1
|
Huang C, Li J, Wu R, Li Y, Zhang C. Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives. Mol Cancer 2025; 24:131. [PMID: 40319304 PMCID: PMC12049004 DOI: 10.1186/s12943-025-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025] Open
Abstract
Pyroptosis is a distinct form of programmed cell death characterized by the rupture of the cell membrane and robust inflammatory responses. Increasing evidence suggests that pyroptosis significantly affects the tumor microenvironment and antitumor immunity by releasing damage-associated molecular patterns (DAMPs) and pro-inflammatory mediators, thereby establishing it as a pivotal target in cancer immunotherapy. This review thoroughly explores the molecular mechanisms underlying pyroptosis, with a particular focus on inflammasome activation and the gasdermin family of proteins (GSDMs). It examines the role of pyroptotic cell death in reshaping the tumor immune microenvironment (TIME) involving both tumor and immune cells, and discusses recent advancements in targeting pyroptotic pathways through therapeutic strategies such as small molecule modulators, engineered nanocarriers, and combinatory treatments with immune checkpoint inhibitors. We also review recent advances and future directions in targeting pyroptosis to enhance tumor immunotherapy with immune checkpoint inhibitors, adoptive cell therapy, and tumor vaccines. This study suggested that targeting pyroptosis offers a promising avenue to amplify antitumor immune responses and surmount resistance to existing immunotherapies, potentially leading to more efficacious cancer treatments.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruiyan Wu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Lan JX, Huang LJ, Kang SS, Hao-Huang, Liu SL, Dai W, Xu XL, Wang JY, Shu GZ, Hou W. Design, synthesis, biological evaluation, and mechanism of action of new pyrazines as anticancer agents in vitro and in vivo. Bioorg Med Chem 2025; 121:118108. [PMID: 39955800 DOI: 10.1016/j.bmc.2025.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Cancer is the second leading cause of mortality worldwide. The development of innovative antitumor pharmaceuticals is urgently needed to alter this circumstance. N-heterocycles, pyrazines for example are prevalent pharmacophores in the architecture of anticancer medicines. This research involved the design and synthesis of seventy-seven new pyrazine derivatives, followed by an evaluation of their anticancer activity in vitro and in vivo. Several new pyrazines exhibiting remarkable antiproliferative activity and selectivity were identified. The links between structure and function were analyzed, and the mechanisms of action were examined. Our mechanistic investigations indicated that these chemicals triggered mitochondria-associated apoptosis in cancer cells. Moreover, they suppressed the phosphorylation of STAT3, concomitant with the down-regulation of BcL-2, BcL-XL, c-Myc, XIAP, GLI1, TAZ, MCL1, JAK1, JAK2 and up-regulation of Bax, p21. Furthermore, the lead compounds B-11 and C-27 demonstrated significant anticancer activity in vivo in the SKOV3 xenograft nude mouse model. Our research establishes a basis for the identification of pyrazines as JAK/STAT3 inhibition based anticancer lead compounds.
Collapse
Affiliation(s)
- Jin-Xia Lan
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000 PR China
| | - Le-Jun Huang
- School of Rehabilitation, Gannan Medical University, Ganzhou 341000 PR China
| | - Si-Shuang Kang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Hao-Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Sheng-Lan Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Wei Dai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Xin-Liang Xu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Jin-Yang Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Guang-Zhao Shu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Wen Hou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China.
| |
Collapse
|
3
|
Mujeeb A, Alam MZ, Sultan, Aleem Basha H, Khan SA, Afzal SM. Synthesis, Physicochemical and Third Order Nonlinear Optical Properties of Bis-Chalcone (BBDP) as Donor-pi Acceptor Chromophore in Organize Medium. J Fluoresc 2025; 35:1393-1406. [PMID: 38345689 DOI: 10.1007/s10895-024-03593-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2025]
Abstract
Bis-Chalcone (BBDP) has been prepared by condensation of N, N-dimethyl benzaldehyde and 1,1'-([1,1'-biphenyl]-4,4'-diyl) di (ethan-1-one), and structure of BBDP was characterized by Mass Spectra, 13C-NMR, 1H-NMR, and IR. Physicochemical properties including Dipole-moments, Stoke-Shifts, Oscillator-strength, dielectric constant and quantum-yields of fluorescence of BBDP were investigated by the emission and absorbances in different solvents. Compound (BBDP) displayed bathochromic shift upon increasing the solvent polarity (from n-Hexane to DMSO). Furthermore, we have exploited third-order nonlinear optical characteristics of the bisChalone were invigilated by the Z-scan techniques in Chloroform. The measurements were taken with a continuous-wave (CW) diode laser having a wavelength of 520 nm in CHCl3 solvent. The third-order nonlinear optical properties, such as the nonlinear refractive index (NLRI) n2, nonlinear absorption coefficient (NLAC) β, and nonlinear susceptibility χ(3), were measured at various solution concentrations and laser powers. The obtained values of n2, β, and χ(3) were estimated to be high, of the order of 10-7(cm2/W), 10-3 (cm/W), and 10-6 (esu), respectively. As a result, bis-chalcone (BBDP) is considered as a promising candidate for applications in nonlinear optical (NLO) devices and optical limiting (OL).
Collapse
Affiliation(s)
- Abdul Mujeeb
- Physics Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Md Zafer Alam
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Sultan
- Physics Department, Aligarh Muslim University, Aligarh, 202002, India
| | - H Aleem Basha
- Physics Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Salman A Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India.
| | - S M Afzal
- Physics Department, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
4
|
Johnson DE, Cui Z. Triggering Pyroptosis in Cancer. Biomolecules 2025; 15:348. [PMID: 40149884 PMCID: PMC11940180 DOI: 10.3390/biom15030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Pyroptosis is an inflammatory programmed cell death recently identified as a crucial cellular process in various diseases, including cancers. Unlike other forms of cell death, canonical pyroptosis involves the specific cleavage of gasdermin by caspase-1, resulting in cell membrane damage and the release of the pro-inflammatory cytokines IL-1β and IL-18. Initially observed in innate immune cells responding to external pathogens or internal death signals, pyroptotic cell death has now been observed in numerous cell types. Recent studies have extensively explored different ways to trigger pyroptotic cell death in solid tumors, presenting a promising avenue for cancer treatment. This review outlines the mechanisms of both canonical and noncanonical pyroptosis pertinent to cancer and primarily focuses on various biomolecules that can induce pyroptosis in malignancies. This strategy aims not only to eliminate cancer cells but also to promote an improved tumor immune microenvironment. Furthermore, emerging research indicates that targeting pyroptotic pathways may improve the effectiveness of existing cancer treatments, making them more potent against resistant tumor types, offering new hope for overcoming treatment resistance in aggressive malignancies.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology—Head and Neck Surgery, University of California at San Francisco, San Francisco, CA 94143, USA;
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Zhibin Cui
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
5
|
Wang J, Su H, Wang M, Ward R, An S, Xu TR. Pyroptosis and the fight against lung cancer. Med Res Rev 2025; 45:5-28. [PMID: 39132876 DOI: 10.1002/med.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1β, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.
Collapse
Affiliation(s)
- Jiwei Wang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huiling Su
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, University of Glasgow, Glasgow, UK
| | - Su An
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian-Rui Xu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Wu J, Han M, Tan X, Zeng L, Yang Z, Zhong H, Jiang X, Yao S, Liu W, Li W, Liu X, Wu W. Green synthesis of neuroprotective spirocyclic chalcone derivatives and their role in protecting against traumatic optic nerve injury. Eur J Med Chem 2024; 280:116933. [PMID: 39368262 DOI: 10.1016/j.ejmech.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
For clinically prevalent traumatic optic neuropathy (TON) and other retinal and optic nerve injuries lacking effective therapeutic agents, there is an urgent clinical demand for developing highly efficient and safe neuroprotective agents. Here, we have integrated naturally sourced chalcone with isatin through a catalyst-free green synthesis method, reporting a series of spirocyclic chalcone derivatives with significantly lower cytotoxicity than chalcone itself. Following in vitro cell protection assays in models of hydrogen peroxide and glutamic acid-induced damage, multiple active compounds capable of combating both forms of damage were identified. Among these, candidate compound X38 demonstrated promising neuroprotective prospects: in vitro, it attenuated glutamate-induced cell apoptosis, while in vivo, it effectively ameliorated retinal thinning and loss of optic nerve electrophysiological function induced by optic nerve injury. Preliminary mechanistic studies suggest that X38 exerts its neuroprotective effects by mitigating intracellular ROS accumulation, inhibiting JNK phosphorylation, and alleviating oxidative stress. Additionally, acute toxicity studies (intraperitoneal injection, 500 mg/kg) underscored the favorable in vivo safety profile of X38. Taken together, this study has designed a class of safe, neuroprotective spirocyclic chalcone derivatives that can be synthesized using green methods, offering an attractive candidate for treating retinal and optic nerve injuries.
Collapse
Affiliation(s)
- Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Meiting Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiangpeng Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Ling Zeng
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhenzhen Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hongliang Zhong
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaohui Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuang Yao
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weibin Liu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wulan Li
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xin Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Wen Y, Li Y, Li BB, Liu P, Qiu M, Li Z, Xu J, Bi B, Zhang S, Deng X, Liu K, Zhou S, Wang Q, Zhao J. Pyroptosis induced by natural products and their derivatives for cancer therapy. Biomater Sci 2024; 12:5656-5679. [PMID: 39429101 DOI: 10.1039/d4bm01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.
Collapse
Affiliation(s)
- Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bin-Bin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Miaojuan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bo Bi
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Xinyi Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shangbo Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Qiang Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
8
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Li MQ, He YQ, Zhang MN, Tang W, Tan Y, Cheng Y, Yang M, Zhao N, Li L, Yu SR, Li RL, Pan Q, Wu MY, Chai J. Dronedarone hydrochloride (DH) induces pancreatic cancer cell death by triggering mtDNA-mediated pyroptosis. Cell Death Dis 2024; 15:725. [PMID: 39358349 PMCID: PMC11447222 DOI: 10.1038/s41419-024-07102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Pancreatic cancer is one of the leading causes of cancer-associated mortality, with a poor treatment approach. Previous study has shown that inducing pyroptosis in pancreatic ductal adenocarcinoma (PDAC) slows the growth of PDACs, implying that pyroptosis inducers are potentially effective for PDAC therapy. Here, we found that Dronedarone hydrochloride (DH), an antiarrhythmic drug, induces pyroptosis in pancreatic cancer cells and inhibits PDAC development in mice. In PANC-1 cells, DH caused cell death in a dosage- and time-dependent manner, with only pyroptosis inhibitors and GSDMD silencing rescuing the cell death, indicating that DH triggered GSDMD-dependent pyroptosis. Further work revealed that DH increased mitochondrial stresses and caused mitochondrial DNA (mtDNA) leakage, activating the cytosolic STING-cGAS and pyroptosis pathways. Finally, we assessed the anti-cancer effects of DH in a pancreatic cancer mouse model and found that DH treatment suppressed pancreatic tumor development in vivo. Collectively, our investigation demonstrates that DH triggers pyroptosis in PDAC and proposes its potential effects on anti-PDAC growth.
Collapse
Affiliation(s)
- Ming-Qiao Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yu-Qi He
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Meng-Ni Zhang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Wan Tang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ya Tan
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yue Cheng
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Mei Yang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nan Zhao
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ling Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Si-Rui Yu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ruo-Lan Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ming-Yue Wu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Jin Chai
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD), the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
10
|
Wang J, Wu Z, Zhu M, Zhao Y, Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front Immunol 2024; 15:1378990. [PMID: 39011036 PMCID: PMC11246884 DOI: 10.3389/fimmu.2024.1378990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Pyroptosis, a form of caspase-1-dependent cell death, also known as inflammation-dependent death, plays a crucial role in diseases such as stroke, heart disease, or tumors. Since its elucidation, pyroptosis has attracted widespread attention from various sectors. Reactive oxygen species (ROS) can regulate numerous cellular signaling pathways. Through further research on ROS and pyroptosis, the level of ROS has been revealed to be pivotal for the occurrence of pyroptosis, establishing a close relationship between the two. This review primarily focuses on the molecular mechanisms of ROS and pyroptosis in tumors and inflammatory diseases, exploring key proteins that may serve as drug targets linking ROS and pyroptosis and emerging fields targeting pyroptosis. Additionally, the potential future development of compounds and proteins that influence ROS-regulated cell pyroptosis is anticipated, aiming to provide insights for the development of anti-tumor and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Ziyong Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Min Zhu
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, Henan, China
| | - Yang Zhao
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Jingwen Xie
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
- Department of Health, Chongqing Industry & Trade Polytechnic, Chongqing, China
| |
Collapse
|
11
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Wu J, Liu X, Zhang J, Yao J, Cui X, Tang Y, Xi Z, Han M, Tian H, Chen Y, Fan Q, Li W, Kong D. Green synthesis and anti-tumor efficacy via inducing pyroptosis of novel 1H-benzo[e]indole-2(3H)-one spirocyclic derivatives. Bioorg Chem 2024; 142:106930. [PMID: 37890212 DOI: 10.1016/j.bioorg.2023.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Pyroptosis induction is anticipated to be a new approach to developing anti-tumor medications. A novel class of spirocyclic compounds was designed by hybridization of 1H-Benzo[e]indole-2(3H)-one with 1,4-dihydroquinoline and synthesized through a new green "one-pot" synthesis method using 10 wt% SDS/H2O as a solvent to screen novel tumor cell pyroptosis inducers. The anti-tumor activity of all compounds in vitro was determined by the MTT method, and a fraction of the compounds showed good cell growth inhibitory activity. The quantitative structure-activity relationship models of the compounds were established by artificial intelligence random forest algorithm (R2 = 0.9656 and 0.9747). The ideal compound A9 could, in a concentration-dependent manner, prevent ovarian cancer cells from forming colonies, migrating, and invading. Furthermore, A9 could significantly induce pyroptosis and upregulate the expression of pyroptosis-related proteins GSDME-N, in addition to inducing apoptosis and mediating the expression of apoptosis-related proteins in ovarian cancer cells. A9 (5 mg/kg) significantly reduced tumor volume and weight of ovarian cancer in vivo, decreased caspase-3 expression in tumor tissue, and induced the production of GSDME-N. This study provides a green and efficient atom-economic synthesis method for 1H-Benzo[e]indole-2(3H)-one spirocyclic derivatives and a promising pyroptosis inducer with anti-tumor activity.
Collapse
Affiliation(s)
- Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Xin Liu
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Jiali Yao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Xiaolin Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Yaling Tang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Zixuan Xi
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meiting Han
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Haoyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Yan Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Qiyun Fan
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Dulin Kong
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
13
|
Sun Z, Ma C, Zhan X. Ajmalicine induces the pyroptosis of hepatoma cells to exert the antitumor effect. J Biochem Mol Toxicol 2024; 38:e23614. [PMID: 38064316 DOI: 10.1002/jbt.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Ajmalicine (AJM) is an alkaloid extracted from the root of Yunan Rauvolfia verticillata. At present, little research has reported the antitumor pharmacological action and mechanism of AJM. Therefore, this work aimed to conduct relevant research. The mouse hepatoma cell line H22 was intervened with a gradient concentration of AJM. Subsequently, the pyroptosis level was detected by flow cytometry. The expression of inflammatory factors and lactate dehydrogenase was measured by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) expression was detected by dichlorodihydrofluorescein diacetate probe. In addition, the tumor-bearing model mice were also treated with AJM to analyze tumor growth as well as the expression levels of tissue inflammatory factors and proteins. According to our results, AJM promoted the pyroptosis of H22 cells, increased the pyroptosis rate, and upregulated the expression of inflammatory factors tumor necrosis factor α, interleukin-1β, and interleukin-6. At the same time, it enhanced the openness of membrane pores and increased the expression of ROS. Moreover, AJM promoted the expression of Caspase-3 and N-terminal gasdermin E (GSDME). The AJM-induced pyroptosis was suppressed after N-acetylcysteine treatment to inhibit ROS, while Caspase-3 knockdown also inhibited the AJM-induced pyroptosis. In animals, AJM suppressed tumor growth. AJM can activate ROS to induce pyroptosis and exert the antitumor effect via the noncanonical Caspase-3-GSDME pyroptosis pathway.
Collapse
Affiliation(s)
- Zhangchi Sun
- Pharmacy Department, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province, China
| | - Chenfang Ma
- Pharmacy Department, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province, China
| | - Xiaolan Zhan
- Pharmacy Department, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province, China
| |
Collapse
|
14
|
Nian C, Gan X, Liu Q, Wu Y, Kong M, Zhang P, Jin M, Dong Z, Li W, Wang L, He W, Li X, Wu J. Synthesis and Anti-gastric Cancer Activity by Targeting FGFR1 Pathway of Novel Asymmetric Bis-chalcone Compounds. Curr Med Chem 2024; 31:6521-6541. [PMID: 38847254 DOI: 10.2174/0109298673298420240530093525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities. AIMS The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity. METHODS The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Western Blotting, shRNA, and MTT assays. Finally, the in vivo anti-tumor activity and mechanism of J3 were studied through nude mice xenograft assay, western blotting. RESULTS 27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which had better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP in a dose-dependent manner. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% in vivo with no significant toxic effect on body weight and organs. CONCLUSION In summary, this study outlines a viable method for the synthesis of novel asymmetric bischalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.
Collapse
Affiliation(s)
- Chunhui Nian
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Gan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Qunpeng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou, 325027, China
| | - Miaomiao Kong
- The 1st affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiqin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mingming Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ledan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou, 325027, China
| |
Collapse
|
15
|
Ye M, Liu T, Liu S, Tang R, Liu H, Zhang F, Luo S, Li M. Peroxiredoxin 1 regulates crosstalk between pyroptosis and autophagy in oral squamous cell carcinoma leading to a potential pro-survival. Cell Death Discov 2023; 9:425. [PMID: 38007535 PMCID: PMC10676359 DOI: 10.1038/s41420-023-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
Peroxiredoxin 1 (Prdx1), a vital antioxidant enzyme, has been proven to play an important role in the occurrence and development of cancers, but its effects on oral squamous cell carcinoma (OSCC) remain unclear. Here, we performed bioinformatics analysis and immunohistochemical (IHC) staining to confirm that Prdx1 was higher in OSCC tissues than in normal tissues. Consistently, RT-PCR and Western blot showed elevated Prdx1 expression in OSCC cell lines compared to human oral keratinocytes (HOK), which could be knockdown by small interfering RNA (siRNA) and Lentiviral vector delivery of short hairpin RNA (shRNA). Prdx1 silencing significantly blocked OSCC cell proliferation and metastasis, as evidenced by the CCK8, colony formation, in vivo tumorigenesis experiment, wound healing, transwell assays, and changes in migration-related factors. siPrdx1 transfection increased intracellular reactive oxygen species (ROS) levels and provoked pyroptosis, proved by the upregulation of pyroptotic factors and LDH release. Prdx1 silencing ROS-independently blocked autophagy. Mature autophagosome failed to form in the siPrdx1 group. Up-regulated autophagy limited pyroptosis triggered by Prdx1 deficiency, and down-regulated pyroptosis partly reversed siPrdx1-induced autophagy defect. Collectively, Prdx1 regulated pyroptosis in a ROS-dependent way and modulated autophagy in a ROS-independent way, involving the crosstalk between pyroptosis and autophagy.
Collapse
Affiliation(s)
- Meilin Ye
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Ting Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| |
Collapse
|
16
|
Yang R, Wang QQ, Feng Y, Li XH, Li GX, She FL, Zhu XJ, Li CL. Over-expression of miR-3584-5p Represses Nav1.8 Channel Aggravating Neuropathic Pain caused by Chronic Constriction Injury. Mol Neurobiol 2023; 60:5237-5255. [PMID: 37280408 DOI: 10.1007/s12035-023-03394-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Nav1.8, a tetrodotoxin-resistant voltage-gated sodium channels (VGSCs) subtype encoded by SCN10A, which plays an important role in the production and transmission of peripheral neuropathic pain signals. Studies have shown that VGSCs may be key targets of MicroRNAs (miRNAs) in the regulation of neuropathic pain. In our study, bioinformatics analysis showed that the targeting relationship between miR-3584-5p and Nav1.8 was the most closely. The purpose of this study was to investigate the roles of miR-3584-5p and Nav1.8 in neuropathic pain. The effects of miR-3584-5p on chronic constriction injury (CCI)-induced neuropathic pain in rats was investigated by intrathecal injection of miR-3584-5p agomir (an agonist, 20 μM, 15 μL) or antagomir (an antagonist, 20 μM, 15 μL). The results showed that over-expression of miR-3584-5p aggravated neuronal injury by hematoxylin-eosin (H&E) staining and mechanical/thermal hypersensitivity in CCI rats. MiR-3584-5p indirectly inhibited the expression of Nav1.8 by up-regulating the expression of key proteins in the ERK5/CREB signaling pathway, and also inhibited the current density of the Nav1.8 channel, changed its channel dynamics characteristic, thereby accelerating the transmission of pain signals, and further aggravating pain. Similarly, in PC12 and SH-SY5Y cell cultures, miR-3584-5p increased the level of reactive oxygen species (ROS) and inhibited mitochondrial membrane potential (Δψm) in the mitochondrial pathway, decreased the ratio of apoptosis-related factor Bcl-2/Bax, and thus promoted neuronal apoptosis. In brief, over-expression of miR-3584-5p aggravates neuropathic pain by directly inhibiting the current density of Nav1.8 channel and altering its channel dynamics, or indirectly inhibiting Nav1.8 expression through ERK5/CREB pathway, and promoting apoptosis through mitochondrial pathway.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Qian-Qian Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yuan Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xue-Hao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Gui-Xia Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Feng-Lin She
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xi-Jin Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Zhou W, Zhao L, Wang H, Liu X, Liu Y, Xu K, Yu H, Suda K, He Y. Pyroptosis: A promising target for lung cancer therapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:94-101. [PMID: 39170826 PMCID: PMC11332860 DOI: 10.1016/j.pccm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 08/23/2024]
Abstract
Pyroptosis is a type of programed cell death that differs from apoptosis, ferroptosis, or necrosis. Numerous studies have reported that it plays a critical role in tumorigenesis and modification of the tumor microenvironment in multiple tumors. In this review, we briefly describe the canonical, non-canonical, and alternative mechanisms of pyroptotic cell death. We also summarize the potential roles of pyroptosis in oncogenesis, tumor development, and lung cancer treatment, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Pyroptosis has double-edged effects on the modulation of the tumor environment and lung cancer treatment. Further exploration of pyroptosis-based drugs could provide novel therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Wensheng Zhou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Kenichi Suda
- Department of Surgery, Division of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Dai J, Battini N, Zang Z, Luo Y, Zhou C. Novel Thiazolylketenyl Quinazolinones as Potential Anti-MRSA Agents and Allosteric Modulator for PBP2a. Molecules 2023; 28:molecules28104240. [PMID: 37241983 DOI: 10.3390/molecules28104240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial infections caused by methicillin-resistant Staphylococcus aureus have seriously threatened public health. There is an urgent need to propose an existing regimen to overcome multidrug resistance of MRSA. A unique class of novel anti-MRSA thiazolylketenyl quinazolinones (TQs) and their analogs were developed. Some synthesized compounds showed good bacteriostatic potency. Especially TQ 4 was found to exhibit excellent inhibition against MRSA with a low MIC of 0.5 μg/mL, which was 8-fold more effective than norfloxacin. The combination of TQ 4 with cefdinir showed stronger antibacterial potency. Further investigation revealed that TQ 4, with low hemolytic toxicity and low drug resistance, was not only able to inhibit biofilm formation but also could reduce MRSA metabolic activity and showed good drug-likeness. Mechanistic explorations revealed that TQ 4 could cause leakage of proteins by disrupting membrane integrity and block DNA replication by intercalated DNA. Furthermore, the synergistic antibacterial effect with cefdinir might be attributed to TQ 4 with the ability to induce PBP2a allosteric regulation of MRSA and further trigger the opening of the active site to promote the binding of cefdinir to the active site, thus inhibiting the expression of PBP2a, thereby overcoming MRSA resistance and significantly enhancing the anti-MRSA activity of cefdinir. A new strategy provided by these findings was that TQ 4, possessing both excellent anti-MRSA activity and allosteric effect of PBP2a, merited further development as a novel class of antibacterial agents to overcome increasingly severe MRSA infections.
Collapse
Affiliation(s)
- Jie Dai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhonglin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|
20
|
Amin MM, Abuo-Rahma GEDA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya RE, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem 2023; 134:106444. [PMID: 36893547 DOI: 10.1016/j.bioorg.2023.106444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/β-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and β-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Collapse
Affiliation(s)
- Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
21
|
Ding Y, Ye B, Sun Z, Mao Z, Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310009 China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| |
Collapse
|
22
|
Wei T, Zheng Z, Wei X, Liu Y, Li W, Fang B, Yun D, Dong Z, Yi B, Li W, Wu X, Chen D, Chen L, Wu J. Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis. J Enzyme Inhib Med Chem 2022; 37:2357-2369. [PMID: 36039017 PMCID: PMC9448362 DOI: 10.1080/14756366.2022.2116015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Curcumin is a natural medicine with a wide range of anti-tumour activities. However, due to β-diketone moiety, curcumin exhibits poor stability and pharmacokinetics which significantly limits its clinical applications. In this article, two types of dicarbonyl curcumin analogues with improved stability were designed through the calculation of molecular stability by density functional theory. Twenty compounds were synthesised, and their anti-tumour activity was screened. A plurality of analogues had significantly stronger activity than curcumin. In particular, compound B2 ((2E,2'E)-3,3'-(1,4-phenylene)bis(1-(2-chlorophenyl)prop-2-en-1-one)) exhibited excellent anti-lung cancer activity in vivo and in vitro. In addition, B2 could upregulate the level of reactive oxygen species in lung cancer cells, which in turn activated the endoplasmic reticulum stress and led to cell apoptosis and pyroptosis. Taken together, curcumin analogue B2 is expected to be a novel candidate for lung cancer treatment with improved chemical and biological characteristics.
Collapse
Affiliation(s)
- Tao Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Zhiwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yugang Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wentao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bingqing Fang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Di Yun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhaojun Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoping Wu
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong, China
| | - Dezhi Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liping Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China.,The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Wu H, Qian D, Bai X, Sun S. Targeted Pyroptosis Is a Potential Therapeutic Strategy for Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2515525. [PMID: 36467499 PMCID: PMC9715319 DOI: 10.1155/2022/2515525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023]
Abstract
As a type of regulated cell death (RCD) mode, pyroptosis plays an important role in several kinds of cancers. Pyroptosis is induced by different stimuli, whose pathways are divided into the canonical pathway and the noncanonical pathway depending on the formation of the inflammasomes. The canonical pathway is triggered by the assembly of inflammasomes, and the activation of caspase-1 and then the cleavage of effector protein gasdermin D (GSDMD) are promoted. While in the noncanonical pathway, the caspase-4/5/11 (caspase 4/5 in humans and caspase 11 in mice) directly cleave GSDMD without the assembly of inflammasomes. Pyroptosis is involved in various cancers, such as lung cancer, gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma. Pyroptosis in gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma is related to the canonical pathway, while both the canonical and noncanonical pathway participate in lung cancer. Moreover, simvastatin, metformin, and curcumin have effect on these cancers and simultaneously promote the pyroptosis of cancer cells. Accordingly, pyroptosis may be an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Clinical Medicine, Three Class, 2020 Grade, Kunming Medical University, Kunming, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
24
|
Zhao Z, Yu X, Zhu L, Tan S, Fu W, Wang L, An Y. Synthesis of
α
,
β
‐Unsaturated Ketones with Secondary Alcohols and Aldehydes Catalyzed by Fe(acac)
3. ChemistrySelect 2022. [DOI: 10.1002/slct.202202093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengjia Zhao
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Xiangzhu Yu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Lina Zhu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Shangzhi Tan
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Weiru Fu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Lianyue Wang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Yue An
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| |
Collapse
|
25
|
Abstract
Background Pyroptosis has been attracting much attention recently. We have briefly compared its differences and similarities with other programmed deaths and the process of its study. With further exploration of the caspase family, including caspase-1/3/4/5/8/11, new insights into the molecular pathways of action of pyroptosis have been gained. It is also closely related to the development of many cancers, which at the same time provides us with new ideas for the treatment of cancer. Scope of Review We describe what is known regarding the impact of pyroptosis on anticancer immunity and give insight into the potential of harnessing pyroptosis as a tool and applying it to novel or existing anticancer strategies. Major Conclusions Pyroptosis, a caspase-dependent cell death, causes pore formation, cell swelling, rupture of the plasma membrane, and release of all intracellular contents. The role of pyroptosis in cancer is an extremely complex issue. There is growing evidence that tumor pyroptosis has anti-tumor and pro-tumor roles. It should be discussed in different cancer periods according to the characteristics of cancer occurrence and development. In cancer treatment, pyroptosis provides us with some potential new targets. For the existing drugs, the study of pyroptosis also helps us make better use of existing drugs for anticancer treatment. Immunotherapy is a hot research direction in the field of cancer treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
New application of novel tetrazine derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Future Med Chem 2022; 14:1251-1266. [PMID: 35950486 DOI: 10.4155/fmc-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A novel series of s-tetrazine derivatives was designed as a new scaffold and synthesized efficiently as VEGFR-2 inhibitors for the first time. Methodology & results: The inhibitory activities of the new compounds were tested by MTT assay and enzyme assay, respectively. Western blot assay, cell apoptosis assay and cell migration assay were carried out to study the action mechanism of them. All the synthesized compounds showed evident VEGFR-2 inhibitory activities (IC50 in the range of 88.53-257.55 nM). Compounds 23h, 25d, 26e and 27c showed excellent anti-proliferative activities against the four tested cell lines and were better than sorafenib basically. Conclusion: Compounds with good activities based on this novel scaffold can be screened successfully.
Collapse
|
27
|
Bezerra LL, Almeida-Neto FWQ, Marinho MM, Santos Oliveira L, Teixeira AMR, Bandeira PN, Dos Santos HS, Lima-Neto PD, Marinho ES. Synthesis of aminochalcones and in silico evaluation of their antiparasitic potential against Leishmania. J Biomol Struct Dyn 2022:1-8. [PMID: 35894999 DOI: 10.1080/07391102.2022.2103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Leishmaniasis disease is a serious public health problem. This disease reaches about 10 to 12 million people, and 20-30 thousand people die yearly. The disease treatment is realized through pentavalent antimonial and glucantime. However, some studies indicated that these drugs presented high toxicity and cost. Therefore, it is urgent the search for new drugs that may combat this disease and are less toxic. This work analyzed for the first time the interaction potential of (E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one (C1), (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (C4), (E)-1-(4-aminophenyl)-3-(4ethoxyphenyl)-prop-2-en-1-one (C9) chalcones through in silico approach. The molecular docking and the molecular electrostatic potential results indicated that the chalcones analyzed presented a strong interaction with the Leishmania major receptor, with affinity energy similar to the ligand co-crystallized. Besides, the interaction potential energy analysis from molecular dynamics simulations indicated the C9 ligand interacted more strongly than the 4-bromo-2,6-dichloro-N-(1,3,5-trimethyl-1H-pyrazolyl) benzenesulfonamide ligand with the Leishmania major receptor, especially for the Phe 88, Tyr 217 and His 219 residues. Therefore, the C9 chalcone might potentially treat Leishmaniasis disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lucas Lima Bezerra
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Campus do Pici, Universidade Federal do Ceara, Fortaleza, Ceará, Brasil
| | | | - Márcia Machado Marinho
- Departamento de Química Biológica, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | | | | | - Paulo Nogueira Bandeira
- Departamento de Química Biológica, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Hélcio Silva Dos Santos
- Departamento de Química Biológica, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Pedro de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Campus do Pici, Universidade Federal do Ceara, Fortaleza, Ceará, Brasil
| | - Emmanuel Silva Marinho
- Grupo de Quimica Teorica e eletroquimica, FAFIDAM, Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, Brasil
| |
Collapse
|
28
|
Ma L, Bian M, Gao H, Zhou Z, Yi W. A novel 3-acyl isoquinolin-1(2H)-one induces G2 phase arrest, apoptosis and GSDME-dependent pyroptosis in breast cancer. PLoS One 2022; 17:e0268060. [PMID: 35551332 PMCID: PMC9098002 DOI: 10.1371/journal.pone.0268060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, accordingly, numerous chemotherapeutic drugs have been discovered thus far. However, the development and application of these drugs is severely constrained because of their unclear mechanism. To address this issue, our previous work has defined 3-acyl isoquinolin-1(2H)-one derivatives as potent anti-tumor agents, among which the compound 4f possessed relatively higher activity in vitro. In this study, we aim to further explore the anti-cancer effect and the underlying molecular mechanism of 4f in breast cancer cells. Therefore, CCK8 assay was used to detect cell viability and flow cytometry was used to analyze cell cycle and apoptosis. Meanwhile, related proteins that regulate cell cycle and apoptosis were detected. The results showed that 4f induced cell apoptosis and inhibited cell proliferation in breast cancer cells in a dose-depended manner without significant toxicity to human normal mammary epithelial cell. The cell cycle was arrested at G2 phase with the suppressed expression of the CDK1 protein. Additionally, 4f was confirmed to induce the cell apoptosis with the up-regulation of bax, down-regulation of bcl-2, activation of cleaved-caspase3/7/9 and cleaved-PARP, together with the inhibition of MEK/ERK and p38 MAPK pathway. Moreover, the GSDME-mediated pyroptosis was also induced by 4f in breast cancer cells. Together, these results demonstrated that 4f could serve as a new and promising candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Mengyao Bian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
- * E-mail: (WY); (ZZ)
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
- * E-mail: (WY); (ZZ)
| |
Collapse
|
29
|
Sroor FM, Mohamed MF, Abdullah GK, Mahrous KF, Zoheir KMA, Ibrahim SA, Elwahy AHM, Abdelhamid IA. Anticancer Activity of New Bis-(3-(Thiophen-2-yl)-1 H-Pyrazol-4-yl)Chalcones: Synthesis, in-Silico, and in-Vitro Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2046616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Ghada Khaled Abdullah
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Sherif A. Ibrahim
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | |
Collapse
|
30
|
Discovery of novel 1,2,4-triazine-chalcone hybrids as anti-gastric cancer agents via an axis of ROS-ERK-DR5 in vitro and in vivo. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
31
|
Huang Y, Wang JW, Huang J, Tang L, Xu YH, Sun H, Tang J, Wang G. Pyroptosis, a target for cancer treatment? Apoptosis 2022; 27:1-13. [DOI: 10.1007/s10495-021-01703-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/22/2022]
|
32
|
Hu Z, Lai Y, Ma C, Zuo L, Xiao G, Gao H, Xie B, Huang X, Gan H, Huang D, Yao N, Feng B, Ru J, Chen Y, Cai D. Cordyceps militaris extract induces apoptosis and pyroptosis via caspase-3/PARP/GSDME pathways in A549 cell line. Food Sci Nutr 2022; 10:21-38. [PMID: 35035907 PMCID: PMC8751435 DOI: 10.1002/fsn3.2636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cordyceps militaris (CM) is traditionally used as dietary therapy for lung cancer patients in China. CM extract (CME) is hydrosoluble fraction of CM and extensively investigated. Caspase-3-involved cell death is considered as its major anticancer mechanism but inconclusive. Therefore, we explore its caspase-3-dependent programmed cell death nature (apoptosis and pyroptosis) and validate its caspase-3-dependent property in loss-of-function experiment. Component profile of CME is detected by High Performance Liquid Chromatography- quadrupole time-of-flight mass spectrometry (HPLC-qTOF). Results show that CME causes pyroptosis-featured cell bubbling and cell lysis and inhibits cell proliferation in A549 cell. CME induces chromatin condensing and makes PI+/annexin V+ staining in bubbling cells, indicating genotoxicity, apoptosis, and pyroptosis cell death are caused by CME. High concentration of CME (200 μg/ml) exerts G2/M and G0 cell cycles arresting and suppresses P53-downstream proliferative proteins, including P53, P21, CDC25B, CyclinB1, Bcl-2, and BCL2 associated agonist of cell death (BAD), but 1-100 μg/ml of CME show less effect on proteins above. Correspondingly, caspase-3 activity and caspase-3 downstream proteins including pyroptotic effector gasdermin-E (GSDME) and apoptotic marker cleaved-poly-ADP-ribose polymerase (PARP) are significantly promoted by CME. Moreover, regarding membrane pore formation in pyroptotic cell, expression of membrane GSDME (GSDME antibody conjugated with PE-Cy7 for detection in flow cytometry) is remarkably increased by CME treatment. By contrast, other pyroptosis-related proteins such as P2X7, NLRP3, GSDMD, and Caspase-1 are not affected after CME treatment. Additionally, TET2 is unexpectedly raised by CME. In present of caspase-3 inhibitor Ac-DEVD-CHO (Ac-DC), CME-induced cytotoxicity, cell bubbling, and genotoxicity are reduced, and CME-induced upregulation of apoptosis (cleaved-PARP-1) and pyroptosis (GSDME-NT) proteins are reversed. Lastly, 22 components are identified in HPLC-qTOF experiment, and they are classified into trophism, neoadjuvant component, cytotoxic component, and cancer deterioration promoter according to previous references. Conclusively, CME causes caspase-3-dependent apoptosis and pyroptosis in A549 through caspase-3/PARP and caspase-3/GSDME pathways, and it provides basic insight into clinic application of CME for cancer patients.
Collapse
Affiliation(s)
- Zixuan Hu
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Yijing Lai
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Chaoya Ma
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and TreatmentDepartment of Science and EducationGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Lina Zuo
- Health examination centerSun Yat‐sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhou510120China
| | - Guanlin Xiao
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Haili Gao
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
| | - Biyuan Xie
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xuejun Huang
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Haining Gan
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Dane Huang
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Nan Yao
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Baoguo Feng
- GENETERRA (Chinese) Research CenterGuangzhouChina
| | - JieXia Ru
- College of Materials and EnergySouth China Agricultural UniversityGuangzhouChina
| | - Yuxing Chen
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| | - Dake Cai
- The Fifth Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| |
Collapse
|
33
|
Al Mamun A, Mimi AA, Aziz MA, Zaeem M, Ahmed T, Munir F, Xiao J. Role of pyroptosis in cancer and its therapeutic regulation. Eur J Pharmacol 2021; 910:174444. [PMID: 34453928 DOI: 10.1016/j.ejphar.2021.174444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is mainly considered a gasdermin-regulated cell death mechanism characterized by cellular lysis and the release of several pro-inflammatory factors. Nowadays, pyroptosis has notably been gained extensive attention from clinicians and researchers. However, current studies report that downregulation of pyroptosis-mediated cell death plays a significant role in developing multiple cancers. Increasing studies also suggest that pyroptosis can impact all stages of carcinogenesis. Inducing pyroptotic cellular death could be a promising therapeutic option for managing and regulating multiple cancers in the near future. Our current review highlights the molecular and morphological features of pyroptosis and its potential roles in various cancers. In addition, we have also highlighted the biological characteristics and significances of GSDMD and GSDME and their critical functions in cancer progression, management and regulation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka, 1209, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Tanvir Ahmed
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
34
|
Guan YF, Liu XJ, Yuan XY, Liu WB, Li YR, Yu GX, Tian XY, Zhang YB, Song J, Li W, Zhang SY. Design, Synthesis, and Anticancer Activity Studies of Novel Quinoline-Chalcone Derivatives. Molecules 2021; 26:4899. [PMID: 34443487 PMCID: PMC8398129 DOI: 10.3390/molecules26164899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/05/2022] Open
Abstract
The chalcone and quinoline scaffolds are frequently utilized to design novel anticancer agents. As the continuation of our work on effective anticancer agents, we assumed that linking chalcone fragment to the quinoline scaffold through the principle of molecular hybridization strategy could produce novel compounds with potential anticancer activity. Therefore, quinoline-chalcone derivatives were designed and synthesized, and we explored their antiproliferative activity against MGC-803, HCT-116, and MCF-7 cells. Among these compounds, compound 12e exhibited a most excellent inhibitory potency against MGC-803, HCT-116, and MCF-7 cells with IC50 values of 1.38, 5.34, and 5.21 µM, respectively. The structure-activity relationship of quinoline-chalcone derivatives was preliminarily explored in this report. Further mechanism studies suggested that compound 12e inhibited MGC-803 cells in a dose-dependent manner and the cell colony formation activity of MGC-803 cells, arrested MGC-803 cells at the G2/M phase and significantly upregulated the levels of apoptosis-related proteins (Caspase3/9 and cleaved-PARP) in MGC-803 cells. In addition, compound 12e could significantly induce ROS generation, and was dependent on ROS production to exert inhibitory effects on gastric cancer cells. Taken together, all the results suggested that directly linking chalcone fragment to the quinoline scaffold could produce novel anticancer molecules, and compound 12e might be a valuable lead compound for the development of anticancer agents.
Collapse
Affiliation(s)
- Yong-Feng Guan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Xiu-Juan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.L.); (X.-Y.Y.); (W.-B.L.); (Y.-B.Z.)
| | - Xin-Ying Yuan
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.L.); (X.-Y.Y.); (W.-B.L.); (Y.-B.Z.)
| | - Wen-Bo Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.L.); (X.-Y.Y.); (W.-B.L.); (Y.-B.Z.)
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Yan-Bing Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.L.); (X.-Y.Y.); (W.-B.L.); (Y.-B.Z.)
| | - Jian Song
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.L.); (X.-Y.Y.); (W.-B.L.); (Y.-B.Z.)
| | - Wen Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.L.); (X.-Y.Y.); (W.-B.L.); (Y.-B.Z.)
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| |
Collapse
|
35
|
Discovery of an orally active antitumor agent that induces apoptosis and suppresses EMT through heat shock protein 90 inhibition. Invest New Drugs 2021; 39:1179-1188. [PMID: 33644823 DOI: 10.1007/s10637-021-01083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Background Nowadays, lung cancer seriously affects human health in the world. Therefore, it is of great significance to develop effective anti-lung cancer drugs. Methods In this work, chalcone derivative HYQ97 was designed via a molecular hybridization strategy. It was synthesized by the cycloaddition in the presence of sodium ascorbate under mild conditions. Lung cancer cell lines were cultured to investigate its antitumor effects in vitro and in vivo. Results HYQ97 inhibited the proliferation of lung cancer cell lines. Specifically, its IC50 value against lung cancer A549 cells was 74.26 nM. It could inhibit heat shock protein 90 (Hsp90) and degrade its client proteins in a dose-dependent manner. Furthermore, HYQ97 suppressed the epithelial mesenchymal transition process and induced apoptosis of A549 cells. Importantly, HYQ97 also had significant inhibitory effects on tumor growth in vivo. Conclusions Chalcone derivative HYQ97 is a promising candidate for lung cancer treatment.
Collapse
|
36
|
Lin X, Song Y, Tian F, Chen X, Yin K. The role of pyroptosis in lung cancer and compounds regulated pyroptosis of lung cancer cells. J Cancer Res Ther 2021; 17:1596-1602. [DOI: 10.4103/jcrt.jcrt_614_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Xue K, Sun G, Zhang Y, Chen X, Zhou Y, Hou J, Long H, Zhang Z, Lei M, Wu W. A new method for the synthesis of chalcone derivatives promoted by PPh3/I2under non-alkaline conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1847295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kangsheng Xue
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Guoxiang Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, P. R. China
| | - Yanzhi Zhang
- College of Pharmacy, Dali University, Dali, P. R. China
| | - Xubing Chen
- College of Pharmacy, Dali University, Dali, P. R. China
| | - Yang Zhou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
38
|
Jiang M, Qi L, Li L, Li Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov 2020; 6:112. [PMID: 33133646 PMCID: PMC7595122 DOI: 10.1038/s41420-020-00349-0] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis has long been recognized as a mechanism that kills the cancer cells by cytotoxic drugs. In recent years, studies have proved that pyroptosis can also shrink tumors and inhibit cells proliferation. Both apoptosis and pyroptosis are caspase-dependent programmed cell death pathways. Cysteinyl aspartate specific proteinase-3 (Caspase-3) is a common key protein in the apoptosis and pyroptosis pathways, and when activated, the expression level of tumor suppressor gene Gasdermin E (GSDME) determines the mechanism of tumor cell death. When GSDME is highly expressed, the active caspase-3 cuts it and releases the N-terminal domain to punch holes in the cell membrane, resulting in cell swelling, rupture, and death. When the expression of GSDME is low, it will lead to the classical mechanism of tumor cell death, which is apoptosis. More interestingly, researchers have found that GSDME can also be located upstream of caspase-3, connecting extrinsic, and intrinsic apoptotic pathways. Then, promoting caspase-3 activation, and forming a self-amplifying feed-forward loop. GSDME-mediated pyroptosis is correlated with the side effects of chemotherapy and anti-tumor immunity. This article mainly reviews the caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer, to provide new strategies and targets for cancer treatment.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081 P. R. China
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081 P. R. China
| | - Lisha Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081 P. R. China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081 P. R. China
| |
Collapse
|
39
|
Liu HJ, Qin Y, Zhao ZH, Zhang Y, Yang JH, Zhai DH, Cui F, Luo C, Lu MX, Liu PP, Xu HW, Li K, Sun B, Chen S, Zhou HG, Yang C, Sun T. Lentinan-functionalized Selenium Nanoparticles target Tumor Cell Mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics 2020; 10:9083-9099. [PMID: 32802180 PMCID: PMC7415812 DOI: 10.7150/thno.46467] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Malignant ascites caused by cancer cells results in poor prognosis and short average survival time. No effective treatment is currently available for malignant ascites. In this study, the effects of lentinan (LNT)-functionalized selenium nanoparticles (Selene) on malignant ascites were evaluated. Furthermore, the mechanism of Selene targeting mitochondria of tumor cells were also investigated. Methods: Selene were synthesized and characterized by TEM, AFM and particle size analysis. The OVCAR-3 and EAC cells induced ascites models were used to evaluate the effects of Selene on malignant ascites. Proteomic analysis, immunofluorescence, TEM and ICP-MS were used to determine the location of Selene in tumor cells. Mitochondrial membrane potential, ROS, ATP content, and caspase-1/3 activity were detected to evaluate the effect of Selene on mitochondrial function and cell apoptosis. Immunofluorescence, Co-IP, pull-down, duolink, Western blot, and FPLC were used to investigate the pathway of Selene targeting mitochondria. Results: Selene could effectively inhibit ascites induced by OVCAR-3 and EAC cells. Selene was mainly located in the mitochondria of tumor cells and induced apoptosis of tumor cells. The LNT in Selene was involved in caveolae-mediated endocytosis through the interaction between toll-like receptor-4 (TLR4) and caveolin 1 (CAV1). Furthermore, the Selene in the endocytic vesicles could enter the mitochondria via the mitochondrial membrane fusion pathway, which was mediated by TLR4/TNF receptor associated factor 3 (TRAF3)/mitofusin-1 (MFN1) protein complex. Conclusion: Selene is a candidate anticancer drug for the treatment of malignant ascites. And TLR4/TRAF3/MFN1 may be a specific nano-drug delivery pathway that could target the mitochondria.
Collapse
|
40
|
Tan YF, Wang M, Chen ZY, Wang L, Liu XH. Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 2020; 11:239. [PMID: 32303673 PMCID: PMC7165180 DOI: 10.1038/s41419-020-2431-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/16/2023]
Abstract
BRD4 has long been implicated in many different pathological processes, in particular, the development of cancer and inflammation. Pyroptosis is a newly recognized type of inflammatory programmed cell death. However, the correlation between BRD4 and pyroptosis in renal cell carcinoma (RCC) remains elusive. The present study demonstrates that BRD4 expression levels are markedly upregulated, while pyroptosis-associated proteins are significantly reduced, in RCC tissues and cells. Inhibition of BRD4, via either genetic knockdown or use of bromodomain inhibitor JQ1, prevented cell proliferation and epithelial-mesenchymal transition (EMT) progression and induced caspase-1-dependent pyroptosis in RCC both in vitro and in vivo. In addition, BRD4 inhibition suppressed proliferation and EMT though pyroptosis in vitro and in vivo. Moreover, NLRP3, which mediates caspase-1-dependent pyroptosis, was increased upon BRD4 inhibition. Furthermore, the transcriptional activity of NLRP3 was enhanced by BRD4 inhibition, and this enhancement was blocked by activation of NF-κB phosphorylation, indicating that NF-κB is an upstream regulator of NLRP3. Collectively, these results show that BRD4 inhibition prevents cell proliferation and EMT, and exerts an antitumor effect in RCC by activating the NF-κB-NLRP3-caspase-1 pyroptosis signaling pathway. Thus, BRD4 is a potential target for RCC treatment, and JQ1 shows promise as a therapeutic agent for this disease.
Collapse
Affiliation(s)
- Yi-Fan Tan
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| |
Collapse
|
41
|
Pang H, Wang N, Chai J, Wang X, Zhang Y, Bi Z, Wu W, He G. Discovery of novel TNNI3K inhibitor suppresses pyroptosis and apoptosis in murine myocardial infarction injury. Eur J Med Chem 2020; 197:112314. [PMID: 32344181 DOI: 10.1016/j.ejmech.2020.112314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Myocardial infarction (MI) injury is a highly lethal syndrome that has, until recently, suffered from a lack of clinically efficient targeted therapeutics. The cardiac troponin I interacting kinase (TNNI3K) exacerbates ischemia-reperfusion (IR) injury via oxidative stress, thereby promoting cardiomyocyte death. In this current study, we designed and synthesized 35 novel TNNI3K inhibitors with a pyrido[4,5]thieno[2,3-d] pyrimidine scaffold. In vitro results indicated that some of the inhibitors exhibited sub-micromolar TNNI3K inhibitory capacity and good kinase selectivity, as well as cytoprotective activity, in an oxygen-glucose deprivation (OGD) injury cardiomyocyte model. Furthermore, investigation of the mechanism of the representative derivative compound 6o suggested it suppresses pyroptosis and apoptosis in cardiomyocytes by interfering with p38MAPK activation, which was further confirmed in a murine myocardial infarction injury model. In vivo results indicate that compound 6o can markedly reduce myocardial infarction size and alleviate cardiac tissue damage in rats. In brief, our results provide the basis for further development of novel TNNI3K inhibitors for targeted MI therapy.
Collapse
Affiliation(s)
- Haiying Pang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Xiaoyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Yuehua Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Zhiang Bi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Wenbin Wu
- Department of Neurology, Chongzhou People's Hospital, Chengdu, 611230, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
42
|
Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact 2020; 323:109052. [PMID: 32169591 DOI: 10.1016/j.cbi.2020.109052] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Pyroptosis, a form of programmed cell death, has garnered increasing attention as it relates to innate immunity and diseases. The discovery of caspase-1/3/4/5/8/11 function in sensing various challenges expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies have identified that pyroptosis has become a new topic in cancer research because it may affect all stages of carcinogenesis. In this mini-review, we provided a primer on pyroptosis, discussed the induction of pyroptosis in cancer and its implications in cancer management. Moreover, its two important executioners, the gasdermin D (GSDMD) and gasdermin E (GSDME), the functions and mechanisms of them involved in the regulation of cancer therapy were focused on. Small molecules-mediated pyroptosis were found to effectively inhibit various tumor cells. In brief, the findings of pyroptosis-dependent cancer progression, new drugs and therapeutic targets may lead to a promising, novel therapeutic approach for cancer patients.
Collapse
Affiliation(s)
- Jianwei Ruan
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China.
| | - Shijian Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
43
|
New chalcone-type compounds and 2-pyrazoline derivatives: synthesis and caspase-dependent anticancer activity. Future Med Chem 2020; 12:493-509. [PMID: 32100558 DOI: 10.4155/fmc-2019-0342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: There is a continuous and urgent need for new anticancer agents with novel structures and target selectivity. Methods & results: The anticancer activity of the prepared compounds was assessed against human lung (A549) and stomach (AGS) cancer cell lines and evaluated in the noncancer human lung fibroblast (MRC-5) cell line. 2-Pyrazolines were devoid of toxicity in all cell lines used, chalcones bearing a β-(benz)imidazole moiety being toxic toward AGS cell line. Mechanistic studies showed that these compounds trigger loss of cell viability and mitochondrial membrane potential, while eliciting morphological traits compatible with regulated cell death, which was ultimately shown to derive from caspase activation, specifically caspase-3. Conclusion: Chalcones 1-3 have been identified as new and promising anticancer agents toward the AGS cell line.
Collapse
|
44
|
Li K, Zhao S, Long J, Su J, Wu L, Tao J, Zhou J, Zhang J, Chen X, Peng C. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int 2020; 20:36. [PMID: 32021565 PMCID: PMC6993520 DOI: 10.1186/s12935-020-1114-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Melanoma is one of the most aggressive tumors with the remarkable characteristic of resistance to traditional chemotherapy and radiotherapy. Although targeted therapy and immunotherapy benefit advanced melanoma patient treatment, BRAFi (BRAF inhibitor) resistance and the lower response rates or severe side effects of immunotherapy have been observed, therefore, it is necessary to develop novel inhibitors for melanoma treatment. Methods We detected the cell proliferation of lj-1-59 in different melanoma cells by CCK 8 and colony formation assay. To further explore the mechanisms of lj-1-59 in melanoma, we performed RNA sequencing to discover the pathway of differential gene enrichment. Western blot and Q-RT-PCR were confirmed to study the function of lj-1-59 in melanoma. Results We found that lj-1-59 inhibits melanoma cell proliferation in vitro and in vivo, induces cell cycle arrest at the G2/M phase and promotes apoptosis in melanoma cell lines. Furthermore, RNA-Seq was performed to study alterations in gene expression profiles after treatment with lj-1-59 in melanoma cells, revealing that this compound regulates various pathways, such as DNA replication, P53, apoptosis and the cell cycle. Additionally, we validated the effect of lj-1-59 on key gene expression alterations by Q-RT-PCR. Our findings showed that lj-1-59 significantly increases ROS (reactive oxygen species) products, leading to DNA toxicity in melanoma cell lines. Moreover, lj-1-59 increases ROS levels in BRAFi -resistant melanoma cells, leading to DNA damage, which caused G2/M phase arrest and apoptosis. Conclusions Taken together, we found that lj-1-59 treatment inhibits melanoma cell growth by inducing apoptosis and DNA damage through increased ROS levels, suggesting that this compound is a potential therapeutic drug for melanoma treatment.
Collapse
Affiliation(s)
- Keke Li
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Shuang Zhao
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jing Long
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Juan Su
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Lisha Wu
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Juan Tao
- 4Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- 5Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - JiangLin Zhang
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiang Chen
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Cong Peng
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
45
|
Synthesis and Antiproliferative Activity of Isolongifolanone Pyrazoline Derivatives Inducing Intracellular ROS Accumulation. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Trinh KH, Doan SH, Huynh TV, Tran PH, Pham DN, Le MV, Nguyen TT, Phan NTS. Alternative pathways to α,β-unsaturated ketones via direct oxidative coupling transformation using Sr-doped LaCoO 3 perovskite catalyst. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191313. [PMID: 31827863 PMCID: PMC6894578 DOI: 10.1098/rsos.191313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
A strontium-doped lanthanum cobaltite perovskite material was prepared, and used as a recyclable and effective heterogeneous catalyst for the direct oxidative coupling of alkenes with aromatic aldehydes to produce α,β-unsaturated ketones. The reaction afforded high yields in the presence of di-tert-butylperoxide as oxidant. Single oxides or salts of strontium, lanthanum and cobalt, and the undoped perovskite offered a lower catalytic activity than the strontium-doped perovskite. Benzaldehyde could be replaced by benzyl alcohol, dibenzyl ether, 2-oxo-2-phenylacetaldehyde, 2-bromoacetophenone or (dimethoxymethyl) benzene in the oxidative coupling reaction with alkenes. To our best knowledge, reactions between these starting materials with alkenes are new and unknown in the literature.
Collapse
|
47
|
Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms. Aging Dis 2019; 10:1094-1108. [PMID: 31595205 PMCID: PMC6764727 DOI: 10.14336/ad.2019.0116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
There has been increasing interest in pyroptosis as a novel form of pro-inflammatory programmed cell death. The mechanism of pyroptosis is significantly different from other forms of cell death in its morphological and biochemical features. Pyroptosis is characterized by the activation of two different types of caspase enzymes-caspase-1 and caspase-4/5/11, and by the occurrence of a proinflammatory cytokine cascade and an immune response. Pyroptosis participates in the immune defense mechanisms against intracellular bacterial infections. On the other hand, excessive inflammasome activation can induce sterile inflammation and eventually cause some diseases, such as acute or chronic hepatitis and liver fibrosis. The mechanism and biological significance of this novel form of cell death in different liver diseases will be evaluated in this review. Specifically, we will focus on the role of pyroptosis in alcoholic and non-alcoholic fatty liver disease, as well as in liver failure. Finally, the therapeutic implications of pyroptosis in liver diseases will be discussed.
Collapse
Affiliation(s)
- Jiali Wu
- Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Su Lin
- Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Bo Wan
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
| | - Bharat Velani
- Basildon and Thurrock University Hospitals NHS Foundation Trust, Nethermayne, Basildon, Essex SS16 5NL, United Kingdom
| | - Yueyong Zhu
- Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| |
Collapse
|
48
|
Wang YY, Liu XL, Zhao R. Induction of Pyroptosis and Its Implications in Cancer Management. Front Oncol 2019; 9:971. [PMID: 31616642 PMCID: PMC6775187 DOI: 10.3389/fonc.2019.00971] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is a gasdermins mediated programmed cell death, which has been widely studied in inflammatory disease models. Recently, there are growing evidences that pyroptosis can be chemically induced in cancer cells without any bacterial or viral infection. Pyroptosis may affect all stages of carcinogenesis and has become a new topic in cancer research. In this review, we first briefly introduced pyroptosis. In the subsequent section, we discussed the induction of pyroptosis in cancer and its potential role as a promising target for cancer therapy. In addition, the biological characteristics of gasdermin D (GSDMD) and gasdermin E (GSDME), two important pyroptosis substrates, and their prognostic role in cancer management were reviewed. These results help us to understand the pathogenesis of cancer and develop new drugs, which based on pyroptosis modulation, for cancer patients.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| | - Xin-Lan Liu
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
49
|
Lin Y, Zhang M, Lu Q, Xie J, Wu J, Chen C. A novel chalcone derivative exerts anti-inflammatory and anti-oxidant effects after acute lung injury. Aging (Albany NY) 2019; 11:7805-7816. [PMID: 31553308 PMCID: PMC6781971 DOI: 10.18632/aging.102288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
We explored the effects of compound 33, a synthetic chalcone derivative with antioxidant activity, on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compound 33, dexamethasone or vehicle was administered intragastrically to mice 6 h before intratracheal instillation of LPS. After 24 h, the effects of compound 33 on alveolar structural damage were evaluated by assessing lung morphology and the wet/dry weight ratio. Protein and proinflammatory cytokine levels and superoxide dismutase activity were also examined in the cell free supernatant of bronchoalveolar lavage fluid. Additionally, we investigated the anti-inflammatory and antioxidant activity of compound 33 in vitro and its effects on the MAPK/NF-κB and Nrf2/HO-1 pathways. Pretreatment with compound 33 prevented LPS-induced structural damage, tissue edema, protein exudation, and overproduction of proinflammatory mediators. The effects of compound 33 were similar to or greater in magnitude than those of the positive control, dexamethasone. Moreover, compound 33 exerted anti-inflammatory and antioxidant effects in vitro by inhibiting the MAPK/NF-κB pathway and activating the Nrf2/HO-1 pathway. Compound 33 may therefore be a promising candidate treatment for ALI.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Man Zhang
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang 325000, China
| | - Qingdi Lu
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Jingwen Xie
- Department of Pharmacy, Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Jianzhang Wu
- Department of Pharmacy, Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| | - Chengshui Chen
- Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325006, China
| |
Collapse
|
50
|
Zhang WY, Wang YJ, Du F, He M, Gu YY, Bai L, Yang LL, Liu YJ. Evaluation of anticancer effect in vitro and in vivo of iridium(III) complexes on gastric carcinoma SGC-7901 cells. Eur J Med Chem 2019; 178:401-416. [DOI: 10.1016/j.ejmech.2019.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/04/2023]
|