1
|
Di Paolo ML, Salerno S, Nordio G, Piazzola F, Sarno S, Sarno G, Natale B, Poggetti V, Borreca A, Baglini E, Barresi E, Da Settimo F, Cosconati S, Castellano S, Taliani S, Dalla Via L. 2-(Phenylamino)-7,8-dihydroquinazolin-5(6H)-one, a promising scaffold for MAO-B inhibitors with potential GSK3β targeting. Eur J Med Chem 2025; 291:117580. [PMID: 40186896 DOI: 10.1016/j.ejmech.2025.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, constitute pathological conditions of great relevance on health span and quality of life. The identification of novel therapeutic options, able to modulate the processes involved in the insurgence and progression of neurodegenerative disorders, represents an intriguing challenge of current research. Herein, a library of 36-membered 2-(phenylamino)-7,8-dihydroquinazolinone derivatives was synthesized and biologically evaluated as human MAO inhibitors. Some compounds able to inhibit MAO-B potently and selectively (Ki in the nanomolar range) were identified, and robust structure-activity relationships were drawn, supported by computational studies. Further biological assays revealed a safe profile for all derivatives and, for compounds selected as the best MAO-B inhibitors (4, 5, 13, 14) the following properties also emerged: (i) the ability to inhibit MAO-B activity in whole cells, with an effectiveness comparable or slight lower with respect to the reference safinamide; (ii) physicochemical parameters suggesting drug-likeness properties; (iii) the ability to inhibit, albeit weakly, GSK3β kinase (for compound 4). Within the whole series, compound 4 stood out as a promising lead for future optimization campaigns aimed to obtain useful drugs for the treatment of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy.
| | - Giulia Nordio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy.
| | - Francesco Piazzola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy.
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
| | - Giuliana Sarno
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy.
| | - Benito Natale
- DiSTABiF, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | | | - Antonella Borreca
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, 20089, Italy.
| | - Emma Baglini
- Institute of Clinical Physiology, National Research Council of Italy, CNR Research Area, 56124, Pisa, Italy.
| | | | | | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy.
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
2
|
Chen IT, Lin H, Han JL. Organocatalytic Synthesis of Spiro-Bridged Heterocyclic Compounds via a Chemoselective Vinylogous Michael/Cyclization/Rearrangement Sequence. J Org Chem 2025. [PMID: 40375547 DOI: 10.1021/acs.joc.5c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
An organocatalytic cascade reaction of 2-ethylidene 1,3-indandiones and isatylidene-malononitriles has been achieved using quinine as the catalyst. The unexpected vinylogous Michael addition at the β position of isatylidene-malononitriles, followed by aldol cyclization, 1,2-addition of alkoxide to nitrile, and [1,3]-O-to-N rearrangement, leads to the generation of unique spiro-bridged heterocyclic compounds containing amide, indanone, and oxindole moieties in good to excellent yields with high diastereoselectivity.
Collapse
Affiliation(s)
- I-Ting Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsuan Lin
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Pang X, Xu W, Liang J, Liu Y, Li H, Chen L. Research progress and perspectives of dual-target inhibitors. Eur J Med Chem 2025; 289:117453. [PMID: 40024166 DOI: 10.1016/j.ejmech.2025.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The occurrence and development of diseases are complex, and single-target drugs that affect only a single target or pathway often fail to achieve the expected therapeutic effect. The simultaneous effect on two key targets could not only increase patient tolerance but also accelerate disease remission. Dual-target inhibitors have already been studied the most intensively in the development of dual-target drugs. This article briefly introduces the function of drug therapy targets, and mainly summarizes the design strategies and research progress of dual-target inhibitors in neurodegenerative diseases, infectious diseases, metabolic diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Łażewska D, Kieć-Kononowicz K. Histamine H 3 receptor antagonists/inverse agonists: a patent review (October 2017 - December 2023) documenting progress. Expert Opin Ther Pat 2025:1-25. [PMID: 39757430 DOI: 10.1080/13543776.2024.2446227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Histamine H3 receptor antagonists/inverse agonists, since the discovery of histamine H3 receptor (H3R), are important ligands in the search for new potential drugs. The most interesting are CNS diseases as these receptors are mainly there present. AREAS COVERED The current review covers patent applications/patents that were published during the last 6 years (October 2017 - December 2023). Documents were found in two free available patent databases: Espacenet and PatentScope and divided into three basic categories such as methods, compounds, and therapeutic indications. It provides an overview of 51 patent applications/patents. Many pharmaceutical compositions with H3R antagonists/inverse agonists have been claimed. Furthermore, PubMed, Scopus, and ClinicalTrials databases were searched for literature to prepare this review. EXPERT OPINION Interest in the H3R field is still high and has remained almost unchanged over the last 10 years in the number of publications, but the type of publications has changed (fewer new ligands, more pharmacological studies). Currently, the search for new H3R ligands is focused on multi-target compounds. The first crystal structure of H3R with a ligand appeared. New therapeutic indications, such as autism, fatigue, and Prader-Willi syndrome, are verified in clinical trials.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Bansal R, Singh R, Dutta TS, Dar ZA, Bajpai A. Indanone: a promising scaffold for new drug discovery against neurodegenerative disorders. Drug Discov Today 2024; 29:104063. [PMID: 38901670 DOI: 10.1016/j.drudis.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Indanone is a versatile scaffold that has a number of pharmacological properties. The successful development and ensuing approval of indanone-derived donepezil as a drug of choice for Alzheimer's disease attracted significant scientific interest in this moiety. Indanones could act as small molecule chemical probes as they have strong affinity towards several critical enzymes associated with the pathophysiology of various neurological disorders. Inhibition of these enzymes elevates the levels of neuroprotective brain chemicals such as norepinephrine, serotonin and dopamine. Further, indanone derivatives are capable of modulating the activities of both monoamine oxidases (MAO-A and -B) and acetylcholinesterase (AChE), and thus could be useful in various neurodegenerative diseases. This review article presents a panoramic view of the research carried out on the indanone nucleus in the development of potential neuroprotective agents.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Tuhin Shubra Dutta
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Zahid Ahmad Dar
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Ankit Bajpai
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Sawant R, Godad A. An update on novel and emerging therapeutic targets in Parkinson's disease. Metab Brain Dis 2024; 39:1213-1225. [PMID: 39066989 DOI: 10.1007/s11011-024-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's Disease (PD) remains a significant focus of extensive research aimed at developing effective therapeutic strategies. Current treatments primarily target symptom management, with limited success in altering the course of the disease. This shortfall underscores the urgent need for novel therapeutic approaches that can modify the progression of PD.This review concentrates on emerging therapeutic targets poised to address the underlying mechanisms of PD. Highlighted novel and emerging targets include Protein Abelson, Rabphilin-3 A, Colony Stimulating Factor 1-Receptor, and Apelin, each showing promising potential in preclinical and clinical settings for their ability to modulate disease progression. By examining recent advancements and outcomes from trials focusing on these targets, the review aims to elucidate their efficacy and potential as disease-modifying therapies.Furthermore, the review explores the concept of multi-target approaches, emphasizing their relevance in tackling the complex pathology of PD. By providing comprehensive insights into these novel targets and their therapeutic implications, this review aims to guide future research directions and clinical developments toward more effective treatments for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Richa Sawant
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V M Road, Vile Parle (w), Mumbai, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
7
|
Stasiak A, Honkisz-Orzechowska E, Gajda Z, Wagner W, Popiołek-Barczyk K, Kuder KJ, Latacz G, Juszczak M, Woźniak K, Karcz T, Szczepańska K, Jóźwiak-Bębenista M, Kieć-Kononowicz K, Łażewska D. AR71, Histamine H 3 Receptor Ligand-In Vitro and In Vivo Evaluation (Anti-Inflammatory Activity, Metabolic Stability, Toxicity, and Analgesic Action). Int J Mol Sci 2024; 25:8035. [PMID: 39125607 PMCID: PMC11311998 DOI: 10.3390/ijms25158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.
Collapse
Affiliation(s)
- Anna Stasiak
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Zbigniew Gajda
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Waldemar Wagner
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology of Polish Academy of Sciences, 106 Lodowa Str., 93-232 Łódź, Poland
| | - Katarzyna Popiołek-Barczyk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| |
Collapse
|
8
|
Paolino M, de Candia M, Purgatorio R, Catto M, Saletti M, Tondo AR, Nicolotti O, Cappelli A, Brizzi A, Mugnaini C, Corelli F, Altomare CD. Investigation on Novel E/Z 2-Benzylideneindan-1-One-Based Photoswitches with AChE and MAO-B Dual Inhibitory Activity. Molecules 2023; 28:5857. [PMID: 37570828 PMCID: PMC10421270 DOI: 10.3390/molecules28155857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The multitarget therapeutic strategy, as opposed to the more traditional 'one disease-one target-one drug', may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer's disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1b-h with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes.
Collapse
Affiliation(s)
- Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Mario Saletti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Anna Rita Tondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| |
Collapse
|
9
|
Załuski M, Karcz T, Drabczyńska A, Vielmuth C, Olejarz-Maciej A, Głuch-Lutwin M, Mordyl B, Siwek A, Satała G, Müller CE, Kieć-Kononowicz K. Xanthine-Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:1079. [PMID: 37509114 PMCID: PMC10377586 DOI: 10.3390/biom13071079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| |
Collapse
|
10
|
Wu W, Zhao X, Chen G, Liu L, Li Y, Chen T, James TD, Liu Y. Overlooked potential of N, N-bidentate directing-groups in Ni-catalyzed C-H functionalization of benzamides. Chem Commun (Camb) 2023; 59:482-485. [PMID: 36530042 DOI: 10.1039/d2cc06177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ni-catalyzed reactions of benzamides with bicyclic alkenes were explored using DFT calculations. An unprecedented "N-H deprotonation circumvented" catalytic mechanism was proposed, over the more common N-H/C-H activation mechanism, in which (i) the circumvention of N-H deprotonation ensures the presence of N-H⋯O hydrogen bond interaction, thereby stabilizing the critical ortho-C-H functionalization TS; and (ii) the N-H moiety retention results in a weak N⋯Ni σ-coordination, which is flexible to the configurational conversion during the key alkene insertion. These overlooked aspects of the functionalized N,N-bidentate directing groups will aid the design of new related catalytic reactions.
Collapse
Affiliation(s)
- Weirong Wu
- School of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, P. R. China
| | - Tao Chen
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
11
|
Dual Targeting Ligands-Histamine H 3 Receptor Ligands with Monoamine Oxidase B Inhibitory Activity-In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14102187. [PMID: 36297622 PMCID: PMC9607599 DOI: 10.3390/pharmaceutics14102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical symptoms of Parkinson’s disease (PD) appear when dopamine (DA) concentrations in the striatum drops to around 20%. Simultaneous inhibitory effects on histamine H3 receptor (H3R) and MAO B can increase DA levels in the brain. A series of compounds was designed and tested in vitro for human H3R (hH3R) affinity and inhibitory activity to human MAO B (hMAO B). Results showed different activity of the compounds towards the two biological targets. Most compounds had poor affinity for hH3R (Ki > 500 nM), but very good inhibitory potency for hMAO B (IC50 < 50 nM). After further in vitro testing (modality of MAO B inhibition, permeability in PAMPA assay, cytotoxicity on human astrocyte cell lines), the most promising dual-acting ligand, 1-(3-(4-(tert-butyl)phenoxy)propyl)-2-methylpyrrolidine (13: hH3R: Ki = 25 nM; hMAO B IC50 = 4 nM) was selected for in vivo evaluation. Studies in rats of compound 13, in a dose of 3 mg/kg of body mass, confirmed its antagonistic effects for H3R (decline in food and a water consumption), decline in MAO B activity (>90%) in rat cerebral cortex (CTX), and an increase in DA content in CTX and striatum. Moreover, compound 13 caused a slight increase in noradrenaline, but a reduction in serotonin concentration in CTX. Thus, compound 13 is a promising dual-active ligand for the potential treatment of PD although further studies are needed to confirm this.
Collapse
|
12
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
13
|
Moutayakine A, Marques C, López Ó, Bagetta D, Leitzbach L, Hagenow S, Carreiro EP, Stark H, Alcaro S, Fernández-Bolaños JG, Burke AJ. Evaluation of chromane derivatives: Promising privileged scaffolds for lead discovery within Alzheimer's disease. Bioorg Med Chem 2022; 68:116807. [PMID: 35653868 DOI: 10.1016/j.bmc.2022.116807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
The chromane ring system is widely distributed in nature and has proven to be a highly potent pharmacophore in medicinal chemistry, which includes the area of Alzheimer's and Parkinson's diseases. We report on the development of a gem-dimethylchroman-4-ol family that was shown to give good inhibition of equine serum butyrylcholinesterase (eqBuChE) (in the range 2.9 - 7.3 μM) and in the same range of currently used drugs. We also synthesized a small library of gem-dimethylchroman-4-amine compounds, via a simple reductive amination of the corresponding chromanone precursor, that were also selective for eqBuChE presenting inhibitions in the range 7.6 - 67 μM. Kinetic studies revealed that they were mixed inhibitors. Insights into their mechanism of action were obtained through molecular docking and STD-NMR experiments, and the most active examples showed excellent drug-likeness and pharmacological properties predicted using Swiss-ADME. We also prepared a set of propargyl gem-dimethylchromanamines, for monoamine oxidase (MAO) inhibition but they were only moderately active (the best being 28% inhibition at 1 µM on MAO-B). Overall, our compounds were found to be best suited as inhibitors for BuChE.
Collapse
Affiliation(s)
- Amina Moutayakine
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal; BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Islas Canarias, Spain
| | - Carolina Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science academic spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Luisa Leitzbach
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry. Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry. Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry. Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science academic spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal; Chemistry Department, School of Science and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute for Molecular Sciences, Faculty of Science and Technology, University of Coimbra, Portugal.
| |
Collapse
|
14
|
Paolino M, Rullo M, Maramai S, de Candia M, Pisani L, Catto M, Mugnaini C, Brizzi A, Cappelli A, Olivucci M, Corelli F, Altomare CD. Design, synthesis and biological evaluation of light-driven on-off multitarget AChE and MAO-B inhibitors. RSC Med Chem 2022; 13:873-883. [PMID: 35923722 PMCID: PMC9298480 DOI: 10.1039/d2md00042c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 08/13/2023] Open
Abstract
Neurodegenerative diseases are multifactorial disorders characterized by protein misfolding, oxidative stress, and neuroinflammation, finally resulting in neuronal loss and cognitive dysfunctions. Nowadays, an attractive strategy to improve the classical treatments is the development of multitarget-directed molecules able to synergistically interact with different enzymes and/or receptors. In addition, an interesting tool to refine personalized therapies may arise from the use of bioactive species able to modify their activity as a result of light irradiation. To this aim, we designed and synthesized a small library of cinnamic acid-inspired isomeric compounds with light modulated activity able to inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B), with remarkable selectivity over butyrylcholinesterase (BChE) and MAO-A, which have been investigated as the enzyme targets related to Alzheimer's disease (AD). The inhibitory activities were evaluated for the pure E-diastereomers and the E/Z-diastereomer mixtures, obtained upon UV irradiation. Molecular docking studies were carried out to rationalize the differences in the inhibition potency of the E and Z diastereomers of the best performing analogue 1c. Our preliminary findings may open-up the way for developing innovative multitarget photo-switch drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
- Chemistry Department, Bowling Green State University USA
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
15
|
Zięba A, Stępnicki P, Matosiuk D, Kaczor AA. What are the challenges with multi-targeted drug design for complex diseases? Expert Opin Drug Discov 2022; 17:673-683. [PMID: 35549603 DOI: 10.1080/17460441.2022.2072827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Current findings on multifactorial diseases with a complex pathomechanism confirm that multi-target drugs are more efficient ways in treating them as opposed to single-target drugs. However, to design multi-target ligands, a number of factors and challenges must be taken into account. AREAS COVERED In this perspective, we summarize the concept of application of multi-target drugs for the treatment of complex diseases such as neurodegenerative diseases, schizophrenia, diabetes, and cancer. We discuss the aspects of target selection for multifunctional ligands and the application of in silico methods in their design and optimization. Furthermore, we highlight other challenges such as balancing affinities to different targets and drug-likeness of obtained compounds. Finally, we present success stories in the design of multi-target ligands for the treatment of common complex diseases. EXPERT OPINION Despite numerous challenges resulting from the design of multi-target ligands, these efforts are worth making. Appropriate target selection, activity balancing, and ligand drug-likeness belong to key aspects in the design of ligands acting on multiple targets. It should be emphasized that in silico methods, in particular inverse docking, pharmacophore modeling, machine learning methods and approaches derived from network pharmacology are valuable tools for the design of multi-target drugs.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
The Novel Pimavanserin Derivative ST-2300 with Histamine H3 Receptor Affinity Shows Reduced 5-HT2A Binding, but Maintains Antidepressant- and Anxiolytic-like Properties in Mice. Biomolecules 2022; 12:biom12050683. [PMID: 35625611 PMCID: PMC9138994 DOI: 10.3390/biom12050683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023] Open
Abstract
The therapy of depression is challenging and still unsatisfactory despite the presence of many antidepressant drugs on the market. Consequently, there is a continuous need to search for new, safer, and more effective antidepressant therapeutics. Previous studies have suggested a potential association of brain histaminergic/serotoninergic signaling and antidepressant- and anxiolytic-like effects. Here, we evaluated the in vivo antidepressant- and anxiolytic-like effects of the newly developed multiple-active ligand ST-2300. ST-2300 was developed from 5-HT2A/2C inverse agonist pimavanserin (PIM, ACP-103) and incorporates a histamine H3 receptor (H3R) antagonist pharmacophore. Despite its parent compound, ST-2300 showed only moderate serotonin 5-HT2A antagonist/inverse agonist affinity (Ki value of 1302 nM), but excellent H3R affinity (Ki value of 14 nM). In vivo effects were examined using forced swim test (FST), tail suspension test (TST), and the open field test (OFT) in C57BL/6 mice. Unlike PIM, ST-2300 significantly increased the anxiolytic-like effects in OFT without altering general motor activity. In FST and TST, ST-2300 was able to reduce immobility time similar to fluoxetine (FLX), a recognized antidepressant drug. Importantly, pretreatment with the CNS-penetrant H3R agonist (R)-α-methylhistamine reversed the antidepressant-like effects of ST-2300 in FST and TST, but failed to reverse the ST-2300-provided anxiolytic effects in OFT. Present findings reveal critical structural features that are useful in a rational multiple-pharmacological approach to target H3R/5-HT2A/5-HT2C.
Collapse
|
17
|
Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin A Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022; 27:molecules27092823. [PMID: 35566172 PMCID: PMC9101642 DOI: 10.3390/molecules27092823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
The estrogen receptor α (ERα) is an important biological target mediating 17β-estradiol driven breast cancer (BC) development. Aiming to develop innovative drugs against BC, either wild-type or mutated ligand-ERα complexes were used as source data to build structure-based 3-D pharmacophore and 3-D QSAR models, afterward used as tools for the virtual screening of National Cancer Institute datasets and hit-to-lead optimization. The procedure identified Brefeldin A (BFA) as hit, then structurally optimized toward twelve new derivatives whose anticancer activity was confirmed both in vitro and in vivo. Compounds as SERMs showed picomolar to low nanomolar potencies against ERα and were then investigated as antiproliferative agents against BC cell lines, as stimulators of p53 expression, as well as BC cell cycle arrest agents. Most active leads were finally profiled upon administration to female Wistar rats with pre-induced BC, after which 3DPQ-12, 3DPQ-3, 3DPQ-9, 3DPQ-4, 3DPQ-2, and 3DPQ-1 represent potential candidates for BC therapy.
Collapse
|
18
|
Marques CS, López Ó, Leitzbach L, Fernández-Bolaños JG, Stark H, Burke AJ. Survey of New, Small-Molecule Isatin-Based Oxindole Hybrids as Multi-Targeted Drugs for the Treatment of Alzheimer’s Disease. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn the last decade, our group has been very active at developing and assaying complex libraries of scaffolds with a focus on their potential to identify bioactive drug candidates for neurodegenerative diseases, particularly Alzheimer’s disease (AD). Attention has been focused on isatin-based oxindole scaffolds, for which promising results concerning butyrylcholinesterase (BuChE) inhibitory activity have previously been obtained. Considering some published reports and detailed analysis of the pharmacophores of commercially available drugs for AD (powerful cholinesterase (ChE) inhibitors), we performed a strategic structural modification of the isatin core and generated a new family of isatin-based oxindole hybrids (27 new compounds) possessing crucial key functional units in their framework. The syntheses were accomplished using multiple approaches, including simple N-alkylation reactions, copper-catalyzed amination reactions, and click chemistry. The resulting library was evaluated on ChE and MAO enzymes, both of which are involved in the pathophysiology of neurodegeneration. IC50 values of 1.6 and 2.6 μM (BuChE assays), were achieved for the best inhibitors.
Collapse
Affiliation(s)
- Carolina S. Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla
| | - Luisa Leitzbach
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry
| | | | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry
| | - Anthony J. Burke
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies
- Chemistry Department, School of Science and Technology, University of Évora
- Faculty of Pharmacy, University of Coimbra
| |
Collapse
|
19
|
Discovery of novel 3-butyl-6-benzyloxyphthalide Mannich base derivatives as multifunctional agents against Alzheimer's disease. Bioorg Med Chem 2022; 58:116660. [DOI: 10.1016/j.bmc.2022.116660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
|
20
|
Kurtanović N, Tomašević N, Matić S, Mitrović MM, Kostić DA, Sabatino M, Antonini L, Ragno R, Mladenović M. Human estrogen receptor α antagonists, part 2: Synthesis driven by rational design, in vitro antiproliferative, and in vivo anticancer evaluation of innovative coumarin-related antiestrogens as breast cancer suppressants. Eur J Med Chem 2022; 227:113869. [PMID: 34710747 DOI: 10.1016/j.ejmech.2021.113869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.
Collapse
Affiliation(s)
- Nezrina Kurtanović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Sanja Matić
- University of Kragujevac, Institute for Informational Technologies, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Marina M Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela A Kostić
- University of Niš, Department of Chemistry, Faculty of Sciences and Mathematics, Višegradska 33, 18000, Niš, Serbia
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia.
| |
Collapse
|
21
|
Mantas I, Saarinen M, Xu ZQD, Svenningsson P. Update on GPCR-based targets for the development of novel antidepressants. Mol Psychiatry 2022; 27:534-558. [PMID: 33589739 PMCID: PMC8960420 DOI: 10.1038/s41380-021-01040-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
22
|
In vitro and in vivo evaluation of fluorinated indanone derivatives as potential positron emission tomography agents for the imaging of monoamine oxidase B in the brain. Bioorg Med Chem Lett 2021; 48:128254. [PMID: 34256118 DOI: 10.1016/j.bmcl.2021.128254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) play a key role in the metabolism of major monoamine neurotransmitters. In particular, the upregulation of MAO-B in Parkinson's disease, Alzheimer's disease and cancer augmented the development of selective MAO-B inhibitors for diagnostic and therapeutic purposes, such as the anti-parkinsonian MAO-B irreversible binder l-deprenyl (Selegiline®). Herein we report on the synthesis of novel fluorinated indanone derivatives for PET imaging of MAO-B in the brain. Out of our series, the derivatives 6, 8, 9 and 13 are amongst the most affine and selective ligands for MAO-B reported so far. For the derivative 6-((3-fluorobenzyl)oxy)-2,3-dihydro-1H-inden-1-one (6) exhibiting an outstanding affinity (KiMAO-B = 6 nM), an automated copper-mediated radiofluorination starting from the pinacol boronic ester 17 is described. An in vitro screening in different species revealed a MAO-B region-specific accumulation of [18F]6 in rats and piglets in comparison to L-[3H]deprenyl. The pre-clinical in vivo assessment of [18F]6 in mice demonstrated the potential of indanones to readily cross the blood-brain barrier. Nonetheless, parallel in vivo metabolism studies indicated the presence of blood-brain barrier metabolites, thus arguing for further structural modifications. With the matching analytical profiles of the radiometabolite analysis from the in vitro liver microsome studies and the in vivo evaluation, the structure's elucidation of the blood-brain barrier penetrant radiometabolites is possible and will serve as basis for the development of new indanone derivatives suitable for the PET imaging of MAO-B.
Collapse
|
23
|
Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin JS, Bezard E, Stark H. Adenosine A 2AR/A 1R Antagonists Enabling Additional H 3R Antagonism for the Treatment of Parkinson's Disease. J Med Chem 2021; 64:8246-8262. [PMID: 34107215 DOI: 10.1021/acs.jmedchem.0c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.
Collapse
Affiliation(s)
- Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Anna Affini
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Elsa Y Pioli
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Institute of Pharmacology and Toxicology, School of Medicine, University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Alfred-Herrhausen-Street 50, 58448 Witten, Germany
| | - Yan Zhao
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | | | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jian-Sheng Lin
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Erwan Bezard
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| |
Collapse
|
24
|
Koszła O, Stępnicki P, Zięba A, Grudzińska A, Matosiuk D, Kaczor AA. Current Approaches and Tools Used in Drug Development against Parkinson's Disease. Biomolecules 2021; 11:897. [PMID: 34208760 PMCID: PMC8235487 DOI: 10.3390/biom11060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the death of nerve cells in the substantia nigra of the brain. The treatment options for this disease are very limited as currently the treatment is mainly symptomatic, and the available drugs are not able to completely stop the progression of the disease but only to slow it down. There is still a need to search for new compounds with the most optimal pharmacological profile that would stop the rapidly progressing disease. An increasing understanding of Parkinson's pathogenesis and the discovery of new molecular targets pave the way to develop new therapeutic agents. The use and selection of appropriate cell and animal models that better reflect pathogenic changes in the brain is a key aspect of the research. In addition, computer-assisted drug design methods are a promising approach to developing effective compounds with potential therapeutic effects. In light of the above, in this review, we present current approaches for developing new drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
25
|
Gontijo VS, Viegas FPD, Ortiz CJC, de Freitas Silva M, Damasio CM, Rosa MC, Campos TG, Couto DS, Tranches Dias KS, Viegas C. Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Curr Neuropharmacol 2020; 18:348-407. [PMID: 31631821 PMCID: PMC7457438 DOI: 10.2174/1385272823666191021124443] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil
| | - Flávia P Dias Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Matheus de Freitas Silva
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Caio Miranda Damasio
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Mayara Chagas Rosa
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Thâmara Gaspar Campos
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Dyecika Souza Couto
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | | | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| |
Collapse
|
26
|
Rodríguez-Enríquez F, Costas-Lago MC, Besada P, Alonso-Pena M, Torres-Terán I, Viña D, Fontenla JÁ, Sturlese M, Moro S, Quezada E, Terán C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson's disease therapy. Bioorg Chem 2020; 104:104203. [PMID: 32932120 DOI: 10.1016/j.bioorg.2020.104203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
The 3-pyridazinylcoumarin scaffold was previously reported as an efficient core for the discovery of reversible and selective inhibitors of MAO-B, a validated drug target for PD therapy which also plays an important role in the AD progress. Looking for its structural optimization, novel compounds of hybrid structure coumarin-pyridazine, differing in polarizability and lipophilicity properties, were synthesized and tested against the two MAO isoforms, MAO-A and MAO-B (compounds 17a-f and 18a-f). All the designed compounds selectively inhibited the MAO-B isoenzyme, exhibiting many of them IC50 values ranging from sub-micromolar to nanomolar grade and lacking neuronal toxicity. The 7-bromo-3-(6-bromopyridazin-3-yl)coumarin (18c), the most potent compound of these series (IC50 = 60 nM), was subjected to further in vivo studies in a reserpine-induced mouse PD model. The obtained results suggest a promising potential for 18c as antiparkinsonian agent. Molecular modeling studies also provided valuable information about the enzyme-drug interactions and the potential pharmacokinetic profile of the novel compounds.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Enríquez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Carmen Costas-Lago
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Pedro Besada
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel Alonso-Pena
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Iria Torres-Terán
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Ángel Fontenla
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Elias Quezada
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Terán
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
27
|
Ma H, Huang B, Zhang Y. Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov Today 2020; 25:1682-1692. [PMID: 32652312 PMCID: PMC7572774 DOI: 10.1016/j.drudis.2020.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 01/13/2023]
Abstract
Mounting evidence indicates that single-target drugs might be inadequate to achieve satisfactory therapeutic effects on complex diseases. Recently, increasing attention has been paid to developing drugs that can manipulate multiple targets to generate beneficial effects through potential synergy. G-protein-coupled receptors (GPCRs) become desirable targets for developing multitarget-directed ligands (MTDLs) because of their crucial roles in the pathophysiology of various human diseases and the accessibility of druggable sites at the cell surface. Herein, we review the most recent advances in the development of GPCR-targeted MTDLs in treating complex diseases, and discuss their potential therapeutic strategies to reveal current trends and shed insights into the utility of GPCR-targeted MTDLs for future drug design and development.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
28
|
Reiner D, Seifert L, Deck C, Schüle R, Jung M, Stark H. Epigenetics meets GPCR: inhibition of histone H3 methyltransferase (G9a) and histamine H 3 receptor for Prader-Willi Syndrome. Sci Rep 2020; 10:13558. [PMID: 32782417 PMCID: PMC7419559 DOI: 10.1038/s41598-020-70523-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
The role of epigenetic regulation is in large parts connected to cancer, but additionally, its therapeutic claim in neurological disorders has emerged. Inhibition of histone H3 lysine N-methyltransferase, especially G9a, has been recently shown to restore candidate genes from silenced parental chromosomes in the imprinting disorder Prader-Willi syndrome (PWS). In addition to this epigenetic approach, pitolisant as G-protein coupled histamine H3 receptor (H3R) antagonist has demonstrated promising therapeutic effects for Prader-Willi syndrome. To combine these pioneering principles of drug action, we aimed to identify compounds that combine both activities, guided by the pharmacophore blueprint for both targets. However, pitolisant as selective H3R inverse agonist with FDA and EMA-approval did not show the required inhibition at G9a. Pharmacological characterization of the prominent G9a inhibitor A-366, that is as well an inhibitor of the epigenetic reader protein Spindlin1, revealed its high affinity at H3R while showing subtype selectivity among subsets of the histaminergic and dopaminergic receptor families. This work moves prominent G9a ligands forward as pharmacological tools to prove for a potentially combined, symptomatic and causal, therapy in PWS by bridging the gap between drug development for G-protein coupled receptors and G9a as an epigenetic effector in a multi-targeting approach.
Collapse
Affiliation(s)
- David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Ludwig Seifert
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Caroline Deck
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Roland Schüle
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106, Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
29
|
Łażewska D, Olejarz-Maciej A, Reiner D, Kaleta M, Latacz G, Zygmunt M, Doroz-Płonka A, Karcz T, Frank A, Stark H, Kieć-Kononowicz K. Dual Target Ligands with 4- tert-Butylphenoxy Scaffold as Histamine H 3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. Int J Mol Sci 2020; 21:ijms21103411. [PMID: 32408504 PMCID: PMC7279487 DOI: 10.3390/ijms21103411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023] Open
Abstract
Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 MedycznaStr, 30-688 Kraków, Poland;
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| |
Collapse
|
30
|
Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ 1-42 aggregation. Bioorg Chem 2020; 98:103722. [PMID: 32155491 DOI: 10.1016/j.bioorg.2020.103722] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Multifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatments [6]. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy for the search of new anti-AD drug candidates. Herein described natural isoquinoline alkaloids were investigated for multi-target activity on key mechanisms associated with the AD's pathogenesis, i.e. cholinergic depletion, beta amyloid (Aβ) aggregation and oxidative stress. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (5) and avicine (7), as the most potent multi-target candidates. Both showed dual cholinesterase inhibition, being more active against AChE over BChE, with IC50 values in sub-micromolar range in AChE. Kinetic analysis with cholinesterase showed, that both compounds are reversible-mixed inhibitors, where avicine (7) presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). In addition, these alkaloids presented moderate Aβ1-42 anti-aggregation activity and MAO-A inhibition with IC50 values between 0.5 and 2 µM. Our findings suggest that avicine (7) is a promising natural compound and multifunctional candidate representing a suitable starting point for the development of new therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Erika Plazas
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia.
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Monica Avila Murillo
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Luis Enrique Cuca
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia
| |
Collapse
|
31
|
Rajan Sruthi P, Venu Saranya T, Anas S. Palladium Catalyzed Annulation of Morita‐Baylis‐Hillman Adducts: Synthesis of Indene and Indanone Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.201903515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Thachora Venu Saranya
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University Kottayam, Kerala India- 686560
| | - Saithalavi Anas
- School of Chemical SciencesMahatma Gandhi University Kottayam, Kerala India- 686560
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University Kottayam, Kerala India- 686560
| |
Collapse
|
32
|
Hagenow J, Hagenow S, Grau K, Khanfar M, Hefke L, Proschak E, Stark H. Reversible Small Molecule Inhibitors of MAO A and MAO B with Anilide Motifs. Drug Des Devel Ther 2020; 14:371-393. [PMID: 32099324 PMCID: PMC6996489 DOI: 10.2147/dddt.s236586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ligands consisting of two aryl moieties connected via a short spacer were shown to be potent inhibitors of monoamine oxidases (MAO) A and B, which are known as suitable targets in treatment of neurological diseases. Based on this general blueprint, we synthesized a series of 66 small aromatic amide derivatives as novel MAO A/B inhibitors. METHODS The compounds were synthesized, purified and structurally confirmed by spectroscopic methods. Fluorimetric enzymological assays were performed to determine MAO A/B inhibition properties. Mode and reversibility of inhibition was determined for the most potent MAO B inhibitor. Docking poses and pharmacophore models were generated to confirm the in vitro results. RESULTS N-(2,4-Dinitrophenyl)benzo[d][1,3]dioxole-5-carboxamide (55, ST-2043) was found to be a reversible competitive moderately selective MAO B inhibitor (IC50 = 56 nM, Ki = 6.3 nM), while N-(2,4-dinitrophenyl)benzamide (7, ST-2023) showed higher preference for MAO A (IC50 = 126 nM). Computational analysis confirmed in vitro binding properties, where the anilides examined possessed high surface complementarity to MAO A/B active sites. CONCLUSION The small molecule anilides with different substitution patterns were identified as potent MAO A/B inhibitors, which were active in nanomolar concentrations ranges. These small and easily accessible molecules are promising motifs, especially for newly designed multitargeted ligands taking advantage of these fragments.
Collapse
Affiliation(s)
- Jens Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
| | - Kathrin Grau
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
| | - Mohammad Khanfar
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
- Faculty of Pharmacy, The University of Jordan, Amman11942, Jordan
- College of Pharmacy, Alfaisal University, Riyadh11533, Saudi Arabia
| | - Lena Hefke
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt60438, Germany
| | - Ewgenij Proschak
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt60438, Germany
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
- Correspondence: Holger Stark Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, Duesseldorf40225, GermanyTel +49 211 81-10478Fax +49 211 81-13359 Email
| |
Collapse
|
33
|
Jafari B, Jalil S, Zaib S, Safarov S, Khalikova M, Khalikov D, Ospanov M, Yelibayeva N, Zhumagalieva S, Abilov ZA, Turmukhanova MZ, Kalugin SN, Salman GA, Ehlers P, Hameed A, Iqbal J, Langer P. Synthesis of 2‐Alkynyl‐ and2‐Amino‐12
H
‐benzothiazolo[2,3‐
b
]quinazolin‐12‐ones and Their Inhibitory Potential against Monoamine Oxidase A and B. ChemistrySelect 2019. [DOI: 10.1002/slct.201903300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Behzad Jafari
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Saquib Jalil
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Sayfidin Safarov
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Institute of ChemistryTajikistan Academy of Sciences ul. Aini 299 Dushanbe 734063 Tajikistan
| | - Muattar Khalikova
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Institute of ChemistryTajikistan Academy of Sciences ul. Aini 299 Dushanbe 734063 Tajikistan
| | - Djurabay Khalikov
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Institute of ChemistryTajikistan Academy of Sciences ul. Aini 299 Dushanbe 734063 Tajikistan
| | - Meirambek Ospanov
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | - Nazym Yelibayeva
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | - Shynar Zhumagalieva
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | | | | | - Sergey N. Kalugin
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | - Ghazwan Ali Salman
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Department of ChemistryCollege of Science, University Al-Mustansiriyah Palestine St, Mustansiriya, Baghdad Iraq
| | - Peter Ehlers
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Abdul Hameed
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Peter Langer
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
34
|
Virtual screening-driven discovery of dual 5-HT 6/5-HT 2A receptor ligands with pro-cognitive properties. Eur J Med Chem 2019; 185:111857. [PMID: 31734022 DOI: 10.1016/j.ejmech.2019.111857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
Abstract
A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.
Collapse
|
35
|
Lutsenko K, Hagenow S, Affini A, Reiner D, Stark H. Rasagiline derivatives combined with histamine H3 receptor properties. Bioorg Med Chem Lett 2019; 29:126612. [DOI: 10.1016/j.bmcl.2019.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
36
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
37
|
Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019; 62:8881-8914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.
Collapse
Affiliation(s)
- Junting Zhou
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Xueyang Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Hongli Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China.,Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
38
|
Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G. The current status of pharmacotherapy for the treatment of Parkinson's disease: transition from single-target to multitarget therapy. Drug Discov Today 2019; 24:1769-1783. [PMID: 31102728 DOI: 10.1016/j.drudis.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons. Motor features such as tremor, rigidity, bradykinesia and postural instability are common traits of PD. Current treatment options provide symptomatic relief to the condition but are unable to reverse disease progression. The conventional single-target therapeutic approach might not always induce the desired effect owing to the multifactorial nature of PD. Hence, multitarget strategies have been proposed to simultaneously target multiple proteins involved in the development of PD. Herein, we provide an overview of the pathogenesis of PD and the current pharmacotherapies. Furthermore, rationales and examples of multitarget approaches that have been tested in preclinical trials for the treatment of PD are also discussed.
Collapse
Affiliation(s)
- Siew L Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Malaysia.
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
39
|
Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med Res Rev 2019; 39:1603-1706. [PMID: 30604512 DOI: 10.1002/med.21561] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Monoamine oxidase (MAO) inhibitors have made significant contributions and remain an indispensable approach of molecular and mechanistic diversity for the discovery of antineurodegenerative drugs. However, their usage has been hampered by nonselective and/or irreversible action which resulted in drawbacks like liver toxicity, cheese effect, and so forth. Hence, the search for selective MAO inhibitors (MAOIs) has become a substantial focus in current drug discovery. This review summarizes our current understanding on MAO-A/MAO-B including their structure, catalytic mechanism, and biological functions with emphases on the role of MAO-B as a potential therapeutic target for the development of medications treating neurodegenerative disorders. It also highlights the recent developments in the discovery of potential MAO-B inhibitors (MAO-BIs) belonging to diverse chemical scaffolds, arising from intensive chemical-mechanistic and computational studies documented during past 3 years (2015-2018), with emphases on their potency and selectivity. Importantly, readers will gain knowledge of various newly established MAO-BI scaffolds and their development potentials. The comprehensive information provided herein will hopefully accelerate ideas for designing novel selective MAO-BIs with superior activity profiles and critical discussions will inflict more caution in the decision-making process in the MAOIs discovery.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
40
|
Potential Therapeutic Drugs for Parkinson's Disease Based on Data Mining and Bioinformatics Analysis. PARKINSONS DISEASE 2018; 2018:3464578. [PMID: 30370044 PMCID: PMC6189653 DOI: 10.1155/2018/3464578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/12/2023]
Abstract
The objective is to search potential therapeutic drugs for Parkinson's disease based on data mining and bioinformatics analysis and providing new ideas for research studies on “new application of conventional drugs.” Method differential gene candidates were obtained based on data mining of genes of PD brain tissue, original gene data analysis, differential gene crossover, pathway enrichment analysis, and protein interaction, and potential therapeutic drugs for Parkinson's disease were obtained through drug-gene relationship. Result. 250 common differential genes were obtained from 3 research studies, and 31 differential gene candidates were obtained through gene enrichment analysis and protein interaction. 10 drugs such as metformin hydrochloride were directly or indirectly correlated to differential gene candidates. Conclusion. Potential therapeutic drugs that may be used for prevention and treatment of Parkinson's disease were discovered through data mining and bioinformatics analysis, which provided new ideas for research and development of drugs. Results showed that metformin hydrochloride and other drugs had certain therapeutical effect on Parkinson's disease, and melbine (DMBG) can be used for treatment of Parkinson's disease and type 2 diabetes patients.
Collapse
|
41
|
Elshaflu H, Todorović TR, Nikolić M, Lolić A, Višnjevac A, Hagenow S, Padrón JM, García-Sosa AT, Djordjević IS, Grubišić S, Stark H, Filipović NR. Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies. Front Chem 2018; 6:247. [PMID: 30018949 PMCID: PMC6037691 DOI: 10.3389/fchem.2018.00247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
The novel approach in the treatment of complex multifactorial diseases, such as neurodegenerative disorders and cancer, requires a development of efficient multi-targeting oriented drugs. Since oxidative stress significantly contributes to the pathogenesis of cancer and neurodegenerative disorders, potential drug candidates should possess good antioxidant properties. Due to promising biological activities shown for structurally related (1,3-thiazol-2-yl)hydrazones, a focused library of 12 structurally related benzylidene-based (1,3-selenazol-2-yl)hydrazones was designed as potential multi-targeting compounds. Monoamine oxidases (MAO) A/B inhibition properties of this class of compounds have been investigated. Surprisingly, the p-nitrophenyl-substituted (1,3-selenazol-2-yl)hydrazone 4 showed MAO B inhibition in a nanomolar concentration range (IC50 = 73 nM). Excellent antioxidant properties were confirmed in a number of different in vitro assays. Antiproliferative activity screening on a panel of six human solid tumor cell lines showed that potencies of some of the investigated compounds was comparable or even better than that of the positive control 5-fluorouracil. In-silico calculations of ADME properties pointed to promising good pharmacokinetic profiles of investigated compounds. Docking studies suggest that some compounds, compared to positive controls, have the ability to strongly interact with targets relevant to cancer such as 5′-nucleotidase, and to neurodegenerative diseases such as the small conductance calcium-activated potassium channel protein 1, in addition to confirmation of inhibitory binding at MAO B.
Collapse
Affiliation(s)
- Hana Elshaflu
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Tamara R Todorović
- Department of General and Inorganic Chemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milan Nikolić
- Department of General and Inorganic Chemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Aleksandar Lolić
- Department of General and Inorganic Chemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | | | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, Tenerife, Spain
| | | | - Ivana S Djordjević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Sonja Grubišić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
42
|
Breuer C, Lemke C, Schmitz J, Bartz U, Gütschow M. Synthesis and kinetic evaluation of ethyl acrylate and vinyl sulfone derived inhibitors for human cysteine cathepsins. Bioorg Med Chem Lett 2018; 28:2008-2012. [DOI: 10.1016/j.bmcl.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022]
|