1
|
Gao D, Shi L, Huang Y, Lv Y, Yang X, Du Z. Synthesis of 2-Amino-4, 5-Diarylthiazole Derivatives and Evaluation of Their Anti- Candida Albicans Activity. Molecules 2025; 30:1643. [PMID: 40286249 PMCID: PMC11990618 DOI: 10.3390/molecules30071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The thiazole heterocycle is one of the most common moieties found in various drugs. Using 2-aminothiazole as the core structure, the amino group was functionalized with an amide. As a result, 30 trisubstituted 2-amino-4, 5-diarylthiazole derivatives were synthesized, with different substitutions introduced at the C2, C4, and C5 positions. The anti-Candida albicans biological activities of these synthetic compounds on five kinds of Candida albicans at different concentrations were detected by the microdilution method. In the first round, four derivatives of 2-amino-4, 5-diarylthiazole exhibited moderate anti-Candida albicans activity. Among them, 4a8 was chosen to be subjected to a demethylation process. Thus, 5a8 was synthesized successfully, giving anti-Candida albicans activity (MIC80 = 9 μM) similar to that of a typical antifungal drug, fluconazole. To understand the mechanism of anti-Candida albicans, molecular docking of the most active 5a8 against four target proteins of anti-Candida albicans, such as glutamine-fructose-6-phosphoamidamitransferase (GFAT), protein kinase (Yck2), heat-shock protein 90 (Hsp90), and lanosterol 14a-demethylase (CYP51) was carried out. Our research will provide an experimental basis and theoretical guidance for the further design of a new aminothiazole-leading pharmaceutical molecule.
Collapse
Affiliation(s)
- Dongmei Gao
- Yangling Vocational & Technical College, Yangling 712100, China
| | - Lele Shi
- School of Chemistry and Pharmacy, Northwest A & F University, Yangling 712100, China; (L.S.); (Y.H.); (Y.L.); (X.Y.)
| | - Yuhang Huang
- School of Chemistry and Pharmacy, Northwest A & F University, Yangling 712100, China; (L.S.); (Y.H.); (Y.L.); (X.Y.)
| | - Yingmei Lv
- School of Chemistry and Pharmacy, Northwest A & F University, Yangling 712100, China; (L.S.); (Y.H.); (Y.L.); (X.Y.)
| | - Xuan Yang
- School of Chemistry and Pharmacy, Northwest A & F University, Yangling 712100, China; (L.S.); (Y.H.); (Y.L.); (X.Y.)
| | - Zhenting Du
- School of Chemistry and Pharmacy, Northwest A & F University, Yangling 712100, China; (L.S.); (Y.H.); (Y.L.); (X.Y.)
| |
Collapse
|
2
|
Leocádio VT, Miranda IL, Magalhães MHC, dos Santos Júnior VS, Goncalves JE, Oliveira RB, Maltarollo VG, Bastos RW, Goldman G, Johann S, Teixeira de Aguiar Peres N, Santos DDA. Thiazole Derivatives as Promising Candidates for Cryptococcosis Therapy. ACS Infect Dis 2025; 11:639-652. [PMID: 39918430 PMCID: PMC11915371 DOI: 10.1021/acsinfecdis.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
Cryptococcosis is a severe fungal infection primarily caused by two encapsulated yeasts: Cryptococcus neoformans and C. gattii. The most significant complication is cryptococcal meningitis, where the fungus crosses the blood-brain barrier, leading to a severe brain infection. Current treatments, which include amphotericin B and flucytosine or fluconazole, are often toxic and not very effective. Therefore, there is a pressing need for new antifungal agents. This study screened 30 thiazole derivatives for their antifungal activity against Cryptococcus and their toxicity to brain cells. Four compounds (RN86, RN88, RJ37, and RVJ42) showed particularly strong effects. These compounds reduced ergosterol levels in the fungal membrane and inhibited its ability to cross the blood-brain barrier. Notably, RN86 and RVJ42 improved survival rates in a mouse model of cryptococcosis by lowering the fungal load in the lungs and brain. These findings suggest that these derivatives could be promising treatments for pulmonary and neurocryptococcosis.
Collapse
Affiliation(s)
| | - Isabela L. Miranda
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Martha H. C. Magalhães
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - José Eduardo Goncalves
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Renata Barbosa Oliveira
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vinicius Gonçalves Maltarollo
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rafael Wesley Bastos
- Centro de
Biociências, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
- National
Institute of Science and Technology in Human Pathogenic Fungi, São Paulo14040-900,Brazil
| | - Gustavo Goldman
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903,Brazil
| | - Susana Johann
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Daniel de Assis Santos
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
- National
Institute of Science and Technology in Human Pathogenic Fungi, São Paulo14040-900,Brazil
| |
Collapse
|
3
|
Romão IC, Siqueira SMC, Silva Abreu FOMD, Santos HSD. Hydralazine and Hydrazine Derivatives: Properties, Applications, and Repositioning Potential. Chem Biodivers 2025; 22:e202401561. [PMID: 39429053 DOI: 10.1002/cbdv.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The investigation of new drugs is slow and costly. Drug repositioning, like with Hydralazine (HDZ), an old antihypertensive, can accelerate the process. HDZ and its hydrazonic derivatives exhibit diverse biological activities, promising for new drugs. This review explores HDZ's repositioning potential and its derivatives' applications in various biological activities. It identified 70 relevant articles through database searches. HDZ shows potential in neurology, oncology, nephrology, and gynecology, with clinical trials up to Phase III. Hydralazine-valproate, marketed in Mexico, proves effective in combination with chemotherapy. Hydrazonic derivatives offer broad applications in medicine. Studying their structure-activity relationship can enhance efficacy. This review summarizes their properties and pharmacological activities succinctly.
Collapse
Affiliation(s)
- Ivana Carneiro Romão
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental-LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
| | - Sônia Maria Costa Siqueira
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental-LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
| | - Flávia Oliveira Monteiro da Silva Abreu
- Laboratório de polímeros naturais-Laponat, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental-LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
- Curso de Química, Universidade Estadual Vale do Acaraú, 62.040-370, Sobral, Ceará, Brazil
| |
Collapse
|
4
|
Acharya SS, Guin BK, Parida BB. One-Pot Multicomponent Synthesis of Fully Substituted 1,3-Thiazoles Appended with Naturally Occurring Lawsone. J Org Chem 2025; 90:2717-2727. [PMID: 39915106 DOI: 10.1021/acs.joc.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Lawsone is a popular bioactive natural product. 1,3-Thiazoles are also widely distributed in many natural products, FDA-approved drugs, and functional materials. We report herein the first synthesis of naturally occurring lawsone-linked fully substituted 1,3-thiazoles in a one-pot multicomponent reaction (MCR) of arylglyoxals, lawsone, and thiobenzamides in acetic acid at 90 °C, affording lawsone-1,3-thiazole hybrids in excellent yields in short reaction times. The advantages of the present method include facile, robust, and easy access to the medicinally relevant diverse array of fully substituted lawsone-1,3-thiazole hybrids, easy isolation of the product by filtration, thereby avoiding column-chromatographic purifications, short reaction time, and metal- and catalyst-free and gram-scale synthesis.
Collapse
Affiliation(s)
- Swadhin Swaraj Acharya
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Bisal Kumar Guin
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Bibhuti Bhusan Parida
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| |
Collapse
|
5
|
Bąchor U, Brożyna M, Junka A, Chmielarz MR, Gorczyca D, Mączyński M. Novel Isoxazole-Based Antifungal Drug Candidates. Int J Mol Sci 2024; 25:13618. [PMID: 39769380 PMCID: PMC11728180 DOI: 10.3390/ijms252413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Microbiological communities have a significant impact on health and disease. Candida are ubiquitous fungal pathogens that colonize the mucosal surfaces of the genital, urinary, respiratory, and gastrointestinal tracts, as well as the oral cavity. If the immune system is inadequate, then Candida infections may pose a significant threat. Due to the limited number of clinically approved drugs for the treatment of Candida albicans-based infections and the rapid emergence of resistance to the existing antifungals, a novel series of isoxazole-based derivatives was synthesized and evaluated in vitro for their anti-Candida potential. Two compounds, PUB14 and PUB17, displayed selective antifungal activity without negatively affecting beneficial microbiota, such as Lactobacillus sp., at the same time. Moreover, these compounds exhibited significantly lower cytotoxicity in comparison to conventionally applied local antimicrobial (octenidine dihydrochloride), indicating their potential for safe and effective clinical application in conditions such as vulvovaginal candidiasis. The selective antifungal activity of PUB14 and PUB17 against C. albicans, coupled with its absence of antibacterial effects and minimal cytotoxicity towards HeLa cells, suggests a targeted mechanism of action that warrants further investigation. Consideration of the need to search for new antifungal agents and the discovery of an antifungal potential drug that does not inhibit lactobacilli growth could be a potential strategy to prevent and combat vulvovaginal candidiasis. This striking capacity to eradicate biofilm formed by Candida reveals a new approach to eradicating biofilms and sheds light on isoxazole-based derivatives as promising anti-biofilm drugs.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malwina Brożyna
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mateusz Ramires Chmielarz
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland
| | - Damian Gorczyca
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
6
|
Sá AF, Diniz IMA, Oliveira RBD, Diniz MG, Cortés ME, Souza LLD, Olórtegui CDC, Lages FS. Effect of curcumin and three analogues on pre-osteoblast cells' viability, differentiation, and gene expression. Braz Oral Res 2024; 38:e123. [PMID: 39661796 DOI: 10.1590/1807-3107bor-2024.vol38.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/13/2024] [Indexed: 12/13/2024] Open
Abstract
Curcumin, found in turmeric rhizomes (Curcuma longa L.), has been widely studied for its potential health benefits, including anti-inflammatory, antioxidant, and wound-healing properties. However, due to its low bioavailability and unfavorable pharmacokinetics, analogous compounds have been developed to obtain better biopharmaceutical characteristics and enhanced biological effects. In this study, we evaluated the activity of curcumin and three of its synthetic analogues (DMAD, DMAM, and RI75) on the viability and differentiation of a pre-osteoblastic cell line (MC3T3-E1). We also assessed the expression of key genes involved in tissue regeneration: vascular endothelial growth factor (vegf), stromal-derived growth factor 1 (SDF-1/CXCL12), and runt-related transcription factor 2 (runx2). The cells were treated with curcumin and the three analogues at concentrations of 10, 30, or 50 μM. All tested analogues and curcumin exhibited moderate to no cell toxicity compared to the cells treated under standard conditions across all concentrations after 24, 48, and 72 hours. Only the RI75 analogue showed upregulation of SDF-1, a crucial factor in tissue regeneration. Compared to curcumin, the DMAM and RI75 analogues also upregulated runx2 and vegf, both associated with osteodifferentiation. The RI75 analogue demonstrated greater mineralization than curcumin, and both promoted more nodule formation than the untreated control. Our data suggest that the curcumin analogue RI75 at 50 μM presents similar toxicity but enhanced biological activity compared to natural curcumin, making it a promising substance for material biomodifications.
Collapse
Affiliation(s)
- Ana Flor Sá
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Ivana Márcia Alves Diniz
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Renata Barbosa de Oliveira
- Universidade Federal de Minas Gerais - UFMG, School of Pharmacy, Department of Pharmaceutical Products, Belo Horizonte, MG, Brazil
| | - Marina Gonçalves Diniz
- Universidade Federal de Minas Gerais - UFMG, Department of Pathology, Biological Sciences Institute, Belo Horizonte, MG, Brazil
| | - Maria Esperanza Cortés
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Letícia Lopes de Souza
- Universidade Federal de Minas Gerais - UFMG, Department of Biochemistry and Immunology, Biological Sciences Institute, Belo Horizonte, MG, Brazil
| | - Carlos Delfin Chávez Olórtegui
- Universidade Federal de Minas Gerais - UFMG, Department of Biochemistry and Immunology, Biological Sciences Institute, Belo Horizonte, MG, Brazil
| | - Frederico Santos Lages
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Koyambo-Konzapa SJ, Oubella A, Issaoui N, Amolo G, Taha ML, Geesi MH, Aldakhil T, Riadi Y, Auhmani A, Itto MYA. Molecular structure, spectroscopic (FT-IR, NMR and UV–Vis), electronic properties, molecular docking, and molecular dynamics studies on novel thiazolidinone derivative: A potent breast cancer drug. J Mol Struct 2024; 1318:139301. [DOI: 10.1016/j.molstruc.2024.139301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Zhang Y, Li L, Li Y, OuYang Q, Che J, Chen X, Ding S, Wang R, Tao N. Novel Essential Oil-Based Thiosemicarbazone Compounds as Potential Fungicides in Controlling Postharvest Diseases of Citrus Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21574-21584. [PMID: 39303019 DOI: 10.1021/acs.jafc.4c04216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To develop novel fungicides for controlling postharvest fungal diseases in citrus fruits, 12 essential oil (EO)-based thiosemicarbazones compounds, termed hydrazine-carbothioamide, were prepared according to the condensation method. In vitro assays showed that compound 13j exhibited the strongest antifungal activity (minimum inhibitory concentration [MIC] = minimum fungicidal concentration [MFC] = 0.0125 mg/mL) against Penicillium digitatum. An in vivo study revealed that 5 × MFC of compound 13j can effectively mitigate the green mold incidence of citrus fruit inoculated with P. digitatum, as well as fruit rot during natural storage, at a level comparable to that of the chemical fungicide prochloraz. Throughout this process, fruit quality was maintained. The hemolysis assay showed that these thiosemicarbazone compounds have good biocompatibility and that their safety is comparable to that of prochloraz. The antifungal activity of compound 13j was attributed to membrane damage, as confirmed using scanning electron microscopy (SEM), Calcofluor white (CFW) staining, propidium iodide (PI) staining, Fourier transform-infrared (FT-IR) spectroscopy, optical density (OD)260, and relative conductivity assays. Collectively, our results indicate that compound 13j can be used as an antifungal agent to control the postharvest decay of citrus fruits.
Collapse
Affiliation(s)
- Yonghua Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Lu Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yafeng Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xiumei Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shenghua Ding
- Dongting Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P. R. China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
9
|
Haji Ali S, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, Synthesis, Investigation, and Biological Activity Assessments of (4-Substituted-Phenyl)- N-(3-morpholinopropyl)-3-phenylthiazol-2(3 H)-imine Derivatives as Antifungal Agents. ACS OMEGA 2024; 9:39326-39343. [PMID: 39346840 PMCID: PMC11425616 DOI: 10.1021/acsomega.3c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 10/01/2024]
Abstract
In this study, a series of novel thiazol-2(3H)-imine (2a-2j) were designed, synthesized, and characterized by means of 1H NMR, 13C NMR, and HRMS spectral analyses. In vitro antifungal activity was performed using a modified EUCAST protocol. Two of the synthesized compounds (2d and 2e) showed activity against Candida albicans and Candida parapsilosis. Compound 2e showed activity against C. parapsilosis (MIC50 = 1.23 μg/mL) for 48 h. This value is very similar to ketoconazole. The dynamic analysis of the potential compounds 2d and 2e revealed notable stability while interacting with the 14α-demethylase enzyme substrate. The absorption, distribution, metabolism, and excretion (ADME) studies of the candidate compound showed acceptable ADME parameter data and verified their drug-likeness characteristics. According to the results of this study, compound 4-(4-fluorophenyl)-N-(3-morpholinopropyl)-3-phenylthiazol-2(3H)-imine (2e) and its derivatives as 14α-demethylase inhibitors can be used as a new antifungal for further structural improvements and additional research.
Collapse
Affiliation(s)
- Sazan Haji Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hawler Medical University, Erbil 44000, Iraq
- Graduate Education Institute, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
10
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
11
|
Khan FM, Abbasi MA, Rehman AU, Siddiqui SZ, Sadiq Butt AR, Raza H, Hassan M, Ali Shah SA, Shahid M, Kim SJ. Design of potent tyrosinase inhibiting N-arylated-4-yl-benzamides bearing 2-aminothiazole-triazole bi-heterocycles: mechanistic insight through enzyme inhibition, kinetics and computational studies. RSC Adv 2024; 14:16546-16559. [PMID: 38774615 PMCID: PMC11106707 DOI: 10.1039/d4ra01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
By using a convergent methodology, a unique series of N-arylated 4-yl-benzamides containing a bi-heterocyclic thiazole-triazole core was synthesized and the structures of these hybrid molecules, 9a-k, were corroborated through spectral analyses. The in vitro studies of these multi-functional molecules demonstrated their potent mushroom tyrosinase inhibition relative to the standard used. The kinetics mechanism was exposed by lineweaver-burk plots which revealed that, 9c, inhibited mushroom tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.016 μM. The computational study was also consistent with the experimental results and these molecules disclosed good results of all scoring functions and interactions, which suggested a good binding to mushroom tyrosinase. So, it was predicted from the inferred results that these molecules might be considered as promising medicinal scaffolds for the diseases associated with the over-expression of this enzyme.
Collapse
Affiliation(s)
- Farhan Mahmood Khan
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Muhammad Athar Abbasi
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Aziz-Ur Rehman
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Sabahat Zahra Siddiqui
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Abdul Rehman Sadiq Butt
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University Gongju 32588 South Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital Columbus Ohio 43205 USA
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam Bandar Puncak Alam Selangor 42300 Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam Bandar Puncak Alam Selangor 42300 Malaysia
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad 38040 Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University Gongju 32588 South Korea
| |
Collapse
|
12
|
Agili F. Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation. Molecules 2024; 29:1491. [PMID: 38611769 PMCID: PMC11013646 DOI: 10.3390/molecules29071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4a-c in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6a-f. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes' key amino acids.
Collapse
Affiliation(s)
- Fatimah Agili
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
13
|
Oliveira NJC, Dos Santos Júnior VS, Pierotte IC, Leocádio VAT, Santana LFDA, Marques GVDL, Protti ÍF, Braga SFP, Kohlhoff M, Freitas TR, Sabino ADP, Kronenberger T, Gonçalves JE, Johann S, Santos DA, César IDC, Maltarollo VG, Oliveira RB. Discovery of Lead 2-Thiazolylhydrazones with Broad-Spectrum and Potent Antifungal Activity. J Med Chem 2023; 66:16628-16645. [PMID: 38064359 DOI: 10.1021/acs.jmedchem.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Opportunistic fungal infections represent a global health problem, mainly for immunocompromised individuals. New therapeutical options are needed since several fungal strains show resistance to clinically available antifungal agents. 2-Thiazolylhydrazones are well-known as potent compounds against Candida and Cryptococcus species. A scaffold-focused drug design using machine-learning models was established to optimize the 2-thiazolylhydrazone skeleton and obtain novel compounds with higher potency, better solubility in water, and enhanced absorption. Twenty-nine novel compounds were obtained and most showed low micromolar MIC values against different species of Candida and Cryptococcus spp., including Candida auris, an emerging multidrug-resistant yeast. Among the synthesized compounds, 2-thiazolylhydrazone 28 (MIC value ranging from 0.8 to 52.17 μM) was selected for further studies: cytotoxicity evaluation, permeability study in Caco-2 cell model, and in vivo efficacy against Cryptococcus neoformans in an invertebrate infection model. All results obtained indicate the great potential of 28 as a novel antifungal agent.
Collapse
Affiliation(s)
- Nereu Junio Cândido Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Isabella Campolina Pierotte
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Victor Augusto Teixeira Leocádio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Felipe de Andrade Santana
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Vitor de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ícaro Ferrari Protti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Saulo Fehelberg Pinto Braga
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos (QPNB), Instituto René Rachou (IRR) - FIOCRUZ Minas, Belo Horizonte 30190-009, Brazil
| | - Túlio Resende Freitas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
- Excellence Cluster ″Controlling Microbes to Fight Infections″ (CMFI), 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - José Eduardo Gonçalves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Isabela da Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Renata Barbosa Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
14
|
Marinho Miguel EL, de Sousa GF, Duarte LP, Guerra de Aguilar M, Silva SF, Ferreira Soares DC, Johann S, de Andrade Santana LF, Thomaz Oliveira K, Montes Vidal D. Evaluation of Cytotoxicity and Antifungal Activity of Friedelanes from Salacia elliptica Roots. Chem Biodivers 2023; 20:e202301207. [PMID: 37688779 DOI: 10.1002/cbdv.202301207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Plants from Salacia genus are used in traditional medicine for a wide range of diseases. Previous studies reported bioactive pentacyclic triterpenoids from S. elliptica leaves and branches. In this study, the novel pentacyclic triterpenoid 7α,15α-dihydroxyfriedelan-3-one (1) was obtained from the roots of Salacia elliptica, along with seven known compounds: friedelan-3-one (2), friedelan-3β-ol (3), friedelan-1,3-dione (4), friedelan-3,15-dione (5), 15α-hydroxyfriedelan-3-one (6), 15α,26-dihydroxyfriedelan-3-one (7), and 26-hydroxyfriedelan-3,15-dione (8). Additionally, one steroid, spinasterol (9), was also identified. The chemical structures of all compounds were established through 1 H and 13 C-NMR. Compound 1 was analysed by additional 2D experiments (HMBC, HSQC, COSY, and NOESY) for complete elucidation. Furthermore, the cytotoxicity of compounds 2, 3, 6, 7 and 8 against the A549 lung cancer cells model was evaluated. The flow cytometry analysis revealed a significant cytotoxic activity similar to that exhibited by the triterpenoid lupeol. Additionally, compounds 2, 3, 6, and 7 were tested for in vitro antifungal activity against Candida, Cryptococcus and Sporothrix strains. However, all compounds showed no activity at the tested concentrations.
Collapse
Affiliation(s)
- Elizabeth Luciana Marinho Miguel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Grasiely Faria de Sousa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Lucienir Pains Duarte
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Mariana Guerra de Aguilar
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Sabrina França Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Daniel Crístian Ferreira Soares
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Rua Irmã Ivone, Drumond, 200, Distrito Industrial II, 35903-087, Itabira-MG, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Luiz Felipe de Andrade Santana
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Kamila Thomaz Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Diogo Montes Vidal
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| |
Collapse
|
15
|
Maltarollo VG, da Silva EB, Kronenberger T, Sena Andrade MM, de Lima Marques GV, Cândido Oliveira NJ, Santos LH, Oliveira Rezende Júnior CD, Cassiano Martinho AC, Skinner D, Fajtová P, M Fernandes TH, Silveira Dos Santos ED, Rodrigues Gazolla PA, Martins de Souza AP, da Silva ML, Dos Santos FS, Lavorato SN, Oliveira Bretas AC, Carvalho DT, Franco LL, Luedtke S, Giardini MA, Poso A, Dias LC, Podust LM, Alves RJ, McKerrow J, Andrade SF, Teixeira RR, Siqueira-Neto JL, O'Donoghue A, de Oliveira RB, Ferreira RS. Structure-based discovery of thiosemicarbazones as SARS-CoV-2 main protease inhibitors. Future Med Chem 2023; 15:959-985. [PMID: 37435731 DOI: 10.4155/fmc-2023-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Aim: Discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors using a structure-based drug discovery strategy. Materials & methods: Virtual screening employing covalent and noncovalent docking was performed to discover Mpro inhibitors, which were subsequently evaluated in biochemical and cellular assays. Results: 91 virtual hits were selected for biochemical assays, and four were confirmed as reversible inhibitors of SARS CoV-2 Mpro with IC50 values of 0.4-3 μM. They were also shown to inhibit SARS-CoV-1 Mpro and human cathepsin L. Molecular dynamics simulations indicated the stability of the Mpro inhibitor complexes and the interaction of ligands at the subsites. Conclusion: This approach led to the discovery of novel thiosemicarbazones as potent SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Thales Kronenberger
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, 72076, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, Tübingen, 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Marina Mol Sena Andrade
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Gabriel V de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Nereu J Cândido Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Lucianna H Santos
- Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Celso de Oliveira Rezende Júnior
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, 38400-902, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Ana C Cassiano Martinho
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
- Institute of Organic Chemistry & Biochemistry, Academy of Sciences of the Czech Republic, Prague, 16610, Czech Republic
| | - Thaís H M Fernandes
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
- Pharmaceutical Synthesis Group (PHARSG), Departamento de Produção de Matéria-Prima, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
| | - Eduardo da Silveira Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
- Pharmaceutical Synthesis Group (PHARSG), Departamento de Produção de Matéria-Prima, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
| | - Poliana A Rodrigues Gazolla
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ana P Martins de Souza
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Milene Lopes da Silva
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Fabíola S Dos Santos
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Stefânia N Lavorato
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, 47810-047, Brazil
| | - Ana C Oliveira Bretas
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Diogo Teixeira Carvalho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Lucas Lopardi Franco
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Stephanie Luedtke
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Miriam A Giardini
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Antti Poso
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, 72076, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, Tübingen, 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Luiz C Dias
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Larissa M Podust
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Ricardo J Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - James McKerrow
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Saulo F Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
- Pharmaceutical Synthesis Group (PHARSG), Departamento de Produção de Matéria-Prima, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90160-093, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Anthony O'Donoghue
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0657, USA
| | - Renata B de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Brazil
| | - Rafaela S Ferreira
- Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
16
|
Alfaifi GH, Farghaly TA, Magda H. Abdellattif. Indenyl-thiazole and indenyl-formazan derivatives: Synthesis, anticancer screening studies, molecular-docking, and pharmacokinetic/ molin-spiration properties. PLoS One 2023; 18:e0274459. [PMID: 36857383 PMCID: PMC9977057 DOI: 10.1371/journal.pone.0274459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 03/02/2023] Open
Abstract
Two new series of thiazole and formazan linked to 5-Bromo-indan were synthesized, and their structures were assured based on all possible analytical techniques. The size of the tested derivatives was calculated from the XRD technique and found five derivatives 3, 10a, 14a, 15, and 16 on the nanosized scale. The two series were tested for their efficacy and toxicity as anti-colon and stomach cancers. Derivative 10d showed activity more than the two reference drugs used in the case of SNU-16. Surpislly, in the case of COLO205, five derivatives 4, 6c, 6d, 6e, and 10a are better than the two benchmarks used, and two derivatives, 14a and 14b more potent than cisplatin. All potent derivatives showed a strong fit with the active site of the two tested proteins (gastric cancer (PDB = 2BID) and colon cancer (PDB = 2A4L)) in the molecular docking study. The Pharmacophore and ADME studies of the new derivatives showed that most derivatives revealed promising bioactivity, which indicates the drug-likeness properties against kinase inhibitors, protease, and enzyme inhibitors. In addition, the ProTox-II showed that the four compounds 10d, 16, 6d, and 10a are predicted to have oral LD50 values ranging from 335 to 3500 mg/kg in a rat model with (1 s,4 s)-Eucalyptol bearing the highest values and quercetin holding the lowest one.
Collapse
Affiliation(s)
- Ghaidaa H. Alfaifi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thoraya A. Farghaly
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
17
|
4-[Bis(thiazol-2-ylamino)methyl]phenol. MOLBANK 2023. [DOI: 10.3390/m1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have designed and synthesized novel bis-thiazole derivative. A 4-[bis(thiazol-2-ylamino)methyl]phenol was efficiently prepared in 71% yield by the reaction of 2-aminothiazole with 4-hydroxybenzaldehyde in ethanol for 24 h. The structure of newly obtained compound was characterized by 1H, 13C NMR and mass spectrometry. Bis-thiazole derivative exhibits high tyrosinase inhibitory activity with an IC50 value of 29.71 μM. This inhibitory activity is 2.4 times higher than that of activity of kojic acid (IC50 72.27 µM) and almost 13 times higher than that of ascorbic acid (IC50 385.6 µM). Obtained data suggest that the presented compound may be a leading candidate for a tyrosinase inhibitor.
Collapse
|
18
|
Gholivand K, Barzegari A, Yousefian M, Malekshah RE, Faraghi M. Experimental and theoretical evaluation of biological properties of a phosphoramide functionalized graphene oxide. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Spectrofluorimetric and Computational Investigation of New Phthalimide Derivatives towards Human Neutrophil Elastase Inhibition and Antiproliferative Activity. Int J Mol Sci 2022; 24:ijms24010110. [PMID: 36613577 PMCID: PMC9820738 DOI: 10.3390/ijms24010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Herein, nine phthalimide-based thiazoles (4a-4i) were synthesized and investigated as new human neutrophil elastase (HNE) inhibitors using spectrofluorimetric and computational methods. The most active compounds containing 4-trifluoromethyl (4c), 4-naphthyl (4e) and 2,4,6-trichloro (4h) substituents in the phenyl ring exhibited high HNE inhibitory activity with IC50 values of 12.98-16.62 µM. Additionally, compound 4c exhibited mixed mechanism of action. Computational investigation provided a consistent picture of the ligand-receptor pattern of inter-actions, common for the whole considered group of compounds. Moreover, compounds 4b, 4c, 4d and 4f showed high antiproliferative activity against human cancer cells lines MV4-11, and A549 with IC50 values of 8.21 to 25.57 µM. Additionally, compound 4g showed high activity against MDA-MB-231 and UMUC-3 with IC50 values of 9.66 and 19.81 µM, respectively. Spectrophotometric analysis showed that the most active compound 4c demonstrated high stability under physiological conditions.
Collapse
|
20
|
Fernandes PDO, Martins JPA, de Melo EB, de Oliveira RB, Kronenberger T, Maltarollo VG. Quantitative structure-activity relationship and machine learning studies of 2-thiazolylhydrazone derivatives with anti- Cryptococcus neoformans activity. J Biomol Struct Dyn 2022; 40:9789-9800. [PMID: 34121616 DOI: 10.1080/07391102.2021.1935321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is a fungus responsible for infections in humans with a significant number of cases in immunosuppressed patients, mainly in underdeveloped countries. In this context, the thiazolylhydrazones are a promising class of compounds with activity against C. neoformans. The understanding of the structure-activity relationship of these derivatives could lead to the design of robust compounds that could be promising drug candidates for fungal infections. Specifically, modern techniques such as 4D-QSAR and machine learning methods were employed in this work to generate two QSAR models (one 2D and one 4D) with high predictive power (r2 for the test set equals to 0.934 and 0.831, respectively), and one random forest classification model was reported with Matthews correlation coefficient equals to 1 and 0.62 for internal and external validations, respectively. The physicochemical interpretation of selected models, indicated the importance of aliphatic substituents at the hydrazone moiety to antifungal activity, corroborating experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Philipe de Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Paulo A Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo B de Melo
- Laboratório de Química Medicinal e Ambiental Teórica, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thales Kronenberger
- Department of Pneumonology and Oncology, Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Shahin IG, Mohamed KO, Taher AT, Mayhoub AS, Kassab AE. The Anti-MRSA Activity of Phenylthiazoles: A Comprehensive Review. Curr Pharm Des 2022; 28:3469-3477. [PMID: 36424796 DOI: 10.2174/1381612829666221124112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.
Collapse
Affiliation(s)
- Inas G Shahin
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza 11787, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.,University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th October, Giza 12578, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
22
|
Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Madni M, Ahmed MN, Abbasi G, Hameed S, Ibrahim MAA, Tahir MN, Ashfaq M, Gil DM, Gomila RM, Frontera A. Synthesis and X‐ray Characterization of 4,5‐Dihydropyrazolyl‐Thiazoles Bearing a Coumarin Moiety: On the Importance of Antiparallel π‐Stacking. ChemistrySelect 2022. [DOI: 10.1002/slct.202202287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Madni
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Ghazala Abbasi
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Shahid Hameed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | | | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha Pakistan
| | - Diego M. Gil
- INBIOFAL (CONICET – UNT) Instituto de Química Orgánica. Facultad de Bioquímica Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. T4000INI. San Miguel de Tucumán Argentina Member of the research Career of CONICET
| | - Rosa M. Gomila
- Departament de Química Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| | - Antonio Frontera
- Departament de Química Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| |
Collapse
|
24
|
Exploring thiazole-linked thioureas using alkaline phosphatase assay, biochemical evaluation, computational analysis and structure–activity relationship (SAR) studies. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02945-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Oliveira NJC, Teixeira INS, Fernandes PO, Veríssimo GC, Valério AD, Moreira CPDS, Freitas TR, Fonseca ACV, Sabino ADP, Johann S, Maltarollo VG, de Oliveira RB. COMPUTER-AIDED MOLECULAR DESIGN, SYNTHESIS AND EVALUATION OF ANTIFUNGAL ACTIVITY OF HETEROCYCLIC COMPOUNDS. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Ziyaei Halimehjani A, Saeb M, Khalesi M. Multicomponent synthesis of fully substituted thiazoles using glycine-based dithiocarbamates, acetic anhydride and nitroalkenes. Org Biomol Chem 2022; 20:3763-3766. [PMID: 35420106 DOI: 10.1039/d2ob00448h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reaction of glycine-based dithiocarbamates with nitroalkenes in the presence of acetic anhydride was utilized for the synthesis of fully substituted 2-(alkylsulfanyl)-4-(nitroalkyl)-5-acyloxy-1,3-thiazoles. The reaction proceeds via the in situ formation of thiazol-5(4H)-one from glycine-based dithiocarbamates, followed by the Michael addition of this intermediate to nitroalkenes, aromatization, and esterification reaction cascade. This new one-pot three-component reaction afforded a diverse library of fully substituted thiazoles in high to excellent yields under solvent-free conditions.
Collapse
Affiliation(s)
- Azim Ziyaei Halimehjani
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh St., Tehran, Iran.
| | - Maryam Saeb
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh St., Tehran, Iran.
| | - Maryam Khalesi
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh St., Tehran, Iran.
| |
Collapse
|
27
|
Yang L, Xu WB, Sun L, Zhang C, Jin CH. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem 2022; 17:e202200221. [PMID: 35475328 DOI: 10.1002/cmdc.202200221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Infections caused by eukaryotic organisms, such as fungi, are generally more difficult to treat than bacterial infections. With the widespread use of antifungal drugs in humans and plants, resistance and toxicity have emerged. Therefore, it is desirable to develop new antifungal drugs with low toxicity that are not susceptible to the development of resistance. This review presents a summary of the past 2017 to 2021 years of research on heterocyclic compounds as antifungal agents for use in humans and plants, focusing on the structure-activity relationships (SAR) of these compounds. This review may provide ideas and data for designing and developing new antifungal drugs with fewer side effects compared with currently available drugs.
Collapse
Affiliation(s)
- Liu Yang
- Yanbian University, College of Pharmacy, CHINA
| | - Wen Bo Xu
- Yanbian University, College of Pharmacy, CHINA
| | | | | | - Cheng Hua Jin
- Yanbian University, College of Pharmacy, Gongyuan, 133002, Yanji, CHINA
| |
Collapse
|
28
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
29
|
Krawczyk P, Kula S, Seklecka K, Łączkowski KZ. Synthesis, electrochemical, optical and biological properties of new carbazole derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120497. [PMID: 34695676 DOI: 10.1016/j.saa.2021.120497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Carbazole skeleton is the key structural motif of many biologically active compounds including synthetic and natural products. Based on the (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene) hydrazinyl)thiazole as skeleton, three novel carbazole dyes were synthesized. The scientific analysis includes the effect of changing the strength of the activating substituents and their exchange for the deactivating substituent on the chemical and biological properties. The presented research showed a significant influence of the CH3, OCH3 and CH2COOC2H5 groups on the spectral properties of the tested derivatives. Their significant influence is also visible in electrochemical, nonlinear-optic and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.
Collapse
Affiliation(s)
- Przemysław Krawczyk
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Physical Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland.
| | - Sławomir Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9 St., 40-007 Katowice, Poland
| | - Klaudia Seklecka
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Chemical Technology and Pharmaceuticals, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Krzysztof Z Łączkowski
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Chemical Technology and Pharmaceuticals, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
30
|
Khan S, Buğday N, UrRehman A, Ul Haq I, Yaşar S, Özdemir İ. Synthesis, Molecular Docking and Biological Evaluation of 5‐Alkyl (aryl)‐2‐isobutylthiazole Derivatives: As α‐amylase, α‐Glucosidase, and Protein Kinase Inhibitors. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Nesrin Buğday
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
| | - Asim UrRehman
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| |
Collapse
|
31
|
RI75, a curcumin analogue, inhibits tumor necrosis factor-α and interleukin-6 production and exhibits antiallodynic and antiedematogenic activities in mice. Inflammopharmacology 2022; 30:505-515. [DOI: 10.1007/s10787-021-00913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/05/2022]
|
32
|
The Brazilian compound library (BraCoLi) database: a repository of chemical and biological information for drug design. Mol Divers 2022; 26:3387-3397. [PMID: 35089481 DOI: 10.1007/s11030-022-10386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated electronic library of compounds developed by Brazilian research groups to support further computer-aided drug design works, available on https://www.farmacia.ufmg.br/qf/downloads/ . Herein, the first version of the database is described comprising 1176 compounds. Also, the chemical diversity and drug-like profiles of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber's rules, alongside other drug-likeness properties. A comparison using principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Despite the similar distribution in the structural and physicochemical spaces, Tanimoto coefficient values indicated that compounds present in the BraCoLi are generally different from the two other databases, where they showed different kernel distributions and low similarity. These facts show an interesting innovative aspect, which is a desirable feature for novel drug design purposes.
Collapse
|
33
|
Ahmadi A, Mohammadnejadi E, Karami P, Razzaghi-Asl N. Current Status and Structure Activity Relationship of Privileged Azoles as Antifungal Agents (2016-2020). Int J Antimicrob Agents 2022; 59:106518. [PMID: 35045309 DOI: 10.1016/j.ijantimicag.2022.106518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Fungal infections have major contribution to the infectious related deaths in recent century. The issue has gotten worse with the advent of immunity impairing conditions such as HIV epidemic. Eukaryote nature of fungal pathogens leads to harder eradication than bacterial infections. Given the importance of the problem, considerable efforts have been put on the synthesis and biological assessment of azole-based chemical scaffolds and their bioisosteres. The emergence of validated macromolecular targets within different fungal species inspires structure-based drug design strategies toward diverse azole-based agents. Despite of advantageous features, emergence of drug-resistant fungal species restrict the applicability of current azoles as the first-line antifungal agents. Consequently, it appears advisable to elucidate SARs and chemical biodiversity within antifungal azoles. Current contribution was devoted to a brief look at clinically applied drugs, structure-based classification of azole antifungals and their structure activity relationships (SARs). Reviewed molecules belong to the antifungal structures that were reported throughout 2016-2020.
Collapse
Affiliation(s)
- A Ahmadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
| | - E Mohammadnejadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
| | - P Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
34
|
Synthesis, DFT Analysis, and Evaluation of Antibacterial and Antioxidant Activities of Sulfathiazole Derivatives Combined with In Silico Molecular Docking and ADMET Predictions. Biochem Res Int 2021; 2021:7534561. [PMID: 34950517 PMCID: PMC8692053 DOI: 10.1155/2021/7534561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Synthetic modifications of sulfathiazole derivatives become an interesting approach to enhance their biological properties in line with their applications. As a result, sulfathiazole derivatives become a good candidate and potential class of organic compounds to play an important role towards medicinal chemistry. In present study, one thiazole derivative and two new sulfathiazole derivatives are synthesized with 94% and 72–81% yields, respectively. Furthermore, the synthesized compounds were evaluated for their in vitro antibacterial activity against two Gram-negative (E. coli and P. aeruginosa) and two Gram-positive bacterial strains (S. pyogenes and S. aureus) by disk diffusion method. Among synthesized compounds, compound 11a showed potent inhibitory activity against Gram-negative, E. coli with 11.6 ± 0.283 mm zone of inhibition compared to standard drug sulfamethoxazole (15.7 ± 0.707 mm) at 50 mg/mL. The radical scavenging activities of these compounds were evaluated using DPPH radical assay, and compound 11a showed the strongest activity with IC50 values of 1.655 μg/mL. The synthesized compounds were evaluated for their in silico molecular docking analysis using S. aureus gyrase (PDB ID: 2XCT) and human myeloperoxidase (PDB ID: 1DNU) and were found to have minimum binding energy ranging from −7.8 to −10.0 kcal/mol with 2XCT and −7.5 to −9.7 with 1DNU. Compound 11a showed very good binding score −9.7 kcal/mol with both of the proteins and had promising alignment with in vitro results. Compound 11b also showed high binding scores with both proteins. Drug likeness and ADMET of synthesized compounds were predicted. The DFT analysis of synthesized compounds was performed using Gaussian 09 and visualized through Gauss view 6.0. The structural coordinates of the lead compounds were optimized using B3LYP/6–31 G (d,p) level basis set without any symmetrical constraints. Studies revealed that all the synthesized compounds might be candidates for further antibacterial and antioxidant studies.
Collapse
|
35
|
Batran RZ, El-Daly SM, El-Kashak WA, Ahmed EY. Design, Synthesis and Molecular Modeling of Quinoline Based Derivatives as Anti-Breast Cancer Agents Targeting EGFR/AKT Signaling Pathway. Chem Biol Drug Des 2021; 99:470-482. [PMID: 34939319 DOI: 10.1111/cbdd.14012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Two series of quinoline-thiazole and quinoline-thiazolidinone hybrids were designed, synthesized and evaluated for their in vitro antitumor activity on MCF-7 breast cancer cell line. In comparison to lapatinib (IC50 =4.69 µM), compounds 4b and 6b exhibited the best antiproliferative activity with IC50 values of 33.19 and 5.35 µM, respectively. Although compound 6b showed higher cytotoxicity, compound 4b exhibited better inhibitory activity towards the EGFR pathway than compound 6b as represented by the significant reduction in the EGFR kinase activity and the levels of phosho-EGFR and phosho-AKT when compared to lapatinib as a reference standard. Moreover, compound 4b was capable of down-regulating the anti-apoptotic genes Bcl-2 and survivin and up-regulating the level of the pro-apoptotic gene BAX. Molecular modeling study was carried out to predict the binding interactions of both compounds into the target kinase. Finally, the physicochemical properties were investigated in silico as well.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki Cairo, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| | - Walaa A El-Kashak
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki Cairo, Egypt
| | - Eman Y Ahmed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki Cairo, Egypt
| |
Collapse
|
36
|
Zhang L, Shi Y, Duan X, He W, Si H, Wang P, Chen S, Luo H, Rao X, Wang Z, Liao S. Novel Citral-thiazolyl Hydrazine Derivatives as Promising Antifungal Agents against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14512-14519. [PMID: 34809431 DOI: 10.1021/acs.jafc.1c04064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop new antifungal agents against phytopathogenic fungi, a series of citral-thiazolyl hydrazine derivatives were designed, synthesized, and characterized by FT-IR, 1H NMR, 13C NMR, and HRMS. Antifungal activity results showed that most synthetic compounds exhibited broad-spectrum antifungal activities against six phytopathogenic fungi in vitro. Notably, compounds b and c15 exhibited remarkable antifungal activity against Colletotrichum gloeosprioides, Rhizoctonia solani, Phytophthora nicotianae var. nicotianae, Diplodia pinea, Colletotrichum acutatum, and Fusarium oxysporum f. sp. niveum, which were all superior to the positive control tricyclazole. Structure-activity relationship (SAR) studies demonstrated that introducing electron-withdrawing groups such as F on the benzene ring exhibited outstanding antifungal activities against all the tested fungi. Furthermore, compound b could effectively control rice sheath blight and showed higher curative activities against R. solani than validamycin·bacillus in vivo. In addition, the in vitro cytotoxicity results indicated that compound b possessed moderate cytotoxicity activity, and all citral-thiazolyl hydrazine derivatives exhibited lower or no cytotoxicity to the LO2 and HEK293 cell lines. In addition, the acute oral toxicity test showed that compound b had moderate toxicity (level II) with an LD50 value of 310 mg/kg bw (95% confidence limit: 175-550 mg/kg bw). Finally, a preliminary action mechanism study showed that causing obvious malformation of mycelium and increasing cell membrane permeability are two of the potential mechanisms by which compound b exerts antifungal activity. The present work indicates that some of these derivatives may serve as novel potential fungicides, and compound b is expected to be the leading structure for the development of new antifungal agents.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Yunfei Shi
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xinying Duan
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Wanrong He
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Peng Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| |
Collapse
|
37
|
Synthesis, characterization and DFT calculated properties of electron-rich hydrazinylthiazoles: Experimental and computational synergy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazoles. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1945601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Atam B. Tekale
- Department of Chemistry, Shri Shivaji College, Parbhani, India
| | | | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad, India
| | | |
Collapse
|
39
|
Aggarwal R, Hooda M, Jain N, Sanz D, Claramunt RM, Twamley B, Rozas I. An efficient, one-pot, regioselective synthesis of 2-aryl/hetaryl-4-methyl-5-acylthiazoles under solvent-free conditions. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1975119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Rosa M. Claramunt
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin2, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin2, Ireland
| |
Collapse
|
40
|
Fernandes PO, Martins DM, de Souza Bozzi A, Martins JPA, de Moraes AH, Maltarollo VG. Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking. Mol Divers 2021; 25:1301-1314. [PMID: 34191245 PMCID: PMC8241884 DOI: 10.1007/s11030-021-10261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Abelson kinase (c-Abl) is a non-receptor tyrosine kinase involved in several biological processes essential for cell differentiation, migration, proliferation, and survival. This enzyme's activation might be an alternative strategy for treating diseases such as neutropenia induced by chemotherapy, prostate, and breast cancer. Recently, a series of compounds that promote the activation of c-Abl has been identified, opening a promising ground for c-Abl drug development. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) methodologies have significantly impacted recent drug development initiatives. Here, we combined SBDD and LBDD approaches to characterize critical chemical properties and interactions of identified c-Abl's activators. We used molecular docking simulations combined with tree-based machine learning models-decision tree, AdaBoost, and random forest to understand the c-Abl activators' structural features required for binding to myristoyl pocket, and consequently, to promote enzyme and cellular activation. We obtained predictive and robust models with Matthews correlation coefficient values higher than 0.4 for all endpoints and identified characteristics that led to constructing a structure-activity relationship model (SAR).
Collapse
Affiliation(s)
- Philipe Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Magno Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline de Souza Bozzi
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adolfo Henrique de Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
41
|
Mamidala S, Aravilli RK, Ramesh G, Khajavali S, Chedupaka R, Manga V, Vedula RR. A facile one-pot, three-component synthesis of a new series of thiazolyl pyrazole carbaldehydes: In vitro anticancer evaluation, in silico ADME/T, and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Biernasiuk A, Banasiewicz A, Masłyk M, Martyna A, Janeczko M, Baranowska-Łączkowska A, Malm A, Łączkowski KZ. Synthesis and Physicochemical Characterization of Novel Dicyclopropyl-Thiazole Compounds as Nontoxic and Promising Antifungals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3500. [PMID: 34201678 PMCID: PMC8269541 DOI: 10.3390/ma14133500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
There is a need to search for new antifungals, especially for the treatment of the invasive Candida infections, caused mainly by C. albicans. These infections are steadily increasing at an alarming rate, mostly among immunocompromised patients. The newly synthesized compounds (3a-3k) were characterized by physicochemical parameters and investigated for antimicrobial activity using the microdilution broth method to estimate minimal inhibitory concentration (MIC). Additionally, their antibiofilm activity and mode of action together with the effect on the membrane permeability in C. albicans were investigated. Biofilm biomass and its metabolic activity were quantitatively measured using crystal violet (CV) staining and tetrazolium salt (XTT) reduction assay. The cytotoxic effect on normal human lung fibroblasts and haemolytic effect were also evaluated. The results showed differential activity of the compounds against yeasts (MIC = 0.24-500 µg/mL) and bacteria (MIC = 125-1000 µg/mL). Most compounds possessed strong antifungal activity (MIC = 0.24-7.81 µg/mL). The compounds 3b, 3c and 3e, showed no inhibitory (at 1/2 × MIC) and eradication (at 8 × MIC) effect on C. albicans biofilm. Only slight decrease in the biofilm metabolic activity was observed for compound 3b. Moreover, the studied compounds increased the permeability of the membrane/cell wall of C. albicans and their mode of action may be related to action within the fungal cell wall structure and/or within the cell membrane. It is worth noting that the compounds had no cytotoxicity effect on pulmonary fibroblasts and erythrocytes at concentrations showing anticandidal activity. The present studies in vitro confirm that these derivatives appear to be a very promising group of antifungals for further preclinical studies.
Collapse
Affiliation(s)
- Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Banasiewicz
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | | | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| |
Collapse
|
43
|
Nofal ZM, Srour AM, Mansour NM, El-Karim SSA. Synthesis of Novel Heterocyclic Compounds Containing Thiazolyl-Pyrazoline Moiety from Chalcone Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1936577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zeinab M. Nofal
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Aladdin M. Srour
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Nahla M. Mansour
- Gut Microbiology & Immunology Group, Chemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
44
|
Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. MATERIALS 2021; 14:ma14113091. [PMID: 34200060 PMCID: PMC8200205 DOI: 10.3390/ma14113091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Abstract
Carbazole derivatives are the structural key of many biologically active substances, including naturally occurring and synthetic ones. Three novel (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene)hydrazinyl)triazole dyes were synthesized with different numbers of chlorine substituents attached at different locations. The presented research has shown the influence of the number and position of attachment of chlorine substituents on electrochemical, optical, nonlinear, and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.
Collapse
|
45
|
Sofan MA, El‐Mekabaty A, Hasel AM, Said SB. Synthesis, cytotoxicity assessment and antioxidant activity of some new thiazol‐2‐yl carboxamides. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mamdouh A. Sofan
- Department of Chemistry, Faculty of Science Damietta University New Damietta Egypt
| | - Ahmed El‐Mekabaty
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Ali M. Hasel
- Department of Chemistry, Faculty of Science Damietta University New Damietta Egypt
- Department of Chemistry, Faculty of Science Sana'a University Sana'a Yemen
| | - Samy B. Said
- Department of Chemistry, Faculty of Science Damietta University New Damietta Egypt
| |
Collapse
|
46
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
47
|
El Azab IH, Bakr RB, Elkanzi NAA. Facile One-Pot Multicomponent Synthesis of Pyrazolo-Thiazole Substituted Pyridines with Potential Anti-Proliferative Activity: Synthesis, In Vitro and In Silico Studies. Molecules 2021; 26:molecules26113103. [PMID: 34067399 PMCID: PMC8196987 DOI: 10.3390/molecules26113103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pyrazolothiazole-substituted pyridine conjugates are an important class of heterocyclic compounds with an extensive variety of potential applications in the medicinal and pharmacological arenas. Therefore, herein, we describe an efficient and facile approach for the synthesis of novel pyrazolo-thiazolo-pyridine conjugate 4, via multicomponent condensation. The latter compound was utilized as a base for the synthesis of two series of 15 novel pyrazolothiazole-based pyridine conjugates (5-16). The newly synthesized compounds were fully characterized using several spectroscopic methods (IR, NMR and MS) and elemental analyses. The anti-proliferative impact of the new synthesized compounds 5-13 and 16 was in vitro appraised towards three human cancer cell lines: human cervix (HeLa), human lung (NCI-H460) and human prostate (PC-3). Our outcomes regarding the anti-proliferative activities disclosed that all the tested compounds exhibited cytotoxic potential towards all the tested cell lines with IC50 = 17.50-61.05 µM, especially the naphthyridine derivative 7, which exhibited the most cytotoxic potential towards the tested cell lines (IC50 = 14.62-17.50 µM) compared with the etoposide (IC50 = 13.34-17.15 µM). Moreover, an in silico docking simulation study was performed on the newly prepared compounds within topoisomerase II (3QX3), to suggest the binding mode of these compounds as anticancer candidates. The in silico docking results indicate that compound 7 was a promising lead anticancer compound which possesses high binding affinity toward topoisomerase II (3QX3) protein.
Collapse
Affiliation(s)
- Islam H. El Azab
- Food Science and Nutrition Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Nadia A. A. Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia;
- Chemistry Department, Faculty of Science, Aswan University, Aswan, P.O. Box 81528, Aswan, Egypt
| |
Collapse
|
48
|
Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents. Sci Rep 2021; 11:7846. [PMID: 33846389 PMCID: PMC8041837 DOI: 10.1038/s41598-021-86424-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
A novel series of substituted 4,6-dimethyl-2-oxo-1-(thiazol-2-ylamino)-1,2-dihydropyridine-3-carbonitrile derivatives 6, 9, 13, 15, and 17 was synthesized in a good to excellent yield from the reaction of 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)thiourea with 2-oxo-N'-arylpropanehydrazonoyl chloride, chloroacetone, α-bromoketones, ethyl chloroacetate, and 2,3-dichloroquinoxaline, respectively. The potential DNA gyrase inhibitory activity was examined using in silico molecular docking simulation. The novel thiazoles exhibit dock score values between - 6.4 and - 9.2 kcal/mol and they were screened for their antimicrobial activities. Compound 13a shown good antibacterial activities with MIC ranged from 93.7-46.9 μg/mL, in addition, it shown good antifungal activities with MIC ranged from 7.8 and 5.8 μg/mL.
Collapse
|
49
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
50
|
Eissa SI, Farrag AM, Abbas SY, El Shehry MF, Ragab A, Fayed EA, Ammar YA. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg Chem 2021; 110:104803. [PMID: 33761314 DOI: 10.1016/j.bioorg.2021.104803] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/20/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
One of the best ways to design new biocidal agents is synthesizing hybrid molecules by combining two or more bioactive moieties in a single molecular scaffold. So, new series of quinolines bearing a thiazole moiety were synthesized using thiosemicarbazones 2a-f. Cyclization of 2a-f with ethyl chloroacetate, ethyl 2-chloropropanoate or chloroacetone afforded the corresponding thiazoles 3-5. The antimicrobial activity of the new quinoline derivatives was evaluated. The most of tested compounds revealed potent both of the antibacterial and antifungal activities. Fourfold potency of amphotericin B for the inhibition the growth of the A. fumigatus was displayed by ccompound 5e. The latter compound displayed twofold potency of gentamycin for inhibition the growth of N. gonorrhoeae. Moreover, this compound showed equipotent potency of references drugs for inhibition of the growth of S. flexneri, S. pyogenes, P. vulgaris, A. clavatus, G. candidum and P. marneffei. So, quinolines bearing a thiazole moiety can be suggested as interesting scaffolds for the development both of the novel antibacterial and antifungal agents. Some new derivatives were studied as peptide deformylase enzyme inhibitors. Thiazolidin-4-one derivative 3d and 2,3-dihydrothiazole derivative 5c had shown good PDF inhibition activity, which had been supported by the docking results with highest binding affinity and lowest docking energy score. These results suggested that the most potent compounds might be possible agents as novel bacterial PDF inhibitor.
Collapse
Affiliation(s)
- Sally I Eissa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Amel M Farrag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Samir Y Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt.
| | | | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Eman A Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|