permeability nor in the electric potential of the membrane (∆ψp); however, after a short-time incubation, the drug caused a dose-dependent up-regulation of the calcium levels, leading to the depolarization of the mitochondrial membrane potential (∆ψm) and a reduction of the ATP levels. No up-regulation of reactive oxygen (ROS) was observed. In the cell cycle analysis, escitalopram induced a dose-dependent increase of the parasites at the sub G0/G1 stage, representing fragmented DNA. Escitalopram presented a selective antileishmanial activity, with disruption of single mitochondrion and interference in the cell cycle. Approved drugs such as escitalopram may represent a promising approach for NTDs and can be considered in future animal efficacy studies.
Collapse
Affiliation(s)
- Marta Lopes Lima
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maiara Amaral
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | | | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil.
| |
Collapse
|
8
|
Higher oral efficacy of ravuconazole in self-nanoemulsifying systems in shorter treatment in experimental chagas disease. Exp Parasitol 2021; 228:108142. [PMID: 34375652 DOI: 10.1016/j.exppara.2021.108142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
We investigated the in vitro activity and selectivity, and in vivo efficacy of ravuconazole (RAV) in self-nanoemulsifying delivery system (SNEDDS) against Trypanosoma cruzi. Novel formulations of this poorly soluble C14-α-demethylase inhibitor may improve its efficacy in the experimental treatment. In vitro activity was determined in infected cardiomyocytes and efficacy in vivo evaluated in terms of parasitological cure induced in Y and Colombian strains of T. cruzi-infected mice. In vitro RAV-SNEDDS exhibited significantly higher potency of 1.9-fold at the IC50 level and 2-fold at IC90 level than free-RAV. No difference in activity with Colombian strain was observed in vitro. Oral treatment with a daily dose of 20 mg/kg for 30 days resulted in 70% of cure for RAV-SNEDDS versus 40% for free-RAV and 50% for 100 mg/kg benznidazole in acute infection (T. cruzi Y strain). Long-term treatment efficacy (40 days) was able to cure 100% of Y strain-infected animals with both RAV preparations. Longer treatment time was also efficient to increase the cure rate with benznidazole (Y and Colombian strains). RAV-SNEDDS shows greater efficacy in a shorter time treatment regimen, it is safe and could be a promising formulation to be evaluated in other pre-clinical models to treat T. cruzi and fungi infections.
Collapse
|
9
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Tan JF, Bormann CT, Severin K, Cramer N. Alkynyl triazenes enable divergent syntheses of 2-pyrones. Chem Sci 2021; 12:9140-9145. [PMID: 34276943 PMCID: PMC8261734 DOI: 10.1039/d1sc02583j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
The 2-pyrone motif occurs frequently in bioactive natural products and is appreciated as synthetic intermediates. However, only few methods allow for diversifying functional group modifications on this relevant heterocycle. The distinct properties of 1-alkynyl triazenes promote a smooth addition of propiolic acids across the triple bond. Addition of catalytic amounts of silver salt induces cyclization to 2-pyrones. Depending on the reaction temperature, either 6-triazenyl or 5-triazenyl 2-pyrones are selectively formed. The triazenyl unit is subsequently replaced by a variety of valuable groups in a one-pot process yielding for instance 2-fluoro pyrones. The substitution occurs with an intriguing 1,5-carbonyl transposition. Moreover, the triazenyl group serves as traceless activating group for subsequent Diels-Alder cycloadditions and as a constituting unit for rare fused aminopyrazole pyrone heterocycles.
Collapse
Affiliation(s)
- Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| | - Carl Thomas Bormann
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| |
Collapse
|
11
|
Mishra S, Parmar N, Chandrakar P, Sharma CP, Parveen S, Vats RP, Seth A, Goel A, Kar S. Design, synthesis, in vitro and in vivo biological evaluation of pyranone-piperazine analogs as potent antileishmanial agents. Eur J Med Chem 2021; 221:113516. [PMID: 33992928 DOI: 10.1016/j.ejmech.2021.113516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The current therapeutic regimen for visceral leishmaniasis is inadequate and unsatisfactory due to toxic side effects, high cost and emergence of drug resistance. Alternative, safe and affordable antileishmanials are, therefore, urgently needed and toward these we synthesized a series of arylpiperazine substituted pyranone derivatives and screened them against both in vitro and in vivo model of visceral leishmaniasis. Among 22 synthesized compounds, 5a and 5g showed better activity against intracellular amastigotes with an IC50 of 11.07 μM and 15.3 μM, respectively. In the in vivo, 5a significantly reduced hepatic and splenic amastigotes burden in Balb/c mice model of visceral leishmaniasis. On a mechanistic node, we observed that 5a induced direct Leishmania killing via mitochondrial dysfunction like cytochrome c release and loss of membrane potential. Taken together, our results suggest that 5a is a promising lead for further development of antileishmanial drugs.
Collapse
Affiliation(s)
- Shachi Mishra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Naveen Parmar
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Pragya Chandrakar
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Chandra Prakash Sharma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sajiya Parveen
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India; Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ravi P Vats
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India; Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Anuradha Seth
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Atul Goel
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India; Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Susanta Kar
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
12
|
Zuma AA, de Souza W. Chagas Disease Chemotherapy: What Do We Know So Far? Curr Pharm Des 2021; 27:3963-3995. [PMID: 33593251 DOI: 10.2174/1381612827666210216152654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| |
Collapse
|
13
|
In vitro anti-Trypanosoma cruzi activity enhancement of curcumin by its monoketone tetramethoxy analog diveratralacetone. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100031. [PMID: 35284878 PMCID: PMC8906099 DOI: 10.1016/j.crpvbd.2021.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
Chagas disease is a tropical disease caused by the protozoan parasite Trypanosoma cruzi and currently affects millions of people worldwide. Curcumin (CUR), the major constituent of turmeric spice (dry powder of Curcuma longa L. plant rhizomes and roots), exhibits antiparasitic activity against protozoan parasites in vitro. However, because of its chemical instability, poor cellular uptake and limited bioavailability it is not suitable for clinical use. The objective of this study was to synthesize and evaluate in vitro CUR monoketone analog dibenzalacetone (DBA 1) and its non-phenolic, methoxy (2–4) and chloro (5) derivatives for better stability and bioavailability against T. cruzi. Diveratralacetone, the tetramethoxy DBA (DBA 3), was found to be the CUR analog with most enhanced activity against the amastigote forms of four strains of T. cruzi tested (Brazil, CA-I/72, Sylvio X10/4 and Sylvio X10/7) with 50% inhibitory concentration (IC50) < 10 μM (1.51–9.63 μM) and selectivity index (SI) > 10 (C2C12 non-infected mammalian cells). This was supplemented by time-course assessment of its anti-T. cruzi activity. DBA 1 and its dimethoxy (DBA 2) and hexamethoxy (DBA 4) derivatives were substantially less active. The inactivity of dichloro-DBA (DBA 5) was indicative of the important role played by oxygenated groups such as methoxy in the terminal aromatic rings in the DBA molecule, particularly at para position to form reactive oxygen species essential for anti-T. cruzi activity. Although the DBAs and CUR were toxic to infected mammalian cells in vitro, in a mouse model, both DBA 3 and CUR did not exhibit acute toxicity or mortality. These results justify further optimization and in vivo anti-T. cruzi activity evaluation of the inexpensive diveratralacetone for its potential use in treating Chagas disease, a neglected parasitic disease in economically challenged tropical countries. First report on in vitro activity of dibenzalacetone and its methoxy derivatives against Trypanosoma cruzi. Diveratralacetone (tetramethoxy DBA 3) was the most active against four strains tested. DBA 3 showed values of IC50 < 10 μM against all strains evaluated. DBA 3 showed SI > 10 in non-infected C2C12 cell lines. DBA 3 is a hit compound for further in vivo studies against T. cruzi parasites.
Collapse
|
14
|
Mesquita JT, Romanelli MM, de Melo Trinconi Trinconi Cm C, Guerra JM, Taniwaki NN, Uliana SRB, Reimão JQ, Tempone AG. Repurposing topical triclosan for cutaneous leishmaniasis: Preclinical efficacy in a murine Leishmania (L.) amazonensis model. Drug Dev Res 2020; 83:285-295. [PMID: 32767443 DOI: 10.1002/ddr.21725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023]
Abstract
Leishmaniasis remains an important neglected tropical infection caused by the protozoan Leishmania and affects 12 million people in 98 countries. The treatment is limited with severe adverse effects. In the search for new therapies, the drug repositioning and combination therapy have been successfully applied to neglected diseases. The aim of the present study was to evaluate the in vitro and in vivo anti-Leishmania (Leishmania) amazonensis potential of triclosan, an approved topical antimicrobial agent used for surgical procedures. in vitro phenotypic studies of drug-treated parasites were performed to evaluate the lethal action of triclosan, accompanied by an isobolographic ex-vivo analysis with the association of triclosan and miltefosine. The results showed that triclosan has activity against L. (L.) amazonensis intracellular amastigotes, with a 50% inhibitory concentration of 16 μM. By using fluorescent probes and transmission electron microscopy, a pore-forming activity of triclosan toward the parasite plasma membrane was demonstrated, leading to depolarization of the mitochondrial membrane potential and reduction of the reactive oxygen species levels in the extracellular promastigotes. The in vitro interaction between triclosan and miltefosine in the combination therapy assay was classified as additive against intracellular amastigotes. Leishmania-infected mice were treated with topical triclosan (1% base cream for 14 consecutive days), and showed 89% reduction in the parasite burden. The obtained results contribute to the investigation of new alternatives for the treatment of cutaneous leishmaniasis and suggest that the coadministration of triclosan and miltefosine should be investigated in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Reni Bortolin Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Quero Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | | |
Collapse
|
15
|
Sebhaoui J, El Bakri Y, Lai CH, Karthikeyan S, Anouar EH, Mague JT, Essassi EM. Unexpected synthesis of novel 2-pyrone derivatives: crystal structures, Hirshfeld surface analysis and computational studies. J Biomol Struct Dyn 2020; 39:4859-4877. [PMID: 32571166 DOI: 10.1080/07391102.2020.1780943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Here we report synthesis of three new compounds namely, 1-acetyl-1H-benzimidazolo-2(3H)-one (I), N-(5-acetyl-6-methyl-2-oxo-2H-pyran-4-yl)-N-(2-acetamidophenyl)acetamide (II) and N-(2-acetamidophenyl)-N-2-oxo-2H-pyran-4-yl)acetamide (III) have been synthesized and characterized by single crystal X-ray diffraction. Compounds I and II crystallize in the monoclinic space groups P21/n, and P21/c, respectively, while III crystallizes in the triclinic space group P-1. The theoretical parameters of I-III have been calculated through density functional theory (DFT) by using the hybrid functional B3LYP and basis set 6-311++G**. These theoretical parameters have been compared with the experimental ones obtained by XRD. The significant intermolecular interactions arising in crystal packing are rationalized by means of the Hirshfeld surface analysis method. The major intermolecular contacts in the Hirshfeld surfaces of I-III are from H…H contacts. In addition, binding modes of I-III within Tyrosine-protein kinase JAK2 were investigated using molecular docking and molecular dynamics simulation studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jihad Sebhaoui
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Youness El Bakri
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco.,South Ural State University, Chelyabinsk, Russian Federation
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Subramani Karthikeyan
- Organic Chemistry Department, Science Faculty, RUDN University, Moscow, Russian Federation
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - El Mokhtar Essassi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| |
Collapse
|
16
|
Fernandes NDS, Desoti VC, Dias A, da Silva YC, de Azevedo Dos Santos AP, Passarini GM, Nakamura CV, da Veiga Junior VF. Styrylpyrone, isolated from an Amazon plant, induces cell cycle arrest and autophagy in Leishmania amazonensis. Nat Prod Res 2020; 35:4729-4733. [PMID: 31983230 DOI: 10.1080/14786419.2020.1715395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The search for bioactive compounds against diseases is imperative and the richness of the Amazon provides a large source to be explored. Current therapies for the treatment of parasitic infections have severe side effects and low efficacy, which makes the development of an effective chemotherapy extremely important. In this study, we describe the isolation of styrylpyrone 4-methoxy-6-(11,12-methylenedioxy-trans-styryl)-2-pyrone (SP), from the Amazonian tree species, Aniba panurensis, the in vitro activity against Leishmania amazonensis promastigotes, and its in silico pharmacokinetics properties. The results showed morphological and ultrastructural alterations, cell cycle impairment, increased reactive oxygen species production, accumulation of lipid bodies and formation of autophagic vacuoles in SP-treated parasites. In silico studies revealed that the compound has a high drug-score, which is encouraging for further investigation. Our results indicate that SP is a promising drug candidate, which induces alterations in L. amazonensis leading to parasite death through cell cycle arrest and autophagy.
Collapse
Affiliation(s)
- Nilma de Souza Fernandes
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Paraná, Brazil.,Departamento de Química, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vânia Cristina Desoti
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Alcilene Dias
- Departamento de Química, Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Ana Paula de Azevedo Dos Santos
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.,Plataforma de Bioensaios em Malária e Leishmaniose, Fundação Oswaldo Cruz, Porto Velho, Rondônia, Brazil
| | - Guilherme Matos Passarini
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.,Plataforma de Bioensaios em Malária e Leishmaniose, Fundação Oswaldo Cruz, Porto Velho, Rondônia, Brazil
| | - Celso Vataru Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Valdir Florêncio da Veiga Junior
- Departamento de Química, Universidade Federal do Amazonas, Manaus, Brazil.,Departamento de Engenharia Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Romanelli MM, da Costa-Silva TA, Cunha-Junior E, Dias Ferreira D, Guerra JM, Galisteo AJ, Pinto EG, Barbosa LRS, Torres-Santos EC, Tempone AG. Sertraline Delivered in Phosphatidylserine Liposomes Is Effective in an Experimental Model of Visceral Leishmaniasis. Front Cell Infect Microbiol 2019; 9:353. [PMID: 31737574 PMCID: PMC6828611 DOI: 10.3389/fcimb.2019.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Liposomes containing phosphatidylserine (PS) has been used for the delivery of drugs into the intramacrophage milieu. Leishmania (L.) infantum parasites live inside macrophages and cause a fatal and neglected viscerotropic disease, with a toxic treatment. Sertraline was studied as a free formulation (SERT) and also entrapped into phosphatidylserine liposomes (LP-SERT) against intracellular amastigotes and in a murine model of visceral leishmaniasis. LP-SERT showed a potent activity against intracellular amastigotes with an EC50 value of 2.5 μM. The in vivo efficacy of SERT demonstrated a therapeutic failure. However, when entrapped into negatively charged liposomes (−58 mV) of 125 nm, it significantly reduced the parasite burden in the mice liver by 89% at 1 mg/kg, reducing the serum levels of the cytokine IL-6 and upregulating the levels of the chemokine MCP-1. Histopathological studies demonstrated the presence of an inflammatory infiltrate with the development of granulomas in the liver, suggesting the resolution of the infection in the treated group. Delivery studies showed fluorescent-labeled LP-SERT in the liver and spleen of mice even after 48 h of administration. This study demonstrates the efficacy of PS liposomes containing sertraline in experimental VL. Considering the urgent need for VL treatments, the repurposing approach of SERT could be a promising alternative.
Collapse
Affiliation(s)
| | | | - Edezio Cunha-Junior
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | | | | - Andres Jimenez Galisteo
- Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | |
Collapse
|
18
|
Inacio JDF, Fonseca MS, Almeida-Amaral EE. (-)-Epigallocatechin 3- O-Gallate as a New Approach for the Treatment of Visceral Leishmaniasis. JOURNAL OF NATURAL PRODUCTS 2019; 82:2664-2667. [PMID: 31503486 DOI: 10.1021/acs.jnatprod.9b00632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In addition to generating side effects and resistance, treatment for visceral leishmaniasis remains mostly ineffective and expensive, and it has a long duration. Thus, natural products are an important alternative for treatment of the disease. In this study, we demonstrate the in vitro and in vivo activity of (-)-epigallocatechin 3-O-gallate (1) against Leishmania infantum. Compound 1 reduced the infection index with an EC50 value of 2.6 μM. Oral administration of 1 on L. infantum-infected BALB/c mice was capable to reduce the liver-parasite load with a ED50 and ED90 value of 12.4 and 21.5 mg/kg/day, respectively. Together, the results demonstrated 1 as a new compound for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Job D F Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC) , Fundação Oswaldo Cruz - FIOCRUZ , Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos , 21045-900 , Rio de Janeiro , RJ , Brazil
| | - Myslene S Fonseca
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC) , Fundação Oswaldo Cruz - FIOCRUZ , Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos , 21045-900 , Rio de Janeiro , RJ , Brazil
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC) , Fundação Oswaldo Cruz - FIOCRUZ , Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos , 21045-900 , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
19
|
Lima ML, Romanelli MM, Borborema SE, Johns DM, Migotto AE, Lago JHG, Tempone AG. Antitrypanosomal activity of isololiolide isolated from the marine hydroid Macrorhynchia philippina (Cnidaria, Hydrozoa). Bioorg Chem 2019; 89:103002. [DOI: 10.1016/j.bioorg.2019.103002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 01/11/2023]
|
20
|
Brito JR, da Costa-Silva TA, Tempone AG, Ferreira EA, Lago JHG. Dibenzylbutane neolignans from Saururus cernuus L. (Saururaceae) displayed anti-Trypanosoma cruzi activity via alterations in the mitochondrial membrane potential. Fitoterapia 2019; 137:104251. [PMID: 31271783 DOI: 10.1016/j.fitote.2019.104251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
The MeOH extract from leaves of Saururus cernuus L. (Saururaceae) displayed in vitro activity against trypomastigote forms of T. cruzi (100% of parasite death at 200 μg/mL), suggesting the presence of bioactive compounds. Thus, the bioactivity-guided fractionation was carried out, leading to the isolation of three related neolignan derivatives, identified as threo-austrobailignan-5 (1), threo-austrobailignan-6 (2), and threo-dihydroguaiaretic acid (3). Anti-T. cruzi activity of compounds 1-3 was performed against cell-derived trypomastigotes and intracellular amastigotes. Additionally, the mammalian cytotoxicity was investigated using NCTC cells. Compound 2 was the most effective against extracellular trypomastigotes with IC50 of 3.7 μM, while compound 3 showed activity in both clinically relevant forms of the parasite, trypomastigotes and amastigotes, with IC50 values of 7.0 and 16.2 μM, respectively. However, the structurally related compound 1 was inactive. Based on these results, compounds 2 and 3 were selected to evaluate the mechanism of cellular death. Compound 2 induced alteration in the plasma membrane permeability and consequently in the ROS levels after 120 min of incubation. By using flow cytometry and fluorescence microscopy, compound 3 showed alterations in the mitochondrial membrane potential (ΔΨm) of trypomastigotes. Considering the promising chemical and biological properties of neolignans 2 and 3, these compounds could be used as starting points to develop new lead compounds for Chagas disease.
Collapse
Affiliation(s)
- Juliana R Brito
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP 09972-270, Brazil
| | - Thais A da Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP 09210-180, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, SP 01246-902, Brazil
| | - Edgard A Ferreira
- School of Engineering, Mackenzie Presbyterian University, São Paulo, SP 01302-907, Brazil.
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP 09210-180, Brazil.
| |
Collapse
|
21
|
Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi. Eur J Med Chem 2019; 176:162-174. [PMID: 31103897 DOI: 10.1016/j.ejmech.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
Abstract
Chagas disease is a neglected protozoan disease that affects more than eight million people in developing countries. Due to the limited number and toxicity profiles of therapies in current use, new drugs are urgently needed. In previous studies, we reported the isolation of two related antitrypanosomal neolignans from Nectandra leucantha (Lauraceae). In this work, a semi-synthetic library of twenty-three neolignan derivatives was prepared to explore synthetically accessible structure activity relationships (SAR) against Trypanosoma cruzi. Five compounds demonstrated activity against trypomastigotes (IC50 values from 8 to 64 μM) and eight showed activity against intracellular amastigotes (IC50 values from 7 to 16 μM). Eighteen derivatives demonstrated no mammalian cytotoxicity up to 200 μM. The phenolic acetate derivative of natural dehydrodieugenol B was effective against both parasite forms and eliminated 100% of amastigotes inside macrophages. This compound caused rapid and intense depolarization of the mitochondrial membrane potential, with decreased levels of intracellular reactive oxygen species being observed. Fluorescence assays demonstrated that this derivative affected neither the permeability nor the electric potential of the parasitic plasma membrane, an effect also corroborated by scanning electron microscopy studies. Structure-activity relationship studies (SARs) demonstrated that the presence of at least one allyl side chain on the biaryl ether core was important for antitrypanosomal activity, and that the free phenol is not essential. This set of neolignan derivatives represents a promising starting point for future Chagas disease drug discovery studies.
Collapse
|
22
|
Fracasso M, Bottari NB, da Silva AD, Grando TH, Pillat MM, Ulrich H, Vidal T, de Andrade CM, Monteiro SG, Nascimento LFN, Miletti LC, Schafer da Silva A. Effects of resveratrol on the differentiation fate of neural progenitor cells of mouse embryos infected with Trypanosoma cruzi. Microb Pathog 2019; 132:156-161. [PMID: 31029718 DOI: 10.1016/j.micpath.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
Chagas disease (CD) affecting about 7 million people is caused by the flagellate protozoan Trypanosoma cruzi. The central nervous system (CNS) is an important site for T. cruzi persistence in the host during the chronic phase of infection, because the protozoan may pass the blood-brain barrier and may cause motor and cognitive neuronal damage. Thinking about avoiding or minimizing these negative effects, it is hypothesized that resveratrol (RSV), a component with several medicinal properties has beneficial effects on the CNS. The objective of this study was to investigate, whether T. cruzi infection interferes with neurogenesis and gliogenesis of embryos of infected mice females, and whether RSV would be able to avoid or minimize these changes caused by CD. RSV is a polyphenol found in grapes and widely studied for its neuroprotective and antioxidant properties. In addition, we investigated the role caused by the parasite during congenital infection and CNS development. Embryos and their brains were PCR-positive for T. cruzi. For this study, NPCs obtained from telencephalon of infected and uninfected embryos and were cultured in presence of resveratrol for forming neurospheres. The results demonstrated that the congenital transmission of T. cruzi influences CNS formation and neural fate, decreasing the number of neuroespheres and causing an elongation in the phases of the cell cycle. In addition, the parasite promoted an increase in neugliogenesis. Resveratrol was neuroprotective and prevented negative effects of the infection. Thus, we suggest the use of resveratrol as a therapeutic target for the treatment of neuroinflammation or as neuroprotective agent during Chagas disease, as it improves gliogenesis and restores neural migration.
Collapse
Affiliation(s)
- Mateus Fracasso
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aniélen D da Silva
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thirssa H Grando
- Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Instituto Federal Farroupilha (IFFar), Campus Frederico Westphalen, RS, Brazil
| | - Micheli M Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Tais Vidal
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cinthia M de Andrade
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Silvia G Monteiro
- Graduate Program in Veterinary Medicine, Department of Parasitology, Microbiology and Immunology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Luiz Flavio N Nascimento
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Lages, SC, Brazil
| | - Luiz Claudio Miletti
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Lages, SC, Brazil
| | | |
Collapse
|
23
|
Caldas LA, Yoshinaga ML, Ferreira MJ, Lago JH, de Souza AB, Laurenti MD, Passero LFD, Sartorelli P. Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae). Bioorg Chem 2019; 83:348-353. [DOI: 10.1016/j.bioorg.2018.10.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023]
|
24
|
El Ghozlani M, Bouissane L, Berkani M, Mojahidi S, Allam A, Menendez C, Cojean S, Loiseau PM, Baltas M, Rakib EM. Synthesis and biological evaluation against Leishmania donovani of novel hybrid molecules containing indazole-based 2-pyrone scaffolds. MEDCHEMCOMM 2019; 10:120-127. [PMID: 30774860 PMCID: PMC6350763 DOI: 10.1039/c8md00475g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/15/2018] [Indexed: 11/21/2022]
Abstract
A series of novel indazole-pyrone hybrids were synthesized by a one pot reaction between N-alkyl-6(5)-nitroindazoles and 2-pyrone (4-hydroxy-6-methyl-2H-pyran-2-one) using indium or stannous chloride as the reducing system in the presence of acetic acid in tetrahydrofuran. The hybrid molecules were obtained in good to excellent yields (72-92%) and characterized by NMR and single crystal X-ray diffraction. Nineteen compounds were tested in vitro against both Leishmania donovani (MHOM/ET/67/HU3, also called LV9) axenic and intramacrophage amastigotes. Among all, five compounds showed anti-leishmanial activity against intracellular L. donovani with an IC50 in the range of 2.25 to 62.56 μM. 3-(1-(3-Chloro-2-ethyl-2H-indazol-6-ylamino)ethylidene)-6-methyl-3H-pyran-2,4-dione 6f was found to be the most active compound for axenic amastigotes and intramacrophage amastigotes of L. donovani with IC50 values of 2.48 ± 1.02 μM and 2.25 ± 1.89 μM, respectively. However, the cytotoxicity of the most promising compound justifies further pharmacomodulations.
Collapse
Affiliation(s)
- M El Ghozlani
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - L Bouissane
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - M Berkani
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - S Mojahidi
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - A Allam
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| | - C Menendez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique , Université Paul Sabatier , UMR-CNRS 5068, 118 route de Narbonne , 31062 Toulouse cedex 9 , France
| | - S Cojean
- Chimiothérapie Antiparasitaire , UMR 8076 CNRS Faculté de Pharmacie , Université Paris-Saclay , Rue Jean-Baptiste Clément , F-92290 Chatenay-Malabry , France
| | - P M Loiseau
- Chimiothérapie Antiparasitaire , UMR 8076 CNRS Faculté de Pharmacie , Université Paris-Saclay , Rue Jean-Baptiste Clément , F-92290 Chatenay-Malabry , France
| | - M Baltas
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique , Université Paul Sabatier , UMR-CNRS 5068, 118 route de Narbonne , 31062 Toulouse cedex 9 , France
| | - E M Rakib
- Laboratoire de Chimie Organique et Analytiques , Faculté des Sciences et Techniques , Université Sultan Moulay Slimane , B.P. 523, Béni-Mellal , Morocco .
| |
Collapse
|
25
|
Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Antimicrob Agents Chemother 2018; 62:AAC.01928-18. [PMID: 30297370 DOI: 10.1128/aac.01928-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing affords the implementation of new treatments at a moderate cost and under a faster time-scale. Most of the clinical drugs against Leishmania share this origin. The antidepressant sertraline has been successfully assayed in a murine model of visceral leishmaniasis. Nevertheless, sertraline targets in Leishmania were poorly defined. In order to get a detailed insight into the leishmanicidal mechanism of sertraline on Leishmania infantum, unbiased multiplatform metabolomics and transmission electron microscopy were combined with a focused insight into the sertraline effects on the bioenergetics metabolism of the parasite. Sertraline induced respiration uncoupling, a significant decrease of intracellular ATP level, and oxidative stress in L. infantum promastigotes. Metabolomics evidenced an extended metabolic disarray caused by sertraline. This encompasses a remarkable variation of the levels of thiol-redox and polyamine biosynthetic intermediates, as well as a shortage of intracellular amino acids used as metabolic fuel by Leishmania Sertraline killed Leishmania through a multitarget mechanism of action, tackling essential metabolic pathways of the parasite. As such, sertraline is a valuable candidate for visceral leishmaniasis treatment under a drug repurposing strategy.
Collapse
|
26
|
Kapil S, Singh PK, Silakari O. An update on small molecule strategies targeting leishmaniasis. Eur J Med Chem 2018; 157:339-367. [DOI: 10.1016/j.ejmech.2018.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 02/08/2023]
|
27
|
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is one of the 17 neglected tropical diseases (NTDs) according to World Health Organization. It is estimated that 8-10 million people are infected worldwide, mainly in Latin America. Chagas disease is caused by the parasite Trypanosoma cruzi and is characterized by two phases: acute and chronic. The current therapy for Chagas disease is limited to drugs such as nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease. In addition, several side effects ranging from hypersensitivity to bone marrow depression and peripheral polyneuropathy have been associated with these drugs. Therefore, the current challenge is to find new effective and safe drugs against this NTD. The aim of this review is to describe the advances in the medicinal chemistry of new anti-chagasic compounds reported in the literature in the last five years. We report promising prototypes for drug discovery identified through target-based and phenotype-based strategies and present some important targets for the development of new synthetic compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil.
| | - Daniela Hartmann Jornada
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Rafael Consolin Chelucci
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Brazil
| | - Jean Leandro Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| |
Collapse
|
28
|
Shen Y, Wang C, Chen W, Cui S. Cascade reaction involving Diels–Alder cascade: modular synthesis of amino α-pyrones, indolines and anilines. Org Chem Front 2018. [DOI: 10.1039/c8qo00939b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cascade reaction involving Diels–Alder reaction for modular synthesis of amino α-pyrones, indolines and anilines is reported.
Collapse
Affiliation(s)
- Yangyong Shen
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Chaorong Wang
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Wei Chen
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou 310058
- China
| | - Sunliang Cui
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
29
|
Nieto-Meneses R, Castillo R, Hernández-Campos A, Maldonado-Rangel A, Matius-Ruiz JB, Trejo-Soto PJ, Nogueda-Torres B, Dea-Ayuela MA, Bolás-Fernández F, Méndez-Cuesta C, Yépez-Mulia L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp Parasitol 2017; 184:82-89. [PMID: 29191699 DOI: 10.1016/j.exppara.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
The identification of specific therapeutic targets and the development of new drugs against leishmaniasis are urgently needed, since chemotherapy currently available for its treatment has several problems including many adverse side effects. In an effort to develop new antileishmanial drugs, in the present study a series of 28 N-benzyl-1H-benzimidazol-2-amine derivatives was synthesized and evaluated in vitro against Leishmania mexicana promastigotes. Compounds 7 and 8 with the highest antileishmanial activity (micromolar) and lower cytotoxicity than miltefosine and amphotericin B were selected to evaluate their activity against L. braziliensis 9and L. donovani, species causative of mucocutaneous and visceral leishmaniasis, respectively. Compound 7 showed significantly higher activity against L. braziliensis promastigotes than compound 8 and slightly lower than miltefosine. Compounds 7 and 8 had IC50 values in the micromolar range against the amastigote of L. mexicana and L. braziliensis. However, both compounds did not show better activity against L. donovani than miltefosine. Compound 8 showed the highest SI against both parasite stages of L. mexicana. In addition, compound 8 inhibited 68.27% the activity of recombinant L. mexicana arginase (LmARG), a therapeutic target for the treatment of leishmaniasis. Docking studies were also performed in order to establish the possible mechanism of action by which this compound exerts its inhibitory effect. Compound 8 shows promising potential for the development of more potent antileishmanial benzimidazole derivatives.
Collapse
Affiliation(s)
- Rocío Nieto-Meneses
- Departamento de Parasitología, ENCB-IPN, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, UNAM, 04510 Mexico City, Mexico
| | | | | | | | | | | | - Ma Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Spain
| | - Francisco Bolás-Fernández
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid Spain
| | | | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico.
| |
Collapse
|