1
|
Sblano S, Boccarelli A, Deruvo C, La Spada G, de Candia M, Purgatorio R, Altomare CD, Catto M. The potential of MAO inhibitors as chemotherapeutics in cancer: A literature survey. Eur J Med Chem 2025; 283:117159. [PMID: 39700873 DOI: 10.1016/j.ejmech.2024.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Drug resistance in cancer is determined by genetic mutations and adaptations of tumor cells to drug treatments, raising a challenge in the treatment of cancer. Factors such as prolonged drug exposure, genetic variability among patients, and tumor heterogeneity have been established as contributors to rising incidence of drug resistance, prompting ongoing research into alternative therapies and combination treatments to overcome this challenge. Monoamine oxidases (MAOs), including both isoforms MAO-A and MAO-B, are mitochondrial enzymes responsible for the catabolism of monoamine neurotransmitters such as dopamine, norepinephrine, and serotonin. While these enzymes play a pivotal role in the nervous system, their role in tumorigenesis has garnered increasing attention in the last years. Recent studies, in fact, have highlighted the potential of MAO inhibitors (MAOIs) as antitumor agents, emphasizing their use as standalone treatments or in synergy with traditional anticancer therapies, focusing on pathways involved in tumorigenesis. This review aims to provide a comprehensive overview of MAOIs currently under study for their potential antitumor activity, focusing on their structural characteristics, mechanisms of action, and efficacy in preclinical and clinical settings, referencing key articles in the field.
Collapse
Affiliation(s)
- Sabina Sblano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Caterina Deruvo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
2
|
Mathew GE, Herrera-Acevedo C, Scotti MT, Kumar S, Berisha A, Kaya S, Alfarraj S, Ansari MJ, Dhyani A, Sudevan ST, Kumar M, Mathew B. 3D-QSAR, Pharmacophore Modeling, ADMET and DFT Studies of Halogenated Conjugated Dienones as Potent MAO-B Inhibitors. Curr Comput Aided Drug Des 2025; 21:179-193. [PMID: 39129167 DOI: 10.2174/0115734099307062240801053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION It has been reported that the extension of conjugation in chalcone scaffolds considerably enhanced the potency, selectivity, reversibility, and competitive mode of MAO-B inhibition. In this study, using the experimental results of IC50 values of fifteen halogenated conjugated dienone derivatives (MK1-MK15) against MAO-B, we developed a 3DQSAR model. METHODS Further, we created a 3D pharmacophore model in active compounds in the series. The built model selected three variables (G2U, RDF115m, RDF155m) among the 653 AlvaDesc molecular descriptors, with a r2 value of 0.87 and a Q2 cv for cross-validation equal to 0.82. The three variables were mostly associated with the direction of symmetry and the likelihood of discovering massive atoms at great distances. The evaluated molecules exhibited a good correlation between experimental and predicted data, indicating that the IC50 value of the structure MK2 was related to the interatomic distances of 15.5 Å between bromine and chloro substituents. Furthermore, the molecules in the series with the highest activity were those with enhanced second component symmetry directional index from the 3D representation, which included the structures MK5 and MK6. RESULTS Additionally, a pharmacophore hypothesis was developed and validated using the decoy Schrodinger dataset, with an ROC score of 0.87 and an HHRR 1 fitness score that ranged from 2.783 to 3.00. The MK series exhibited a significant blood-brain barrier (BBB) permeability, according to exploratory analyses and in silico projections, and almost all analogues were expected to have strong BBB permeability. CONCLUSION Further DFT research revealed that electrostatics were important in the interactions with MAO-B.
Collapse
Affiliation(s)
- Githa Elizabeth Mathew
- Department of Pharmacology, Lisie College of Pharmacy, Vennala, 682028, Kerala, India
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be a University), Salem, 636308, Tamilnadu, India
| | - Chonny Herrera-Acevedo
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000, Prishtina, Kosovo
| | - Savaş Kaya
- Department of Pharmacy Health Services Vocational School, Sivas Cumhuriyet University, 58140, Sivas Turkey
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Archana Dhyani
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Mohan Kumar
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be a University), Salem, 636308, Tamilnadu, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| |
Collapse
|
3
|
Papagiouvannis G, Theodosis-Nobelos P, Rekka EA. A Review on Therapeutic Strategies against Parkinson's Disease: Current Trends and Future Perspectives. Mini Rev Med Chem 2025; 25:96-111. [PMID: 38918988 DOI: 10.2174/0113895575303788240606054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Parkinson's Disease (PD) is the most common neurodegenerative disorder after Alzheimer's Disease and is clinically expressed by movement disorders, such as tremor, bradykinesia, and rigidity. It occurs mainly in the extrapyramidal system of the brain and is characterized by dopaminergic neuron degeneration. L-DOPA, dopaminergic agonists, anticholinergic drugs, and MAO-B inhibitors are currently used as therapeutic agents against PD, however, they have only symptomatic efficacy, mainly due to the complex pathophysiology of the disease. This review summarizes the main aspects of PD pathology, as well as, discusses the most important biochemical dysfunctions during PD, and presents novel multi-targeting compounds, which have been tested for their activity against various targets related to PD. This review selects various research articles from main databases concerning multi-targeting compounds against PD. Molecules targeting more than one biochemical pathway involved in PD, expected to be more effective than the current treatment options, are discussed. A great number of research groups have designed novel compounds following the multi-targeting drug approach. They include structures combining antioxidant, antiinflammatory, and metal-chelating properties. These compounds could be proven useful for effective multi-targeted PD treatment. Multi-targeting drugs could be a useful tool for the design of effective antiparkinson agents. Their efficacy towards various targets implicated in PD could be the key to the radical treatment of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, 1036, Cyprus
| | | | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
4
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
Affiliation(s)
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
6
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Vrban L, Vianello R. Prominent Neuroprotective Potential of Indole-2- N-methylpropargylamine: High Affinity and Irreversible Inhibition Efficiency towards Monoamine Oxidase B Revealed by Computational Scaffold Analysis. Pharmaceuticals (Basel) 2024; 17:1292. [PMID: 39458932 PMCID: PMC11510145 DOI: 10.3390/ph17101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Monoamine oxidases (MAO) are flavoenzymes that metabolize a range of brain neurotransmitters, whose dysregulation is closely associated with the development of various neurological disorders. This is why MAOs have been the central target in pharmacological interventions for neurodegeneration for more than 60 years. Still, existing drugs only address symptoms and not the cause of the disease, which underlines the need to develop more efficient inhibitors without adverse effects. Methods: Our drug design strategy relied on docking 25 organic scaffolds to MAO-B, which were extracted from the ChEMBL20 database with the highest cumulative counts of unique member compounds and bioactivity assays. The most promising candidates were substituted with the inactivating propargylamine group, while further affinity adjustment was made by its N-methylation. A total of 46 propargylamines were submitted to the docking and molecular dynamics simulations, while the best binders underwent mechanistic DFT analysis that confirmed the hydride abstraction mechanism of the covalent inhibition reaction. Results: We identified indole-2-propargylamine 4fH and indole-2-N-methylpropargylamine 4fMe as superior MAO-B binders over the clinical drugs rasagiline and selegiline. DFT calculations highlighted 4fMe as more potent over selegiline, evident in a reduced kinetic requirement (ΔΔG‡ = -2.5 kcal mol-1) and an improved reaction exergonicity (ΔΔGR = -4.3 kcal mol-1), together with its higher binding affinity, consistently determined by docking (ΔΔGBIND = -0.1 kcal mol-1) and MM-PBSA analysis (ΔΔGBIND = -1.5 kcal mol-1). Conclusions: Our findings strongly advocate 4fMe as an excellent drug candidate, whose synthesis and biological evaluation are highly recommended. Also, our results reveal the structural determinants that influenced the affinity and inhibition rates that should cooperate when designing further MAO inhibitors, which are of utmost significance and urgency with the increasing prevalence of brain diseases.
Collapse
Affiliation(s)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Zhao S, Liu M, Chen J, Meng L, Wang Y. Pathophysiological impacts of 5-MeO-MiPT on zebrafish (Danio rerio) via the Gα q/11-PLC β signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116969. [PMID: 39216220 DOI: 10.1016/j.ecoenv.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Novel Psychoactive Substances (NPS) derived from tryptamines has been detected in aquatic environments, leading to environmental toxicology concerns. However, the specific toxicological mechanism, underlying these NPS, remains unclear. In our previous work, we used 5-Methoxy-N-isopropyl-N-methyltryptamine (5-MeO-MiPT) as the representative drug for NPS, and found that, 5-MeO-MiPT led to obvious behavioral inhibition and oxidative stress responses in zebrafishes model. In this study, Zebrafish were injected with varying concentrations of 5-MeO-MiPT for 30 days. RNA-seq, qPCR, metabolomics, and histopathological analyses were conducted to assess gene expression and tissue integrity. This study confirms that 5-MeO-MiPT substantially influences the transcription and expression of 13 selected genes, including ucp1, pet100, grik3, and grik4, mediated by the Gαq/11-PLCβ signaling pathway. We elucidate the molecular mechanism that 5-MeO-MiPT can inhibit DAG-Ca2+/Pkc/Erk, Pkc/Pla2/PLCs and Ca2+/Camk Ⅱ/NMDA, while enhance Ca2+/Creb. Those secondary signaling pathways may be the mechanisms mediating 5-MeO-MiPT inhibiting normal behavior in zebrafish. These findings offer novel insights into the toxicological effects and addiction mechanisms of 5-MeO-MiPT. Moreover, it presents promising avenues for investigating other tryptamine-based NPS and offers a new direction for diagnosing and treating liver-brain pathway-related diseases.
Collapse
Affiliation(s)
- Sen Zhao
- Zhejiang Police College, Zhejiang Key Laboratory of Drug Prevention and Control Technology, Hangzhou 310053, PR China
| | - Meng Liu
- Zhejiang Police College, Zhejiang Key Laboratory of Drug Prevention and Control Technology, Hangzhou 310053, PR China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR China.
| | - Yanjiao Wang
- Inovia Materials (HangZhou) Co. Ltd, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
9
|
Lv Y, Fan M, He J, Song X, Guo J, Gao B, Zhang J, Zhang C, Xie Y. Discovery of novel benzimidazole derivatives as selective and reversible monoamine oxidase B inhibitors for Parkinson's disease treatment. Eur J Med Chem 2024; 274:116566. [PMID: 38838545 DOI: 10.1016/j.ejmech.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - YuanYuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
10
|
Gucký A, Hamuľaková S. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024; 38:507-532. [PMID: 38829443 PMCID: PMC11182807 DOI: 10.1007/s40263-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Numerous physiological processes happening in the human body, including cerebral development and function, require the participation of biometal ions such as iron, copper, and zinc. Their dyshomeostasis may, however, contribute to the onset of Alzheimer's disease (AD) and potentially other neurodegenerative diseases. Chelation of biometal ions is therefore a therapeutic strategy against AD. This review provides a survey of natural and synthetic chelating agents that are or could potentially be used to target the metal hypothesis of AD. Since metal dyshomeostasis is not the only pathological aspect of AD, and the nature of this disorder is very complex and multifactiorial, the most efficient therapeutics should target as many neurotoxic factors as possible. Various coumarin derivatives match this description and apart from being able to chelate metal ions, they exhibit the capacity to inhibit cholinesterases (ChEs) and monoamine oxidase B (MAO-B) while also possessing antioxidant, anti-inflammatory, and numerous other beneficial effects. Compounds based on the coumarin scaffold therefore represent a desirable class of anti-AD therapeutics.
Collapse
Affiliation(s)
- Adrián Gucký
- Department of Biochemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
11
|
Price NJ, Nakamura A, Castagnoli N, Tanko JM. Why Does Monoamine Oxidase (MAO) Catalyze the Oxidation of Some Tetrahydropyridines? Chembiochem 2024; 25:e202400126. [PMID: 38602445 DOI: 10.1002/cbic.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Results pertaining to the mechanism of the oxidation of the tertiary amine 1-methyl-4-(1-methyl-1-H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP, a close analog of the Parkinsonism inducing compound MPTP) by 3-methyllumiflavin (3MLF), a chemical model for the FAD cofactor of monoamine oxidase, are reported. MMTP and related compounds are among the few tertiary amines that are monoamine oxidase B (MAO-B) substrates. The MMTP/3MLF reaction is catalytic in the presence of O2 and the results under anaerobic conditions strongly suggest the involvement of radical intermediates, consistent with a single electron transfer mechanism. These observations support a new hypothesis to explain the MAO-catalyzed oxidations of amines. In general, electron transfer is thermodynamically unfavorable, and as a result, most 1° and 2° amines react via one of the currently accepted polar pathways. Steric constraints prevent 3° amines from reacting via a polar pathway. Those select 3° amines that are MAO substrates possess certain structural features (e. g., a C-H bond that is α- both to nitrogen and a C=C) that dramatically lower the pKa of the corresponding radical cation. Consequently, the thermodynamically unfavorable electron transfer equilibrium is driven towards products by an extremely favorable deprotonation step in the context of Le Chatelier's principle.
Collapse
Affiliation(s)
- Nathan J Price
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Akiko Nakamura
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Neal Castagnoli
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James M Tanko
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
12
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
13
|
Jin C, Yi C, Chen K, Liang H. Safety, Tolerability, and Pharmacokinetics of the Monoamine Oxidase B Inhibitor, HEC122505, and its Major Metabolite After Single- and Multiple- Ascending Dose, and Food Effect Study in Healthy Chinese Subjects. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00880-w. [PMID: 38446388 DOI: 10.1007/s13318-024-00880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND OBJECTIVES HEC122505 is a potent and selectively monoamine oxidase B inhibitor that is safe and well-tolerated in preclinical models of Parkinson's disease. The objectives of single ascending dose and multiple dose pharmacokinetic trials of HEC122505 oral tablets were to determine the safety and tolerability of HEC122505, and to examine the food effect on the pharmacokinetic parameters of HEC122505 and its major metabolite HEC129870. METHODS The phase I study (NCT04625361) consisted of three arms: single ascending dose study (5, 20, 50, 100, 200, 300 or 400 mg HEC122505 tablets or placebo), multiple ascending dose study (20, 50 or 100 mg HEC122505 tablets or placebo once daily), and food effect (100 mg HEC122505 tablets single dose after a high-fat, high-calorie meal). All subjects completed all trial arms and were analyzed as planned. RESULTS Pharmacokinetic analysis showed that HEC122505 rapidly absorbed with the time to peak plasma concentration (Tmax) ranged from 0.5 to 1.75 h. In addition, maximum plasma drug concentration (Cmax) and area under the plasma concentration-time curve (AUC) increased in a dose proportional manner. Food effect study showed that a high-fat, high-calorie meal had no significant effect on the pharmacokinetics of HEC122505 and its major metabolite HEC129870, suggesting that HEC122505 could be administered in both fasted and fed state in clinical trials. The subsequent multiple-dose study evaluated doses from 20 to 100 mg dose once daily for up to 8 days. HEC122505 reached steady state after approximately 5 days with a once daily dose. In these studies, all dose of HEC122505 was generally safe and well tolerated. No grade ≥ 3 drug related adverse events (AEs) occurred. CONCLUSION HEC122505 was generally safe and well tolerated in the single ascending dose (ranging from 5 to 400 mg) and multiple ascending dose (50 to 200 mg once daily doses) studies. All the drug related adverse events (AEs) were Grade ≤ 2. There were no deaths, no subjects discontinued the trial due to AEs, and there were no other serious AEs. The safety and pharmacokinetic profile support once daily administration of HEC122505.
Collapse
Affiliation(s)
- Chuanfei Jin
- HEC Pharm Group, HEC Research and Development Center, No. 368 Zhen'an Middle Road, Shangsha Community, Chang'an Town, Dongguan, 523871, Guangdong, People's Republic of China.
- Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, People's Republic of China.
| | - Chao Yi
- HEC Pharm Group, HEC Research and Development Center, No. 368 Zhen'an Middle Road, Shangsha Community, Chang'an Town, Dongguan, 523871, Guangdong, People's Republic of China
- Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, People's Republic of China
| | - Kangzhi Chen
- HEC Pharm Group, HEC Research and Development Center, No. 368 Zhen'an Middle Road, Shangsha Community, Chang'an Town, Dongguan, 523871, Guangdong, People's Republic of China
- Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, People's Republic of China
| | - Haiping Liang
- HEC Pharm Group, HEC Research and Development Center, No. 368 Zhen'an Middle Road, Shangsha Community, Chang'an Town, Dongguan, 523871, Guangdong, People's Republic of China
- Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, People's Republic of China
| |
Collapse
|
14
|
Kumar S, Jayan J, Manoharan A, Benny F, Abdelgawad MA, Ghoneim MM, El-Sherbiny M, Thazhathuveedu Sudevan S, Aneesh TP, Mathew B. Discerning of isatin-based monoamine oxidase (MAO) inhibitors for neurodegenerative disorders by exploiting 2D, 3D-QSAR modelling and molecular dynamics simulation. J Biomol Struct Dyn 2024; 42:2328-2340. [PMID: 37261844 DOI: 10.1080/07391102.2023.2214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023]
Abstract
Almost a billion people worldwide suffer from neurological disorders, which pose public health challenges. An important enzyme that is well-known for many neurodegenerative illnesses is monoamine oxidase (MAO). Although several promising drugs for the treatment of MAO inhibition have recently been examined, it is still necessary to identify the precise structural requirements for robust efficacy. Atom-based, field-based, and GA-MLR (genetic algorithm multiple linear regression) models were created for this investigation. All of the models have strong statistical (R2 and Q2) foundations because of both internal and external validation. Our dataset's molecule has a higher docking score than safinamide, a well-known and co-crystallized MAO-B inhibitor, as we also noticed. Using the SwissSimilarity platform, we further inquired which of our docked molecules would be the best for screening. We chose ZINC000016952895 as the screen molecule with the best binding docking score (XP score = -13.3613). Finally, the 100 ns for the ZINC000016952895-MAO-B complex in our MD investigations is stable. For compounds that we hit, also anticipate ADME properties. Our research revealed that the successful compound ZINC000016952895 might pave the way for the future development of MAO inhibitors for the treatment of neurological disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Amritha Manoharan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Mohamed A Abdelgawad
- Department of pharmaceutical chemistry, College of pharmacy, Jouf university, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
15
|
Ayoup MS, Ammar A, Abdel-Hamid H, Amer A, Abu-Serie MM, Nasr SA, Ghareeb DA, Teleb M, Tageldin GN. Challenging the anticolorectal cancer capacity of quinoxaline-based scaffold via triazole ligation unveiled new efficient dual VEGFR-2/MAO-B inhibitors. Bioorg Chem 2024; 143:107102. [PMID: 38211551 DOI: 10.1016/j.bioorg.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Monoamine oxidases (MAOs) and vascular endothelial growth factor receptor-2 (VEGFR-2) are promoters of colorectal cancer (CRC) and central signaling nodes in epithelial-mesenchymal transition (EMT) induced by activating hypoxia-inducible factors (HIFs). Herein, a novel series of rationally designed triazole-tethered quinoxalines were synthesized and evaluated against HCT-116 CRC cells. The tailored scaffolds combine the pharmacophoric themes of both VEGFR-2 inhibitors and MAO inhibitors. All the synthesized derivatives were screened utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for their possible cytotoxic effects on normal human colonocytes, then evaluated for their anticancer activities against HCT-116 cells overexpressing MAOs. The hit derivatives 11 and 14 exhibited IC50 = 18.04 and 7.850 µM, respectively, against HCT-116cells within their EC100 doses on normal human colonocytes. Wound healing assay revealed their efficient CRC antimetastatic activities recording HCT-116 cell migration inhibition exceeding 75 %. In vitro enzymatic assays demonstrated that both 11 and 14 efficiently inhibited VEGFR-2 (IC50 = 88.79 and 9.910 nM), MAO-A (IC50 = 0.763 and 629.1 nM) and MAO-B (IC50 = 0.488 and 209.6 nM) with observed MAO-B over MAO-A selectivity (SI = 1.546 and 3.001), respectively. Enzyme kinetics studies were performed for both compounds to identify their mode of MAO-B inhibition. Furthermore, qRT-PCR analysis showed that the hits efficiently downregulated HIF-1α in HCT-116cells by 3.420 and 16.96 folds relative to untreated cells. Docking studies simulated their possible binding modes within the active sites of VEGFR-2 and MAO-B to highlight their essential structural determinants of activities. Finally, they recorded in silico drug-like absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as ligand efficiency metrics.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Ahmed Ammar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Samah A Nasr
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Gina N Tageldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
16
|
Kumar S, Oh JM, Prabhakaran P, Awasti A, Kim H, Mathew B. Isatin-tethered halogen-containing acylhydrazone derivatives as monoamine oxidase inhibitor with neuroprotective effect. Sci Rep 2024; 14:1264. [PMID: 38218887 PMCID: PMC10787790 DOI: 10.1038/s41598-024-51728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Sixteen isatin-based hydrazone derivatives (IS1-IS16) were synthesized and assessed for their ability to inhibit monoamine oxidases (MAOs). All the molecules showed improved inhibitory MAO-B activity compared to MAO-A. Compound IS7 most potently inhibited MAO-B with an IC50 value of 0.082 μM, followed by IS13 and IS6 (IC50 = 0.104 and 0.124 μM, respectively). Compound IS15 most potently inhibited MAO-A with an IC50 value of 1.852 μM, followed by IS3 (IC50 = 2.385 μM). Compound IS6 had the highest selectivity index (SI) value of 263.80, followed by IS7 and IS13 (233.85 and 212.57, respectively). In the kinetic study, the Ki values of IS6, IS7, and IS13 for MAO-B were 0.068 ± 0.022, 0.044 ± 0.002, and 0.061 ± 0.001 μM, respectively, and that of IS15 for MAO-A was 1.004 ± 0.171 μM, and the compounds were reversible-type inhibitors. The lead compounds were central nervous system (CNS) permeable, as per parallel artificial membrane permeability assay (PAMPA) test results. The lead compounds were examined for their cytotoxicity and potential neuroprotective benefits in hazardous lipopolysaccharide (LPS)-exposed SH-SY5Y neuroblastoma cells. Pre-treatment with lead compounds enhanced anti-oxidant levels (SOD, CAT, GSH, and GPx) and decreased ROS and pro-inflammatory cytokine (IL-6, TNF-alpha, and NF-kB) production in LPS-intoxicated SH-SY5Y cells. To confirm the promising effects of the compound, molecular docking, dynamics, and MM-GBSA binding energy were used to examine the molecular basis of the IS7-MAO-B interaction. Our findings indicate that lead compounds are potential therapeutic agents to treat neurological illnesses, such as Parkinson's disease.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Abhimanyu Awasti
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India.
| |
Collapse
|
17
|
Mi P, Tan Y, Ye S, Lang JJ, Lv Y, Jiang J, Chen L, Luo J, Lin Y, Yuan Z, Zheng X, Lin YW. Discovery of C-3 isoxazole substituted thiochromone S,S-dioxide derivatives as potent and selective inhibitors for monoamine oxidase B (MAO-B). Eur J Med Chem 2024; 263:115956. [PMID: 37992521 DOI: 10.1016/j.ejmech.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Developing new scaffolds for highly potent and selective inhibitors of human Monoamine Oxidase B (hMAO-B) is a crucial objective in enhancing the efficacy and safety in the clinical treatment of neurodegenerative diseases. In this study, we have identified a series of C-3 isoxazole-substituted thiochromone S,S-dioxide derivatives that exhibit strong inhibitory activity against hMAO-B. The strategy of oxidizing thiochromone to thiochromone S,S-dioxide solves the key defect of extreme insolubility observed for thiochromone analogues. In addition, the sulfone group contributes extra hydrogen(H)-bonding interactions with Tyr435, which significantly increases the activity of thiochromone S,S-dioxide derivatives against hMAO-B. Furthermore, the presence of isoxazole group provides potential H-bonding interaction and electrostatic interaction with the residue of Tyr326, while the rigid aryl ring introduces a potential steric conflict with Phe208 of hMAO-A to improve both potency and selectivity. In our investigations, several compounds (9c, 10c, 10e, 10g, 10l and 10m) demonstrate remarkable single-digit nanomolar potency. These compounds exhibit favorable cytotoxicity profiles in both differentiated SH-SY5Y and HVSMC cells, without apparent cardiotoxic effects. Moreover, compounds 10e and 10h do not lead to an increase in ROS levels in differentiated SH-SY5Y cells, further demonstrating their potential as safe and effective hMAO-B inhibitors. These findings indicate that the C-3 isoxazole substituted thiochromone S,S-dioxide analogues are potential leading compounds for the development of selective inhibitors with high potency.
Collapse
Affiliation(s)
- Pengbing Mi
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| | - Yan Tan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Shiying Ye
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Jinhuan Jiang
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Limei Chen
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jianxiong Luo
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqing Lin
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Zhonghua Yuan
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
18
|
Choudhary D, Kaur R, Singh TG, Kumar B. Pyrazoline Derivatives as Promising MAO-A Targeting Antidepressants: An Update. Curr Top Med Chem 2024; 24:401-415. [PMID: 38318823 DOI: 10.2174/0115680266280249240126052505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Depression is one of the key conditions addressed by the Mental Health Gap Action Programme (mhGAP) of WHO that can lead to self-harm and suicide. Depression is associated with low levels of neurotransmitters, which eventually play a key role in the progression and development of mental illness. The nitrogen-containing heterocyclic compounds exhibit the most prominent pharmacological profile as antidepressants. Pyrazoline, a dihydro derivative of pyrazole, is a well-known five-membered heterocyclic moiety that exhibits a broad spectrum of biological activities. Many researchers have reported pyrazoline scaffold-containing molecules as potential antidepressant agents with selectivity for monoamine oxidase enzyme (MAO) isoforms. Several studies indicated a better affinity of pyrazoline-based moiety as (monoamine oxidase inhibitors) MAOIs. In this review, we have focused on the recent advancements (2019-2023) in the development of pyrazoline-containing derivatives exhibiting promising inhibition of MAO-A enzyme to treat depression. This review provides structural insights on pyrazoline-based molecules along with their SAR analysis, in silico exploration of binding interactions between pyrazoline derivatives and MAO-A enzyme, and clinical trial status of various drug molecules against depression. The in-silico exploration of potent pyrazoline derivatives at the active site of the MAOA enzyme will provide further insights into the development of new potential MAO-A inhibitors for the treatment of depression.
Collapse
Affiliation(s)
- Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, 248002, Uttrakhand, India
| |
Collapse
|
19
|
Alborghetti M, Bianchini E, De Carolis L, Galli S, Pontieri FE, Rinaldi D. Type-B monoamine oxidase inhibitors in neurological diseases: clinical applications based on preclinical findings. Neural Regen Res 2024; 19:16-21. [PMID: 37488838 PMCID: PMC10479837 DOI: 10.4103/1673-5374.375299] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Type-B monoamine oxidase inhibitors, encompassing selegiline, rasagiline, and safinamide, are available to treat Parkinson's disease. These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease. There is also evidence supporting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease, such as mood deflection, cognitive impairment, sleep disturbances, and fatigue. Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors, particularly glial cell line-derived neurotrophic factor, which support dopaminergic neurons. Besides, safinamide may interfere with neurodegenerative mechanisms, counteracting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity. Due to the dual mechanism of action, the new generation of type-B monoamine oxidase inhibitors, including safinamide, is gaining interest in other neurological pathologies, and many supporting preclinical studies are now available. The potential fields of application concern epilepsy, Duchenne muscular dystrophy, multiple sclerosis, and above all, ischemic brain injury. The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline, rasagiline, and safinamide in Parkinson's disease and beyond, focusing on possible future therapeutic applications.
Collapse
Affiliation(s)
- Marika Alborghetti
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Edoardo Bianchini
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Lanfranco De Carolis
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Silvia Galli
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Francesco E. Pontieri
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Domiziana Rinaldi
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
20
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
21
|
Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2270781. [PMID: 37955252 PMCID: PMC10653629 DOI: 10.1080/14756366.2023.2270781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disease characterised by progressive memory loss and cognition impairment, ultimately leading to death. There are three FDA-approved acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine, AChEIs) for the symptomatic treatment of AD. Monoamine oxidase B (MAO-B) has been considered to contribute to pathologies of AD. Therefore, we reviewed the dual inhibitors of acetylcholinesterase (AChE) and MAO-B developed in the last five years. In this review, these dual-target inhibitors were classified into six groups according to the basic parent structure, including chalcone, coumarin, chromone, benzo-fused five-membered ring, imine and hydrazine, and other scaffolds. Their design strategies, structure-activity relationships (SARs), and molecular docking studies with AChE and MAO-B were analysed and discussed, giving valuable insights for the subsequent development of AChE and MAO-B dual inhibitors. Challenges in the development of balanced and potent AChE and MAO-B dual inhibitors were noted, and corresponding solutions were provided.
Collapse
Affiliation(s)
- Dajiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
22
|
Zhang C, Zhang Y, Lv Y, Guo J, Gao B, Lu Y, Zang A, Zhu X, Zhou T, Xie Y. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:100-117. [PMID: 36519319 PMCID: PMC9762789 DOI: 10.1080/14756366.2022.2134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China,Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,CONTACT Yuanyuan X. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, P. R. China
| |
Collapse
|
23
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
24
|
Jacobs MR, Olivero JE, Ok Choi H, Liao CP, Kashemirov BA, Katz JE, Gross ME, McKenna CE. Synthesis and anti-cancer potential of potent peripheral MAOA inhibitors designed to limit blood:brain penetration. Bioorg Med Chem 2023; 92:117425. [PMID: 37544256 DOI: 10.1016/j.bmc.2023.117425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Monoamine oxidases (MAOA/MAOB) are enzymes known for their role in neurotransmitter regulation in the central nervous system (CNS). Irreversible and non-selective MAO inhibitors (MAOi's) were the first class of antidepressants, thus subsequent work on drugs such as the selective MAOA inhibitor clorgyline has focussed on selectivity and increased CNS penetration. MAOA is highly expressed in high grade and metastatic prostate cancer with a proposed effect on prostate cancer growth, recurrence, and drug resistance. A Phase II Clinical Trial has demonstrated the therapeutic effects of the irreversible nonselective MAOi phenelzine for prostate cancer. However, neurologic adverse effects led to early withdrawal in 25% of the enrolled patient-population. In this work, we revised the clorgyline scaffold with the goal of decreasing CNS penetration to minimize CNS-related side effects while retaining or enhancing MAOA inhibition potency and selectivity. Using the known co-crystal structure of clorgyline bound with FAD co-factor in the hMAOA active site as a reference, we designed and synthesized a series of compounds predicted to have lower CNS penetration (logBB). All synthesized derivatives displayed favorable drug-like characteristics such as predicted Caco-2 permeability and human oral absorption, and exhibited highly selective hMAOA binding interactions. Introduction of an HBD group (NH2 or OH) at position 5 of the phenyl ring clorgyline resulted in 3x more potent hMAOA inhibition with equivalent or better hMAOB selectivity, and similar prostate cancer cell cytotoxicity. In contrast, introduction of larger substituents at this position or at the terminal amine significantly reduced the hMAOA inhibition potency, attributed in part to a steric clash within the binding pocket of the MAOA active site. Replacement of the N-methyl group by a more polar, but larger 2-hydroxyethyl group did not enhance potency. However, introduction of a polar 2-hydroxy in the propyl chain retained the highly selective MAOA inhibition and cancer cell cytotoxicity of clorgyline while reducing its CNS score from 2 to 0. We believe that these results identify a new class of peripherally directed MAOIs that may allow safer therapeutic targeting of MAOA for a variety of anti-cancer and anti-inflammatory indications.
Collapse
Affiliation(s)
- Michaela R Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jennifer E Olivero
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Hyun Ok Choi
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA.
| | - Chun-Peng Liao
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA.
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jonathan E Katz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Mitchell E Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
25
|
Nordio G, Piazzola F, Cozza G, Rossetto M, Cervelli M, Minarini A, Basagni F, Tassinari E, Dalla Via L, Milelli A, Di Paolo ML. From Monoamine Oxidase Inhibition to Antiproliferative Activity: New Biological Perspectives for Polyamine Analogs. Molecules 2023; 28:6329. [PMID: 37687158 PMCID: PMC10490032 DOI: 10.3390/molecules28176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 μM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 μM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.
Collapse
Affiliation(s)
- Giulia Nordio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesco Piazzola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| |
Collapse
|
26
|
Álvarez SA, Rocha-Guzmán NE, Sánchez-Burgos JA, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Solís-González S. Analysis of Antioxidant Constituents of Filtering Infusions from Oak ( Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz ( Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors. Molecules 2023; 28:5167. [PMID: 37446829 DOI: 10.3390/molecules28135167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The antioxidant constituents of ancestral products with ethnobotanical backgrounds are candidates for the study of filtering infusions to aid in pharmacotherapies focused on the treatment of depression and anxiety. Monoamine oxidase A (MAO-A) is an enzyme that regulates the metabolic breakdown of serotonin and noradrenaline in the nervous system. The goal of this study was to evaluate in vitro and in silico the effect of antioxidant constituents of filtering infusions from yerbaniz (Tagetes lucida (Sweet) Voss) and oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) as monoamine oxidase inhibitors. Materials were dried, ground, and mixed according to a simplex-centroid mixture design for obtaining infusions. Differential analysis of the phenolic constituent's ratio in the different infusions indicates that among the main compounds contributing to MAO-A inhibition are the gallic, chlorogenic, quinic, and shikimic acids, quercetin glucuronide and some glycosylated derivatives of ellagic acid and ellagic acid methyl ether. Infusions of Q. sideroxyla Bonpl. leaves, because of their content (99.45 ± 5.17 µg/mg) and synergy between these constituents for MAO-A inhibition (52.82 ± 3.20%), have the potential to treat depression and anxiety. Therefore, future studies with pharmacological approaches are needed to validate them as therapeutic agents with applications in mental health care.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Jorge Alberto Sánchez-Burgos
- Postgraduate Program in Food Sciences, TecNM/Instituto Tecnológico de Tepic, Avenida Tecnológico, Número 2595, Colonia Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Santiago Solís-González
- TecNM/I.T. El Salto, Calle Tecnológico # 101, Col. La Forestal, El Salto 34942, P.N. Durango, Mexico
| |
Collapse
|
27
|
Benek O, Vaskova M, Miskerikova M, Schmidt M, Andrys R, Rotterova A, Skarka A, Hatlapatkova J, Karasova JZ, Medvecky M, Hroch L, Vinklarova L, Fisar Z, Hroudova J, Handl J, Capek J, Rousar T, Kobrlova T, Dolezal R, Soukup O, Aitken L, Gunn-Moore F, Musilek K. Development of submicromolar 17β-HSD10 inhibitors and their in vitro and in vivo evaluation. Eur J Med Chem 2023; 258:115593. [PMID: 37390508 DOI: 10.1016/j.ejmech.2023.115593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/13/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 μM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17β-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).
Collapse
Affiliation(s)
- Ondrej Benek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Michaela Vaskova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Marketa Miskerikova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Adam Skarka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Jana Hatlapatkova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Matej Medvecky
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University of Warwick, Bioinformatics Research Technology Platform, Coventry, CV4 7AL, United Kingdom
| | - Lukas Hroch
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Vinklarova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zdenek Fisar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudova
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jiri Handl
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Jan Capek
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Tomas Rousar
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Laura Aitken
- University of St. Andrews, School of Biology, Biomedical Science Research Complex, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Frank Gunn-Moore
- University of St. Andrews, School of Biology, Biomedical Science Research Complex, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
28
|
Yi C, Liu X, Chen K, Liang H, Jin C. Design, synthesis and evaluation of novel monoamine oxidase B (MAO-B) inhibitors with improved pharmacokinetic properties for Parkinson's disease. Eur J Med Chem 2023; 252:115308. [PMID: 37001389 DOI: 10.1016/j.ejmech.2023.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
A series of novel ((benzofuran-5-yl)methyl)pyrrolidine-2-carboxamide derivatives were designed, synthesized and evaluated as MAO-B inhibitors. SAR studies indicated that cyclizing benzyl ether into benzofuran ring resulted in the most potent MAO-B inhibitor (IC50 = 0.037 μM), (2S,4S)-4-fluoro-1-((2-(4-fluorophenyl) benzofuran-5-yl)methyl)pyrrolidine-2-carboxamide (C14). PK properties of C14 in rats and mice were significantly improved compared to our previous candidate and safinamide, indicating that benzofuran moiety is essential for improving PK properties. Moreover, C14 displayed good metabolic stability and brain-blood barrier permeability, as well as favorable in vitro properties. Finally, C14 significantly inhibited MAO-B in the mouse brain. C14 exhibited a potential efficacy for DA deficits in the MPTP-induced mouse model and significantly increased DA concentration in the striatum. Thus, we identified that C14 may be a promising drug candidate for PD treatment.
Collapse
|
29
|
Tian Z, Wang X, Han T, Sun C. Selegiline ameliorated dyslipidemia and hepatic steatosis in high-fat diet mice. Int Immunopharmacol 2023; 117:109901. [PMID: 36822098 DOI: 10.1016/j.intimp.2023.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Certain monoamine oxidase (MAO) inhibitors exhibit beneficial effects, such as reducing adiposity and metabolic disorders; however, their effects on hepatic lipid metabolism have not been revealed. This study aimed to investigate the effects of a selective MAO-B inhibitor, selegiline, on dyslipidemia and hepatic steatosis in mice induced by a high-fat diet (HFD). Administration of selegiline (0.6 mg/kg body weight) by intraperitoneal injection was found to reduce HFD-induced body weight gain and increases in liver and adiposity coefficients, blood lipids and fatty acid levels. Furthermore, selegiline dramatically reduced the total triglyceride (TG) and cholesterol (TC) levels and lipid accumulation in the livers of HFD-fed mice and palmitic acid (PA)-treated AML-12 hepatocytes. In vivo and in vitro results indicated that selegiline protects against HFD- and PA-induced hepatic inflammation by reducing the expression of proinflammatory cytokines, namely IL-6, TNF-α, IL-1β, and IL-1α. Additionally, selegiline exhibited antioxidative effects on HFD and PA exposure in mouse liver and AML-12 cells by decreasing the levels of reactive oxygen species (ROS) and malonaldehyde (MDA) and increasing superoxide dismutase (SOD) activity. Further study showed that selegiline administration mitigated the expression of Srebf-1, Fasn, and Acaca and downregulated the expression of Cpt-1 and Pparα in HFD-fed mouse livers and PA-treated AML-12 cells. In conclusion, our findings suggest that selegiline exerts protective effects against HFD-induced dyslipidemia and hepatic steatosis, which may be related to an improved inflammatory response, oxidative stress, and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Tianshu Han
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
30
|
Abstract
Proper elucidation of drug-target interaction is one of the most significant steps at the early stages of the drug development research. Computer-aided drug design tools have substantial contribution to this stage. In this chapter, we specifically concentrate on the computational methods widely used to develop reversible inhibitors for monoamine oxidase (MAO) isozymes. In this context, current computational techniques in identifying the best drug candidates showing high potency are discussed. The protocols of structure-based drug design methodologies, namely, molecular docking, in silico screening, and molecular dynamics simulations, are presented. Employing case studies of safinamide binding to MAO B, we demonstrate how to use AutoDock 4.2.6 and NAMD software packages.
Collapse
Affiliation(s)
- Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| | - Safiye Sağ Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
31
|
Zhu Y, Wu Z, Zhao D, Wu X, He R, Wang Z, Peng D, Fang Y. Clinical Guideline (CANMAT 2016) Discordance of Medications for Patients with Major Depressive Disorder in China. Neuropsychiatr Dis Treat 2023; 19:829-839. [PMID: 37077710 PMCID: PMC10106790 DOI: 10.2147/ndt.s401359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Objective This survey aims to explore the current medical treatment of major depressive disorder (MDD) in China and match its degree with Canadian Network for Mood and Anxiety Treatments (CANMAT). Methods A total of 3275 patients were recruited from 16 mental health centers and 16 general hospitals in China. Descriptive statistics presented the total number and percentage of drugs, as well as all kinds of treatments. Results Selective serotonin reuptake inhibitors (SSRIs) accounted for the largest proportion (57.2%), followed by serotonin-noradrenaline reuptake inhibitors (SNRIs) (22.8%) and mirtazapine (7.0%) in the first therapy, while that of SNRIs (53.9%) followed by SSRIs (39.2%) and mirtazapine (9.8%) in the follow-up therapy. An average of 1.85 medications was administered to each MDD patient. Conclusion SSRIs were the first choice in the first therapy, while the proportion of those drugs decreased during the follow-up therapy and were replaced by SNRIs. Plenty of combined pharmacotherapies were directly selected as the first trial of patients, which was inconsistent with guideline recommendations.
Collapse
Affiliation(s)
- Yuncheng Zhu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, People’s Republic of China
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Zhiguo Wu
- Clinical Research Center in Mental Health, Shanghai Yangpu District Mental Health Center, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Dongmei Zhao
- Division of Psychiatry, Shanghai Changning Mental Health Center, Shanghai, People’s Republic of China
| | - Xiaohui Wu
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | | | - Zuowei Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, People’s Republic of China
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Daihui Peng
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Yiru Fang
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, People’s Republic of China
- Correspondence: Yiru Fang, Email
| |
Collapse
|
32
|
Pisani L, de Candia M, Rullo M, Altomare CD. Hansch-Type QSAR Models for the Rational Design of MAO Inhibitors: Basic Principles and Methodology. Methods Mol Biol 2023; 2558:207-220. [PMID: 36169866 DOI: 10.1007/978-1-0716-2643-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hansch-type regression analysis enables the derivation of quantitative structure-activity relationship (QSAR) equations correlating bioactivity data with physicochemical parameters accounting for hydrophobicity, electronic properties, and steric effects of molecules or functional groups (substituents). Two datasets of MAO A and B inhibitors were enrolled in prototypical workflows employing multiparametric stepwise regression analysis, which includes linear and nonlinear (generally quadratic) terms. The optimal choice of variables (and/or combinations thereof) along with statistical validation yielded two robust equations describing MAO B potency and B/A selectivity, which included three and one parameter(s), respectively, and explained more than 80% of y-variance (r2) with low standard deviation (s) and good statistical significance (F, Fisher value).
Collapse
Affiliation(s)
- Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
33
|
Abstract
Propargylamine is a chemical moiety whose properties have made it a widely distributed group within the fields of medicinal chemistry and chemical biology. Its particular reactivity has traditionally popularized the preparation of propargylamine derivatives using a large variety of synthetic strategies, which have facilitated the access to these compounds for the study of their biomedical potential. This review comprehensively covers and analyzes the applications that propargylamine-based derivatives have achieved in the drug discovery field, both from a medicinal chemistry perspective and from a chemical biology-oriented approach. The principal therapeutic fields where propargylamine-based compounds have made an impact are identified, and a discussion of their influence and growing potential is included.
Collapse
|
34
|
Zhong G, Guo J, Pang C, Su D, Tang C, Jing L, Zhang F, He P, Yan Y, Chen Z, Liu J, Jiang N. Novel AP2238-clorgiline hybrids as multi-target agents for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem 2023; 130:106224. [DOI: 10.1016/j.bioorg.2022.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
35
|
Hong SW, Teesdale-Spittle P, Page R, Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022; 93:163-172. [PMID: 36155069 DOI: 10.1016/j.neuro.2022.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Tobacco smoking is reputed to be the most difficult addiction of all to give up, and nicotine has been noted as the major addictive agent in tobacco smoke. However, research shows that nicotine addiction is due to more than nicotine alone. One hypothesis is that monoamine oxidase (MAO) inhibition from non-nicotinic components in, or derived from, tobacco smoke contributes to nicotine addiction. Harman and norharman, have been recognised as major and potent MAO inhibitors in tobacco smoke, but these two inhibitors together comprise perhaps less than 10% of the total MAO A inhibitory activity in cigarette smoke suggesting other unidentified components may make significant contributions to total inhibitory activity. Therefore, we reviewed an index of the chemical components of tobacco and tobacco smoke and identified those known to be MAO inhibitors. Amongst these inhibitors, phenols and phenolic acids with MAO inhibitory activity are commonly reversible and selective MAO A inhibitors, whereas trans,trans-farnesol, 2-methyl-1,4-naphthoquinone (menadione), 1,4-naphthoquinone, scopoletin, and diosmetin with MAO inhibitory activity are reversible and selective MAO B inhibitors. The compound, 1,4-benzoquinone is an irreversible MAO A inhibitor and to the best of our knowledge, this is the first irreversible MAO A inhibitor to be reported in tobacco smoke. MAO inhibitors have been used clinically to treat depression, anxiety, and Parkinson's disease. The MAO inhibitors identified from tobacco and tobacco smoke and summarized in this review, are potential pharmacological candidates to be investigated further. This review will enhance our knowledge of the way tobacco smoke affects MAO activity in smokers and will also be important in helping to understand nicotine addiction.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
36
|
Nouraliei M, Javadian H, Mehdizadeh K, Sheibanian N, Douk AS, Mohamadzade F, Osouleddini N. Fullerene carbon nanostructures for the delivery of phenelzine derivatives as new drugs to inhibit monoamine oxidase enzyme: Molecular docking interactions and density functional theory calculations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
38
|
Synthesis and human monoamine oxidase inhibitory activity of novel C2-, C3- and C4-substituted phthalonitriles. Bioorg Med Chem Lett 2022; 74:128917. [DOI: 10.1016/j.bmcl.2022.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
|
39
|
Alagöz MA, Oh JM, Zenni YN, Özdemir Z, Abdelgawad MA, Naguib IA, Ghoneim MM, Gambacorta N, Nicolotti O, Kim H, Mathew B. Development of a Novel Class of Pyridazinone Derivatives as Selective MAO-B Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123801. [PMID: 35744926 PMCID: PMC9230784 DOI: 10.3390/molecules27123801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/15/2023]
Abstract
Sixteen compounds (TR1-TR16) were synthesized and evaluated for their inhibitory activities against monoamine oxidase A and B (MAOs). Most of the derivatives showed potent and highly selective MAO-B inhibition. Compound TR16 was the most potent inhibitor against MAO-B with an IC50 value of 0.17 μM, followed by TR2 (IC50 = 0.27 μM). TR2 and TR16 selectivity index (SI) values for MAO-B versus MAO-A were 84.96 and higher than 235.29, respectively. Compared to the basic structures, the para-chloro substituent in TR2 and TR16 increased the inhibitory activity of MAO-B. TR2 and TR16 were reversible MAO-B inhibitors that were competitive, with Ki values of 0.230 ± 0.004 and 0.149 ± 0.016 µM, respectively. The PAMPA method indicated that compounds TR2 and TR16 had the tendency to traverse the blood-brain barrier. Docking investigations revealed that lead compounds were beneficial for MAO-B inhibition via association with key as well as selective E84 or Y326 residues, but not for MAO-A inhibition via interaction primarily driven by hydrophobic contacts. In conclusion, TR2 and TR16 are therapeutic prospects for the management of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehmet Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; (M.A.A.); (Y.N.Z.); (Z.Ö.)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Yaren Nur Zenni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; (M.A.A.); (Y.N.Z.); (Z.Ö.)
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; (M.A.A.); (Y.N.Z.); (Z.Ö.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia;
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Nicola Gambacorta
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (H.K.); or (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
- Correspondence: (H.K.); or (B.M.)
| |
Collapse
|
40
|
Guo J, Xu A, Cheng M, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, Synthesis and Biological Evaluation of New 3,4-Dihydro-2(1H)-Quinolinone-Dithiocarbamate Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. Drug Des Devel Ther 2022; 16:1495-1514. [PMID: 35611357 PMCID: PMC9124477 DOI: 10.2147/dddt.s354879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background Alzheimer’s disease (AD) belongs to neurodegenerative disease, and the increasing number of AD patients has placed a heavy burden on society, which needs to be addressed urgently. ChEs/MAOs dual-target inhibitor has potential to treat AD according to reports. Purpose To obtain effective multi-targeted agents for the treatment of AD, a novel series of hybrid compounds were designed and synthesized by fusing the pharmacophoric features of 3,4-dihydro-2 (1H)-quinolinone and dithiocarbamate. Methods All compounds were evaluated for their inhibitory abilities of ChEs and MAOs. Then, further biological activities of the most promising candidate 3e were determined, including the ability to cross the blood-brain barrier (BBB), kinetics and molecular model analysis, cytotoxicity in vitro and acute toxicity studies in vivo. Results Most compounds showed potent and clear inhibition to AChE and MAOs. Among them, compound 3e was considered to be the most effective and balanced inhibitor to both AChE and MAOs (IC50=0.28 µM to eeAChE; IC50=0.34 µM to hAChE; IC50=2.81 µM to hMAO-B; IC50=0.91 µM to hMAO-A). In addition, 3e showed mixed inhibition of hAChE and competitive inhibition of hMAO-B in the enzyme kinetic studies. Further studies indicated that 3e could penetrate the BBB and showed no toxicity on PC12 cells and HT-22 cells when the concentration of 3e was lower than 12.5 µM. More importantly, 3e lacked acute toxicity in mice even at high dose (2500 mg/kg, P.O.). Conclusion This work indicated that compound 3e with a six-carbon atom linker and a piperidine moiety at terminal position was a promising candidate and was worthy of further study.
Collapse
Affiliation(s)
- Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Airen Xu
- Clinical Pharmacology Research Center, The Second Hospital of Yinzhou, Ningbo, Zhejiang, People’s Republic of China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Sai-Sai Xie, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Jing Liu, School of Pharmacy, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| |
Collapse
|
41
|
Design, Synthesis, and Biological Evaluation of Novel MAO-A Inhibitors Targeting Lung Cancer. Molecules 2022; 27:molecules27092887. [PMID: 35566238 PMCID: PMC9103226 DOI: 10.3390/molecules27092887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.
Collapse
|
42
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
43
|
Caballero MP, Carrascosa F, Cruz‐Martínez F, Castro‐Osma JA, Rodríguez AM, North M, Lara‐Sánchez A, Tejeda J. [4‐(2‐Hydroxyphenyl)imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidin‐2‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202103977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- María P. Caballero
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Fernando Carrascosa
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Felipe Cruz‐Martínez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - José A. Castro‐Osma
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Farmacia 02071 -Albacete Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Michael North
- Green Chemistry Centre of Excellence Department of Chemistry The University of York Heslington York YO10 5DD UK
| | - Agustín Lara‐Sánchez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Juan Tejeda
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| |
Collapse
|
44
|
Yao C, Jiang X, Zhao R, Zhong Z, Ge J, Zhu J, Ye XY, Xie Y, Liu Z, Xie T, Bai R. HDAC1/MAO-B dual inhibitors against Alzheimer's disease: Design, synthesis and biological evaluation of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids. Bioorg Chem 2022; 122:105724. [PMID: 35305483 DOI: 10.1016/j.bioorg.2022.105724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/09/2023]
Abstract
A series of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids inhibitors combining the typical pharmacophores of hydroxamic acid/o-aminobenzamide and propargylamine were designed and synthesized as HDAC1/MAO-B dual inhibitors for the treatment of Alzheimer's disease. Most of the hybrids displayed moderate to good MAO-B inhibitory activities. Among them, Hybrid If exhibited the most potent activity against MAO-B and HDAC1 (MAO-B, IC50 = 99.0 nM; HDAC1, IC50 = 21.4 nM) and excellent MAO selectively (MAO-A, IC50 = 9923.0 nM; SI = 100.2). Moreover, compound If significantly reversed Aβ1-42-induced PC12 cell damage and decreased the production of intracellular ROS, exhibiting favorable antioxidant activity. More importantly, hybrid If instantly penetrated the BBB and accumulated in brain tissue as well as markedly ameliorated cognitive dysfunction in a Morris water maze ICR mice model. In summary, HDAC1/MAO-B dual inhibitor If is a promising potential agent for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhichao Zhong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiamin Ge
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
45
|
Marques CS, López Ó, Leitzbach L, Fernández-Bolaños JG, Stark H, Burke AJ. Survey of New, Small-Molecule Isatin-Based Oxindole Hybrids as Multi-Targeted Drugs for the Treatment of Alzheimer’s Disease. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn the last decade, our group has been very active at developing and assaying complex libraries of scaffolds with a focus on their potential to identify bioactive drug candidates for neurodegenerative diseases, particularly Alzheimer’s disease (AD). Attention has been focused on isatin-based oxindole scaffolds, for which promising results concerning butyrylcholinesterase (BuChE) inhibitory activity have previously been obtained. Considering some published reports and detailed analysis of the pharmacophores of commercially available drugs for AD (powerful cholinesterase (ChE) inhibitors), we performed a strategic structural modification of the isatin core and generated a new family of isatin-based oxindole hybrids (27 new compounds) possessing crucial key functional units in their framework. The syntheses were accomplished using multiple approaches, including simple N-alkylation reactions, copper-catalyzed amination reactions, and click chemistry. The resulting library was evaluated on ChE and MAO enzymes, both of which are involved in the pathophysiology of neurodegeneration. IC50 values of 1.6 and 2.6 μM (BuChE assays), were achieved for the best inhibitors.
Collapse
Affiliation(s)
- Carolina S. Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla
| | - Luisa Leitzbach
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry
| | | | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry
| | - Anthony J. Burke
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies
- Chemistry Department, School of Science and Technology, University of Évora
- Faculty of Pharmacy, University of Coimbra
| |
Collapse
|
46
|
Plazas E, Avila M MC, Muñoz DR, Cuca S LE. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol Res 2022; 177:106126. [DOI: 10.1016/j.phrs.2022.106126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
47
|
Aldoxime- and hydroxy-functionalized chalcones as highly potent and selective monoamine oxidase-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
49
|
Wang Z, Yi C, Chen K, Wang T, Deng K, Jin C, Hao G. Enhancing monoamine oxidase B inhibitory activity via chiral fluorination: Structure-activity relationship, biological evaluation, and molecular docking study. Eur J Med Chem 2022; 228:114025. [PMID: 34871839 DOI: 10.1016/j.ejmech.2021.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease among the elderly. Currently, monoamine oxidase B (MAO-B) inhibitors are extensively used for PD in clinics. In this work, a series of novel chiral fluorinated pyrrolidine derivatives were designed and synthesized. In vitro biological evaluations revealed that compound D5 was the most potent, selective MAO-B inhibitor (IC50 = 0.019 μM, MAO-A/MAO-B selectivity index = 2440), which was 10-fold than that of miracle drug safinamide (IC50 = 0.163 μM, MAO-A/MAO-B selectivity index = 172). It was verified that the enhanced hydrophobic interaction of D5 improved the activity against MAO-B in molecular docking study. Besides, D5 exhibited excellent metabolic properties and pharmacokinetic profiles in monkeys and rats. Moreover, D5 displayed more efficacious than safinamide in vivo models. In the MPTP-induced PD mouse model, D5 significantly alleviated DA deficits and increased the effect of levodopa on dopamine concentration in the striatum. Meanwhile, D5 produced a prominent reduction in tremulous jaw movements induced by galantamine. Accordingly, we present D5 as a novel, highly potent, and selective MAO-B inhibitor for PD therapy.
Collapse
Affiliation(s)
- Zhizheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chao Yi
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Kangzhi Chen
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Tao Wang
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Kang Deng
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China
| | - Chuanfei Jin
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, China; HEC Pharm Group, HEC Research and Development Center, Dongguan, 523871, China.
| | - Gefei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
50
|
Knez D, Hrast M, Frlan R, Pišlar A, Žakelj S, Kos J, Gobec S. Indoles and 1-(3-(benzyloxy)benzyl)piperazines: Reversible and selective monoamine oxidase B inhibitors identified by screening an in-house compound library. Bioorg Chem 2021; 119:105581. [PMID: 34990933 DOI: 10.1016/j.bioorg.2021.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Martina Hrast
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|