1
|
Khoumeri O, Hutter S, Primas N, Castera-Ducros C, Carvalho S, Wyllie S, Efrit ML, Fayolle D, Since M, Vanelle P, Verhaeghe P, Azas N, El-Kashef H. Synthesis of Nitrostyrylthiazolidine-2,4-dione Derivatives Displaying Antileishmanial Potential. Pharmaceuticals (Basel) 2024; 17:878. [PMID: 39065730 PMCID: PMC11280390 DOI: 10.3390/ph17070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
A series of 61 thiazolidine-2,4-diones bearing a styryl group at position 5 was synthesized in 2-5 steps and their structure was proved by elemental and spectral analyses. The compounds obtained were evaluated in vitro against the promastigote stage of the kinetoplastid parasite Leishmania infantum and the human HepG2 cell line, to determine selectivity indices and to compare their activities with those of antileishmanial reference drugs. The study of structure-activity relationships indicated the potential of some derivatives bearing a nitro group on the phenyl ring, especially when located at the meta position. Thus, among the tested series, compound 14c appeared as a hit compound with good antileishmanial activity (EC50 = 7 µM) and low cytotoxicity against both the hepatic HepG2 and macrophage THP-1 human cell lines (CC50 = 101 and 121 µM, respectively), leading to good selectivity indices (respectively, 14 and 17), in comparison with the reference antileishmanial drug compound miltefosine (EC50 = 3.3 µM, CC50 = 85 and 30 µM, SI = 26 and 9). Regarding its mechanism of action, among several possibilities, it was demonstrated that compound 14c is a prodrug bioactivated, predominantly by L. donovani nitroreductase 1, likely leading to the formation of cytotoxic metabolites that form covalent adducts in the parasite. Finally, compound 14c is lipophilic (measured CHI LogD7.7 = 2.85) but remains soluble in water (measured PBS solubility at pH7.4 = 16 µM), highlighting the antileishmanial potential of the nitrostyrylthiazolidine-2,4-dione scaffold.
Collapse
Affiliation(s)
- Omar Khoumeri
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
| | - Sébastien Hutter
- IHU Méditerranée Infection, UMR RITMES, TEAM-VEPTE, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (S.H.); (N.A.)
| | - Nicolas Primas
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Caroline Castera-Ducros
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.C.); (S.W.)
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.C.); (S.W.)
| | - Mohamed Lotfi Efrit
- Laboratoire de Synthèse Organique et Hétérocyclique Sélective-Evaluation D’activité Biologique, LR17ES01, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia;
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, DruiD Platform, Boulevard Becquerel, 14000 Caen, France; (D.F.); (M.S.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, DruiD Platform, Boulevard Becquerel, 14000 Caen, France; (D.F.); (M.S.)
| | - Patrice Vanelle
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Pierre Verhaeghe
- CNRS, Département de Pharmacochimie Moléculaire UMR 5063, University Grenoble Alpes, 38041 Grenoble, France;
- LCC-CNRS, UPR8241, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Nadine Azas
- IHU Méditerranée Infection, UMR RITMES, TEAM-VEPTE, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (S.H.); (N.A.)
| | - Hussein El-Kashef
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Faculty of Pharmacy, Sphinx University, Regional Road, New Assiut 71515, Egypt
| |
Collapse
|
2
|
Enriquez-Izazaga Y, Rodriguez-Nuñez JA, Frontana C, Armendariz-Vidales G. Intramolecular Hydrogen Bonding Effect on the Electron-Transfer Thermodynamics of a Series of o-Nitrobenzyl Alcohol Derivatives. J Org Chem 2023; 88:11434-11443. [PMID: 37535447 DOI: 10.1021/acs.joc.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
From thermoelectrochemical experiments and electronic structure calculations of a series of nitrobenzyl alcohol derivatives, the effect of intramolecular hydrogen bonding (IHB) on the electron transfer thermodynamics is discussed on a molecular basis. A linear correlation between formal reduction potential (E1/2) values and temperature was obtained for the temperature range from 300 to 350 K. Estimated electron transfer entropy values (ΔS)─determined from this dependence─and the enthalpy (ΔΔH) changes relative to o-nitrobenzyl alcohol confirmed that the effect of the formation of IHB proved to be decisive in the charge-transfer thermodynamics. The possibility of intermolecular hydrogen bonding is further discussed upon comparing thermodynamic data among three different solvents.
Collapse
Affiliation(s)
- Y Enriquez-Izazaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| | - J A Rodriguez-Nuñez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| | - C Frontana
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| | - G Armendariz-Vidales
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Quéretaro Sanfandila, Pedro Escobedo, Querétaro 76703, México
| |
Collapse
|
3
|
Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo' CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 2023; 18:929-989. [PMID: 36707722 PMCID: PMC10281087 DOI: 10.1038/s41596-022-00754-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Soňa Vodenková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Abdulhadi Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Bradford, UK
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gunnar Brunborg
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Alok Dhawan
- Centre of BioMedical Research, SGPGIMS Campus, Lucknow, India
| | - Joaquin de Lapuente
- Toxicology Department, AC MARCA Group, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Julien Dubus
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-Lez-Durance, France
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Susan J Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, Scotland
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Bevin Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isabel Gaivão
- Genetics and Biotechnology Department and Veterinary and Animal Research Centre (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Khaled Habas
- School of Chemistry and Bioscience, Faculty of Life Sciences, Bradford University, Bradford, UK
| | - Alba Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Oscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Siegfried Knasmüller
- Institute of Cancer Research, Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ingeborg M Kooter
- Department Circular Economy and Environment, the Netherlands Organisation for Applied Scientific Research-TNO, Utrecht, The Netherlands
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Marcelo Larramendy
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Ludovic Le Hégarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Angélique Lewies
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Anna Lewinska
- Department of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Guillermo E Liwszyc
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mugimane Manjanatha
- Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciuma, Brazil
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Perugia, Italy
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rui Oliveira
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Norah Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Alok K Pandey
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, The Procter & Gamble Co, Cincinnati, OH, USA
| | - Bertrand Pourrut
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Ville Sipinen
- Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo NanoToxGen, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Biología, Facultad de Ciencias, A Coruña, Spain
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | | | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | | | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Annelies Wouters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tomas Zikmund
- Biocev, 1st Medical Faculty, Charles University, Vestec, Czech Republic
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
4
|
Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg Med Chem Lett 2022; 75:128930. [PMID: 36030001 DOI: 10.1016/j.bmcl.2022.128930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Chagas disease and Human African trypanosomiasis (HAT) are caused by Trypanosoma cruzi, T. brucei rhodesiense or T. b. gambiense parasites, respectively; while Leishmania is caused by parasites from the Leishmania genus. In recent years, many efforts have been addressed to develop inhibitors against these parasites, especially nitro-containing derivatives, which can interfere with essential enzymes from the protozoa. In this review, all anti-trypanosomatidae nitrocompounds reported so far are shown herein, highlighting their activities and SAR analyses, providing all the benefits and problems associated with this ambiguous chemical group. Finally, this review paper will be useful for many research teams around the world, which are searching for novel trypanocidal and leishmanicidal agents.
Collapse
|
5
|
Loiseau PM, Balaraman K, Barratt G, Pomel S, Durand R, Frézard F, Figadère B. The Potential of 2-Substituted Quinolines as Antileishmanial Drug Candidates. Molecules 2022; 27:molecules27072313. [PMID: 35408712 PMCID: PMC9000572 DOI: 10.3390/molecules27072313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
There is a need for new, cost-effective drugs to treat leishmaniasis. A strategy based on traditional medicine practiced in Bolivia led to the discovery of the 2-substituted quinoline series as a source of molecules with antileishmanial activity and low toxicity. This review documents the development of the series from the first isolated natural compounds through several hundred synthetized molecules to an optimized compound exhibiting an in vitro IC50 value of 0.2 µM against Leishmania donovani, and a selectivity index value of 187, together with in vivo activity on the L. donovani/hamster model. Attempts to establish structure–activity relationships are described, as well as studies that have attempted to determine the mechanism of action. For the latter, it appears that molecules of this series act on multiple targets, possibly including the immune system, which could explain the observed lack of drug resistance after in vitro drug pressure. We also show how nanotechnology strategies could valorize these drugs through adapted formulations and how a mechanistic targeting approach could generate new compounds with increased activity.
Collapse
Affiliation(s)
- Philippe M. Loiseau
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France; (S.P.); (R.D.)
- Correspondence:
| | - Kaluvu Balaraman
- Chemistry Department, Georgetown University, 37th and O Streets, Washington, DC 20057, USA;
| | - Gillian Barratt
- Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
| | - Sébastien Pomel
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France; (S.P.); (R.D.)
| | - Rémy Durand
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France; (S.P.); (R.D.)
| | - Frédéric Frézard
- Department of Physiology and Biophysics-ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Bruno Figadère
- Chimie des Substances Naturelles, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
| |
Collapse
|
6
|
KARAKAYA İ. Synthesis and characterization of azobenzene derived from 8-aminoquinoline in aqueous media. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Wang S, Xu Y, Zhao Y, Zhang S, Li M, Li X, He J, Zhou H, Ge Z, Li R, Yang B. N-(4-acetamidophenyl)-5-acetylfuran-2-carboxamide as a novel orally available diuretic that targets urea transporters with improved PD and PK properties. Eur J Med Chem 2021; 226:113859. [PMID: 34601246 DOI: 10.1016/j.ejmech.2021.113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Urea transporters (UTs) have been identified as new targets for diuretics. Functional deletion of UTs led to urea-selective urinary concentrating defects with relative salt sparing. In our previous study, a UT inhibitor with a diarylamide scaffold, which is denoted as 11a, was demonstrated as the first orally available UT inhibitor. However, the oral bioavailability of 11a was only 4.38%, which obstructed its clinical application. In this work, by replacing the nitro group of 11a with an acetyl group, 25a was obtained. Compared with 11a, 25a showed a 10 times stronger inhibitory effect on UT-B (0.14 μM vs. 1.41 μM in rats, and 0.48 μM vs. 5.82 μM in mice) and a much higher inhibition rate on UT-A1. Moreover, the metabolic stability both in vitro and in vivo and the drug-like properties (permeability and solubility) of 25a were obviously improved compared with those of 11a. Moreover, the bioavailability of 25a was 15.18%, which was 3 times higher than that of 11a, thereby resulting in significant enhancement of the diuretic activities in rats and mice. 25a showed excellent potential for development as a promising clinical diuretic candidate for targeting UTs to treat diseases that require long-term usage of diuretics, such as hyponatremia.
Collapse
Affiliation(s)
- Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yue Xu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; College of Pharmacy, Inner Mongolia Medical University, 010110, China
| | - Shun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jinzhao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Pacheco JDS, Costa DDS, Cunha-Júnior EF, Andrade-Neto VV, Fairlamb AH, Wyllie S, Goulart MOF, Santos DC, Silva TL, Alves MA, Costa PRR, Dias AG, Torres-Santos EC. Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity. ACS Med Chem Lett 2021; 12:1405-1412. [PMID: 34531949 DOI: 10.1021/acsmedchemlett.1c00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
5-Nitro-furan nitrones (1) and 5-nitro-thiophene nitrones (2) were synthesized in one step. Compounds 1a-c had the most potent leishmanicidal activity against intracellular amastigote forms of Leishmania amazonensis and L. infantum (from 0.019 to 2.76 μM), with excellent selectivity (from 39 to 5673). The comparison of the leishmanicidal activity in promastigotes of wild type L. donovani with those overexpressing nitroreductases NRT1 or NRT2 shows that 1a,b are activated by both, which could slow the development of resistance. Their redox potential (E redox) obtained by cyclic voltammetry (-0.67 and -0.62 V) shows that the reduction of the nitro group is modulated by the nitrone group. Oral administration of 1b to mice infected by L. infantum reduced the parasite load on the spleen by 76.6 and 95.0% with doses of 50 and 100 mg/kg, respectively, administered twice a day, for 5 days. In the liver, the parasite load suppression was above 75% with either treatment.
Collapse
Affiliation(s)
- Juliana da Silva Pacheco
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| | - Débora de Souza Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Laboratório de Química Bioorgânica, Rio de Janeiro, RJ, Brazil
| | | | - Valter Viana Andrade-Neto
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| | - Alan H. Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Marília O. F. Goulart
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, AL, Brazil
| | - Danyelle C. Santos
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, AL, Brazil
| | - Thaissa L. Silva
- Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Campus de Arapiraca, Arapiraca, AL, Brazil
| | - Marina A. Alves
- Universidade Federal do Rio de Janeiro, Laboratório de Apoio ao Desenvolvimento Tecnológico, Rio de Janeiro, RJ, Brazil
| | - Paulo R. R. Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Laboratório de Química Bioorgânica, Rio de Janeiro, RJ, Brazil
| | - Ayres G. Dias
- Universidade do Estado do Rio de Janeiro, Centro de Tecnologia e Ciências, Departamento de Química Orgânica, Rio de Janeiro, RJ, Brazil
| | - Eduardo Caio Torres-Santos
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
10
|
Hong WP, Shin I, Lim HN. Recent Advances in One-Pot Modular Synthesis of 2-Quinolones. Molecules 2020; 25:E5450. [PMID: 33233747 PMCID: PMC7699938 DOI: 10.3390/molecules25225450] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
It is known that 2-quinolones are broadly applicable chemical structures in medicinal and agrochemical research as well as various functional materials. A number of current publications about their synthesis and their applications emphasize the importance of these small molecules. The early synthetic chemistry originated from the same principle of the classical Friedländer and Knorr procedures for the preparation of quinolines. The analogous processes were developed by applying new synthetic tools such as novel catalysts, the microwave irradiation method, etc., whereas recent innovations in new bond forming reactions have allowed for novel strategies to construct the core structures of 2-quinolones beyond the bond disconnections based on two classical reactions. Over the last few decades, some reviews on structure-based, catalyst-based, and bioactivity-based studies have been released. In this focused review, we extensively surveyed recent examples of one-pot reactions, particularly in view of modular approaches. Thus, the contents are categorized as three major sections (two-, three-, and four-component reactions) according to the number of reagents that ultimately compose atoms of the core structures of 2-quinolones. The collected synthetic methods are discussed from the perspectives of strategy, efficiency, selectivity, and reaction mechanism.
Collapse
Affiliation(s)
- Wan Pyo Hong
- School of Advanced Materials and Chemical Engineering, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongbuk 38430, Korea;
| | - Inji Shin
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| | - Hee Nam Lim
- Eco-Friendly New Materials Research Center, Therapeutics&Biotechnology Division, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| |
Collapse
|
11
|
Toropova AP. Medicinal Chemistry and Computational Chemistry: Mutual Influence and Harmonization. Mini Rev Med Chem 2020; 20:1320-1321. [PMID: 32600227 DOI: 10.2174/138955752014200626163614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
12
|
Ding D, Jiang H, Ma X, Nash JJ, Kenttämaa HI. Effects of the Distance between Radical Sites on the Reactivities of Aromatic Biradicals. J Org Chem 2020; 85:8415-8428. [PMID: 32482062 DOI: 10.1021/acs.joc.0c00658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Coupling of the radical sites in isomeric benzynes is known to hinder their radical reactivity. In order to determine how far apart the radical sites must be for them not to interact, the gas-phase reactivity of several isomeric protonated (iso)quinoline- and acridine-based biradicals was examined. All the (iso)quinolinium-based biradicals were found to react slower than the related monoradicals with similar vertical electron affinities (i.e., similar polar effects). In sharp contrast, the acridinium-based biradicals, most with the radical sites farther apart than in the (iso)quinolinium-based systems, showed greater reactivities than the relevant monoradicals with similar vertical electron affinities. The greater distances between the two radical sites in these biradicals lead to very little or no spin-spin coupling, and no suppression of radical reactivity was observed. Therefore, the radical sites can still interact if they are located on adjacent benzene rings and only after being separated further than that does no coupling occur. The most reactive radical site of each biradical was experimentally determined to be the one predicted to be more reactive based on the monoradical reactivity data. Therefore, the calculated vertical electron affinities of relevant monoradicals can be used to predict which radical site is most reactive in the biradicals.
Collapse
Affiliation(s)
- Duanchen Ding
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hanning Jiang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xin Ma
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John J Nash
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Pedron J, Boudot C, Brossas JY, Pinault E, Bourgeade-Delmas S, Sournia-Saquet A, Boutet-Robinet E, Destere A, Tronnet A, Bergé J, Bonduelle C, Deraeve C, Pratviel G, Stigliani JL, Paris L, Mazier D, Corvaisier S, Since M, Malzert-Fréon A, Wyllie S, Milne R, Fairlamb AH, Valentin A, Courtioux B, Verhaeghe P. New 8-Nitroquinolinone Derivative Displaying Submicromolar in Vitro Activities against Both Trypanosoma brucei and cruzi. ACS Med Chem Lett 2020; 11:464-472. [PMID: 32292551 PMCID: PMC7153024 DOI: 10.1021/acsmedchemlett.9b00566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/06/2020] [Indexed: 11/28/2022] Open
Abstract
An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 μM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.
Collapse
Affiliation(s)
- Julien Pedron
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Jean-Yves Brossas
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, 75013 Paris, France
| | - Emilie Pinault
- Université de Limoges, BISCEm Mass Spectrometry Platform, CBRS, 2 rue du Pr. Descottes, F-87025 Limoges, France
| | | | | | - Elisa Boutet-Robinet
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31077 Toulouse, France
| | - Alexandre Destere
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, France, INSERM, UMR 1248, University of Limoges, F-87025 Limoges, France
| | - Antoine Tronnet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Justine Bergé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Colin Bonduelle
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Céline Deraeve
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | | | | | - Luc Paris
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, 75013 Paris, France
| | - Dominique Mazier
- CIMI-Paris, Sorbonne Université, 91 Boulevard de l’Hôpital, 75013 Paris, France
| | - Sophie Corvaisier
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Université, 14032 Caen, France
| | - Marc Since
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Université, 14032 Caen, France
| | - Aurélie Malzert-Fréon
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Université, 14032 Caen, France
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Rachel Milne
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, 31077 Toulouse, France
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
14
|
Selective synthesis of substituted amino-quinoline derivatives by C-H activation and fluorescence evaluation of their lipophilicity-responsive properties. Sci Rep 2019; 9:17723. [PMID: 31776368 PMCID: PMC6881333 DOI: 10.1038/s41598-019-53882-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023] Open
Abstract
Push-pull type fluorescent amino-quinoline derivatives (TFMAQ) bearing phenyl aromatic groups in the 8-position (TFMAQ-8Ar series) were synthesized via palladium-catalyzed C-H activation reaction in short steps. The N-arylation or C-H activation reactions were selectively controlled with high yield by combinations of palladium and phosphine ligands. The TFMAQ-8Ar analogues exhibited fluorescent solvatochromism in non-polar and polar solvents. In non-polar solvent, the absolute fluorescence quantum yield was high, wheareas the fluorescence was almost quenched in polar solvent. The TFMAQ-8Ar derivatives also showed high fluorescence emission at solid state owing to the planar structure between the quinoline ring and phenyl ring at the 7-amino group, as demonstrated by X-ray crystal structure analysis. The fluorescence imaging of 3T3-L1 cell using TFMAQ-8Ar derivatives was performed by confocal laser microscopy. Strong and specific emissions at lipid droplets were observed owing to the accumulation of TFMAQ-8Ar derivatives. Therefore, we propose that the TFMAQ-8Ar derivatives should become a versatile fluorescence probe for the live imaging of lipid droplets.
Collapse
|
15
|
Lasing T, Phumee A, Siriyasatien P, Chitchak K, Vanalabhpatana P, Mak KK, Hee Ng C, Vilaivan T, Khotavivattana T. Synthesis and antileishmanial activity of fluorinated rhodacyanine analogues: The 'fluorine-walk' analysis. Bioorg Med Chem 2019; 28:115187. [PMID: 31761725 DOI: 10.1016/j.bmc.2019.115187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
In a search for potent antileishmanial drug candidates, eighteen rhodacyanine analogues bearing fluorine or perfluoroalkyl substituents at various positions were synthesized. These compounds were tested for their inhibitory activities against Leishmania martiniquensis and L. orientalis. This 'fluorine-walk' analysis revealed that the introduction of fluorine atom at C-5, 6, 5', or 6' on the benzothiazole units led to significant enhancement of the activity, correlating with the less negative reduction potentials of the fluorinated analogues confirmed by the electrochemical study. On the other hand, CF3 and OCF3 groups were found to have detrimental effects, which agreed with the poor aqueous solubility predicted by the in silico ADMET analysis. In addition, some of the analogues including the difluorinated species showed exceptional potency against the promastigote and axenic amastigote stages (IC50 = 40-85 nM), with the activities surpassing both amphotericin B and miltefosine.
Collapse
Affiliation(s)
- Thitiya Lasing
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atchara Phumee
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Bangkok 10330, Thailand; Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Padet Siriyasatien
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kantima Chitchak
- Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Parichatr Vanalabhpatana
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kit-Kay Mak
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chew Hee Ng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit for Metabolic Bone Disease in CKD Patients, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Chen W, Sun C, Zhang Y, Hu T, Zhu F, Jiang X, Abame MA, Yang F, Suo J, Shi J, Shen J, Aisa HA. Oxidative Aromatization of 3,4-Dihydroquinolin-2(1 H)-ones to Quinolin-2(1 H)-ones Using Transition-Metal-Activated Persulfate Salts. J Org Chem 2019; 84:8702-8709. [PMID: 31244162 DOI: 10.1021/acs.joc.9b00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inorganic persulfate salts were identified as efficient reagents for the oxidative aromatization of 3,4-dihydroquinolin-2(1 H)-ones through the activation of readily available transition metals, such as iron and copper. The feasible protocol conforming to the requirement of green chemistry was utilized in the preparation of the key intermediate (7-(4-chlorobutoxy)quinolin-2(1 H)-one 2) of brexpiprazole in 80% isolated yield on a 100 g scale, and different quinolin-2(1 H)-one derivatives with various functional groups were demonstrated in 52-89% yields.
Collapse
Affiliation(s)
- Weiming Chen
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , South Beijing Road 40-1 , Urumqi , Xinjiang 830011 , People's Republic of China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , People's Republic of China
| | - Changliang Sun
- Topharman Shanghai Co., Ltd. , Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park , Shanghai 201209 , People's Republic of China
| | - Yan Zhang
- CAS Key Laboratory for Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , People's Republic of China
| | - Tianwen Hu
- Topharman Shanghai Co., Ltd. , Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park , Shanghai 201209 , People's Republic of China
| | - Fuqiang Zhu
- Topharman Shanghai Co., Ltd. , Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park , Shanghai 201209 , People's Republic of China
| | - Xiangrui Jiang
- CAS Key Laboratory for Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , People's Republic of China
| | - Melkamu Alemu Abame
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , People's Republic of China.,CAS Key Laboratory for Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , People's Republic of China
| | - Feipu Yang
- CAS Key Laboratory for Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , People's Republic of China
| | - Jin Suo
- CAS Key Laboratory for Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , People's Republic of China
| | - Jing Shi
- Topharman Shanghai Co., Ltd. , Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park , Shanghai 201209 , People's Republic of China
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , People's Republic of China
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , South Beijing Road 40-1 , Urumqi , Xinjiang 830011 , People's Republic of China
| |
Collapse
|
17
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
18
|
Pedron J, Boudot C, Bourgeade-Delmas S, Sournia-Saquet A, Paloque L, Rastegari M, Abdoulaye M, El-Kashef H, Bonduelle C, Pratviel G, Wyllie S, Fairlamb A, Courtioux B, Verhaeghe P, Valentin A. Antitrypanosomatid Pharmacomodulation at Position 3 of the 8-Nitroquinolin-2(1H)-one Scaffold Using Palladium-Catalysed Cross-Coupling Reactions. ChemMedChem 2018; 13:2217-2228. [PMID: 30221468 PMCID: PMC7089779 DOI: 10.1002/cmdc.201800456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/29/2018] [Indexed: 01/30/2023]
Abstract
An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 μm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 μm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.
Collapse
Affiliation(s)
- Julien Pedron
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Sandra Bourgeade-Delmas
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, 35 Chemin des Maraîchers, 31400 Toulouse, France
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Maryam Rastegari
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Mansour Abdoulaye
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Hussein El-Kashef
- Assiut University, Faculty of Science, Department of Chemistry, 71516 Assiut, Egypt
| | - Colin Bonduelle
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Geneviève Pratviel
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alan Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, 35 Chemin des Maraîchers, 31400 Toulouse, France
| |
Collapse
|