1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Zou DL, Liao WZ, Yang HG, Lin B, Xu HR, Hua HM, Li DH. Discovery of polycyclic polyprenylated acylphloroglucinols with antitumor activities from Garcinia pedunculata Roxb. fruits based on molecular networking. Bioorg Chem 2025; 161:108513. [PMID: 40311239 DOI: 10.1016/j.bioorg.2025.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Garpedvinin A (1), a novel polycyclic polyprenylated acylphloroglucinol (PPAP) with a bicyclo[4,2,1]nonane core, 13 previously undescribed PPAPs, garpedvinins B-N (2-14) and 6 known analogs (15-20) were isolated from Garcinia pedunculata by various chromatographic methods combined with Global Natural Products Social Molecular Networking. The structures were identified by the analyses of spectral characteristics, computational chemistry calculations and single-crystal X-ray diffraction. A plausible biosynthetic pathway for garpedvinin A was suggested based on the isolated precursor, cambogin. Compounds 2-6, 8, 11, 13, 15-18 and 20 displayed cytotoxic effects on three cancer cell lines, HepG2, A549 and MCF-7. 6 showed the strong inhibitory effect on the proliferation of HepG2 cells in vitro, inducing cell apoptosis in a concentration-dependent manner and blocking the cell cycle at the S phase. Furthermore, 6 affected the expression of apoptosis-related proteins Bax, Bcl2 and pro-Caspase-3.
Collapse
Affiliation(s)
- De-Li Zou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Wen-Zhuo Liao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Han-Gao Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hua-Rong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Zhang L, Li Y, Qian Y, Xie R, Peng W, Zhou W. Advances in the Development of Ferroptosis-Inducing Agents for Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202500010. [PMID: 40178208 DOI: 10.1002/ardp.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cancer is the main leading cause of death worldwide and poses a great threat to human life and health. Although pharmacological treatment with chemotherapy and immunotherapy is the main therapeutic strategy for cancer patients, there are still many shortcomings during the treatment such as incomplete killing of cancer cells and development of drug resistance. Emerging evidence indicates the promise of inducing ferroptosis for cancer treatment, particularly for eliminating aggressive malignancies that are resistant to conventional therapies. This review covers recent advances in important regulatory targets in the ferroptosis metabolic pathway and ferroptosis inducers (focusing mainly on the last 3 years) to delineate their design, mechanisms of action, and anticancer applications. To date, many compounds, including inhibitors, degraders, and active molecules from traditional Chinese medicine, have been demonstrated to have ferroptosis-inducing activity by targeting the different biomolecules in the ferroptosis pathway. However, strictly defined ferroptosis inducers have not yet been approved for clinical use; therefore, the discovery of new highly active, less toxic, and selective compounds remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Li Zhang
- Maternal and Child Health Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang Province, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Qian
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Ruliang Xie
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Xiang S, Li Y, Khan SN, Zhang W, Yuan G, Cui J. Exploiting the Anticancer, Antimicrobial and Antiviral Potential of Naphthoquinone Derivatives: Recent Advances and Future Prospects. Pharmaceuticals (Basel) 2025; 18:350. [PMID: 40143127 PMCID: PMC11944738 DOI: 10.3390/ph18030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer remains a primary cause of mortality, with over 18.1 million new cases and 9.6 million deaths globally in 2018. Chemotherapy, which utilizes a spectrum of cytotoxic drugs targeting the rapidly dividing cancer cells, is a predominant treatment modality. However, the tendency of chemotherapeutics to induce drug resistance and exhibit non-specific cytotoxicity necessitates the development of new anticancer agents with heightened efficacy and minimized toxicity. In recent years, the discovery of safe and effective antibacterial/antiviral agents has also been a hot spot in medicinal chemistry. This paper comprehensively reviews the synthesis, anticancer/antibacterial/antiviral activity, and structure-activity relationships of natural 1,4-naphthoquinones and their derivatives. It highlights their potential as efficient and low-toxicity antitumor and anti-infectious drug candidates.
Collapse
Affiliation(s)
- Shouyan Xiang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shah Nawaz Khan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Weixin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoyang Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
| | - Jiahua Cui
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Karipcin F, Öztoprak UT, Dede B, Şahin S, Özmen İ. Synthesis and DFT calculations of metal(II) oxime complexes bearing cysteine as coligand and investigation of their biological evolutions in vitro and in silico. J Biomol Struct Dyn 2025; 43:399-418. [PMID: 37968962 DOI: 10.1080/07391102.2023.2281638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
New complexes with the formula of [ML(Cys)(H2O)2] were obtained as a result of the reaction between the oxime ligand [HL: 4-(4-bromophenylaminoisonitrosoacetyl)biphenyl], cysteine (Cys), and the metal(II) salts (Mn, Ni, Co, Zn, Cu). The newly synthesized compounds were characterized using conventional techniques such as molar conductance, magnetic measurements, elemental analysis, infrared spectroscopy, and thermal analysis (TGA/DTA). Based on the conductivity measurements in DMF, it was determined that the complexes were non-electrolytes. The TGA/DTA analysis was performed to examine the thermal stability and degradation behavior of all samples, and results demonstrated that metal oxides or sulfides formed as a result of the decompositions. In conjunction with other data obtained, the elemental analysis confirmed the octahedral coordination of the complexes with deprotonated oxime (O, O-donor) and amino acid (N, S-donor) ligands and two coordinated waters. The compounds' optimized geometries, molecular electrostatic potential diagrams, and frontier molecular orbitals were computed at the DFT/B3LYP level using the 6-311 G(d,p) and LANL2DZ basis sets. The antibacterial and DNA cleavage activities of all synthesized compounds were also screened, and molecular docking simulations were performed. According to the results of molecular docking studies conducted with three different proteins, the best interaction was found to be between HL-1HNJ with a binding energy of -9.5 kcal/mol. The stability of the HL-1HNJ complex was also verified by a molecular dynamics simulation performed for 50 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatma Karipcin
- Department of Chemistry, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | | | - Bülent Dede
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - Selmihan Şahin
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - İsmail Özmen
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Chen J, Liu J, Nie W, Hou X, Zhang X, Liu C, Si L, Zhang M, Xu S, Xie Q, Liang J, Li Y. Research progress on the structural and anti-colorectal malignant tumor properties of Shikonin. J Cancer Res Ther 2024; 20:1957-1963. [PMID: 39792404 DOI: 10.4103/jcrt.jcrt_933_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/17/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Colorectal cancer is the third most prevalent malignant tumor worldwide. Despite the advancements in surgical procedures and treatment options, CRC remains a considerable cause of cancer-related mortality. Shikonin is a naphthoquinone compound that exhibits multiple biological activities, including anti-inflammatory and anti-tumor effects as well as wound healing promotion. Recently, Shikonin has been increasingly used in basic research on colorectal malignant tumors. Therefore, we explored the mechanisms of action and structural improvements of Shikonin in colorectal cancer through a literature review to provide valuable insights for the advancement of research and development of related pharmaceuticals.
Collapse
Affiliation(s)
- Jinghua Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, People's Hospital of Zhangdian District, Zibo, China
| | - Jie Liu
- Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Weiwei Nie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xingqin Hou
- South Ward, The Second Hospital of Shandong University, Jinan, China
| | - Xi Zhang
- Department of Oncology, People's Hospital of Zhangdian District, Zibo, China
| | - Chao Liu
- Department of Oncology, People's Hospital of Zhangdian District, Zibo, China
| | - Linxin Si
- Department of Oncology, People's Hospital of Zhangdian District, Zibo, China
| | - Mingzhu Zhang
- Department of Oncology, People's Hospital of Zhangdian District, Zibo, China
| | - Shutao Xu
- Department of Oncology, People's Hospital of Zhangdian District, Zibo, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
7
|
Bogdanov FB, Balakhonov RY, Volkov ES, Sonin IV, Andreeva OE, Sorokin DV, Piven YA, Scherbakov AM, Shirinian VZ. Photochemical Metal-Free synthesis and biological Assessment of isocryptolepine analogues targeting estrogen receptor Alpha in breast cancer cells. Bioorg Chem 2024; 153:107942. [PMID: 39515131 DOI: 10.1016/j.bioorg.2024.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to develop a new series of isocryptolepines and evaluate their antiproliferative and antiestrogenic activities on cancer cells. A series of isocryptolepine derivatives were synthesized using developed one-pot photochemical, metal-free protocol, employing readily available 2-arylindoles as starting compounds. The resulting isocryptolepines demonstrated (sub)micromolar inhibitory activity against selected breast cancer cell lines. The IC50 values of lead compound 3c against hormone-dependent breast cancer types (MCF7 and T47D) were 0.3 μM and 0.12 μM, respectively, and significantly greater than 3 μM against estrogen receptor α (ERα)-deficient cell lines, MDA-MB-231 and HCC1954, respectively. To assess the antiestrogenic potency of compound 3c, MCF7 cells were transfected with a plasmid containing a luciferase reporter gene under the control of an estrogen-responsive element (ERE), creating the MCF7/ERE-LUC cell subline. In these cells, luciferase activity was induced by the natural ERα ligand, 17β-estradiol (E2). Compound 3c inhibited luciferase activity by 50 % at a concentration of 0.12 μM, highlighting its potent inhibitory effect on ERα. Molecular modeling further indicated that compound 3c could directly bind to ERα. Compound 3c induced apoptosis, as evidenced by PARP cleavage and downregulation of p-Bcl-2 and Bcl-2, and demonstrated synergistic effects in combination with the chemotherapeutic agent 5-fluorouracil. Compound 3c also showed selectivity towards hormone-dependent breast cancer cells, likely targeting ERα - a key driver in this cancer subtype. In summary, we report the development of a first-in-class antiestrogenic isocryptolepine with notable pro-apoptotic efficacy.
Collapse
Affiliation(s)
- F B Bogdanov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Faculty of Medicine, Moscow State University, Lomonosov prospect 27 bldg.1, 119991 Moscow, Russia.
| | - R Yu Balakhonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - E S Volkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - I V Sonin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - O E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - D V Sorokin
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - Yu A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220084, Belarus.
| | - A M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, 119021 Moscow, Russia.
| | - V Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem 2024; 277:116732. [PMID: 39106658 PMCID: PMC12009601 DOI: 10.1016/j.ejmech.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
10
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
11
|
Martinez-Mayorga K, Rosas-Jiménez JG, Gonzalez-Ponce K, López-López E, Neme A, Medina-Franco JL. The pursuit of accurate predictive models of the bioactivity of small molecules. Chem Sci 2024; 15:1938-1952. [PMID: 38332817 PMCID: PMC10848664 DOI: 10.1039/d3sc05534e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Property prediction is a key interest in chemistry. For several decades there has been a continued and incremental development of mathematical models to predict properties. As more data is generated and accumulated, there seems to be more areas of opportunity to develop models with increased accuracy. The same is true if one considers the large developments in machine and deep learning models. However, along with the same areas of opportunity and development, issues and challenges remain and, with more data, new challenges emerge such as the quality and quantity and reliability of the data, and model reproducibility. Herein, we discuss the status of the accuracy of predictive models and present the authors' perspective of the direction of the field, emphasizing on good practices. We focus on predictive models of bioactive properties of small molecules relevant for drug discovery, agrochemical, food chemistry, natural product research, and related fields.
Collapse
Affiliation(s)
- Karina Martinez-Mayorga
- Institute of Chemistry, Merida Unit, National Autonomous University of Mexico Merida-Tetiz Highway, Km. 4.5 Ucu Yucatan Mexico
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico Sierra Papacal Merida Yucatan Mexico
| | - José G Rosas-Jiménez
- Department of Theoretical Biophysics, IMPRS on Cellular Biophysics Max-von-Laue Strasse 3 Frankfurt am Main 60438 Germany
| | - Karla Gonzalez-Ponce
- Institute of Chemistry, Merida Unit, National Autonomous University of Mexico Merida-Tetiz Highway, Km. 4.5 Ucu Yucatan Mexico
| | - Edgar López-López
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute Mexico City 07000 Mexico
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry National Autonomous University of Mexico Mexico City 04510 Mexico
| | - Antonio Neme
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico Sierra Papacal Merida Yucatan Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry National Autonomous University of Mexico Mexico City 04510 Mexico
| |
Collapse
|
12
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Huang G, Cierpicki T, Grembecka J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg Chem 2023; 135:106477. [PMID: 36989736 PMCID: PMC10718064 DOI: 10.1016/j.bioorg.2023.106477] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023]
Abstract
Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Dong J, Yang J, Yu W, Li H, Cai M, Xu JL, Xu HD, Shi YF, Guan X, Cheng XD, Qin JJ. Discovery of benzochalcone derivative as a potential antigastric cancer agent targeting signal transducer and activator of transcription 3 (STAT3). J Enzyme Inhib Med Chem 2022; 37:2004-2016. [PMID: 35844184 PMCID: PMC9297716 DOI: 10.1080/14756366.2022.2100366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer remains a significant health burden worldwide. In continuation of our previous study and development of effective small molecules against gastric cancer, a series of benzochalcone analogues involving heterocyclic molecules were synthesised and biologically evaluated in vitro and in vivo. Among them, the quinolin-6-yl substituted derivative KL-6 inhibited the growth of gastric cancer cells (HGC27, MKN28, AZ521, AGS, and MKN1) with a submicromolar to micromolar range of IC50, being the most potent one in this series. Additionally, KL-6 significantly inhibited the colony formation, migration and invasion, and effectively induced apoptosis of MKN1 cells in a concentration-dependent manner. The mechanistic study revealed that KL-6 could concentration-dependently suppress STAT3 phosphorylation, which may partly contribute to its anticancer activity. Furthermore, in vivo antitumour study on the MKN1 orthotopic tumour model showed that KL-6 effectively inhibited tumour growth (TGI of 78%) and metastasis without obvious toxicity. Collectively, compound KL-6 may support the further development of candidates for gastric cancer treatment.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou , China.,Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou , China.,School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenkai Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haobin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Li Xu
- The First Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Han-Dong Xu
- The First Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Yun-Fu Shi
- The First Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou , China.,Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou , China
| | - Xiang-Dong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou , China.,Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou , China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou , China.,Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou , China.,School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Kausar F, Rasheed T, Tuoqeer Anwar M, Ali J. Revisiting the Role of Sulfur based Compounds in monitoring of Various analytes through spectroscopical investigations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ke LN, Kong LQ, Xu HH, Chen QH, Dong Y, Li B, Zeng XH, Wang HM. Research Progress on Structure and Anti-Gynecological Malignant Tumor of Shikonin. Front Chem 2022; 10:935894. [PMID: 35873044 PMCID: PMC9304652 DOI: 10.3389/fchem.2022.935894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gynecological malignancy seriously threatens the physical and mental health of women. Shikonin is a naphthoquinone compound with a variety of biological activities. Studies have shown that shikonin can inhibit cell proliferation, promote cell apoptosis and induce cell necrosis. And in recent years, shikonin are also being increasingly used for the study of gynecological malignant diseases. Therefore, we reviewed the mechanism of action and structure optimization of shikonin in gynecological malignant tumors, in order to provide some reference for further research and development of related drug.
Collapse
Affiliation(s)
- Li-Na Ke
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Ling-Qi Kong
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huan-Huan Xu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Qin-Hua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Yun Dong
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Bin Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Bin Li, ; Xiao-Hua Zeng, ; Hong-Mei Wang,
| | - Xiao-Hua Zeng
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Bin Li, ; Xiao-Hua Zeng, ; Hong-Mei Wang,
| | - Hong-Mei Wang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Bin Li, ; Xiao-Hua Zeng, ; Hong-Mei Wang,
| |
Collapse
|
17
|
Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur J Med Chem 2022; 235:114314. [DOI: 10.1016/j.ejmech.2022.114314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
|
18
|
Clementino-Neto J, da Silva JKS, de Melo Bastos Cavalcante C, da Silva-Júnior PF, David CC, de Araújo MV, Mendes CB, de Queiroz AC, da Silva ECO, de Souza ST, da Silva Fonseca EJ, da Silva TMS, de Amorim Camara C, Moura-Neto V, de Araújo-Júnior JX, da Silva-Júnior EF, da-Silva AX, Alexandre-Moreira MS. In vitro antitumor activity of dialkylamine-1,4-naphthoquinones toward human glioblastoma multiforme cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj05915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we evaluated the in vitro antitumor activity of dialkylamino-1,4-naphthoquinones (1a–n) toward human glioblastoma multiforme cells (GBM02).
Collapse
Affiliation(s)
- José Clementino-Neto
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Kaycke Sarmento da Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle de Melo Bastos Cavalcante
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Paulo Fernando da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle Cabral David
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Morgana Vital de Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Carmelita Bastos Mendes
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Microbiology, Immunology and Parasitology, Complex Of Medical Sciences And Nursing, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, AL, Brazil
| | - Elaine Cristina Oliveira da Silva
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Samuel Teixeira de Souza
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Eduardo Jorge da Silva Fonseca
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Tânia Maria Sarmento da Silva
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Celso de Amorim Camara
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Vivaldo Moura-Neto
- State Institute of Brain Paulo Niemeyer, Rezende Street, Rio de Janeiro 20231-092, RJ, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Adriana Ximenes da-Silva
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| |
Collapse
|
19
|
Shen J, Jiang X, Wu H, Xu J, Zhu Q, Zhang P. Copper-catalyzed selective oxidation of hydrazones through C(sp 3)-H functionalization. Org Biomol Chem 2021; 19:8917-8923. [PMID: 34617555 DOI: 10.1039/d1ob01563j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and mild protocol for copper-catalyzed oxidation of hydrazones at the α-position has been reported. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy provides an efficient and convenient solution for the synthesis of carbonyl hydrazone. A free radical pathway mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China. .,College of Chemistry and Chemical Engineering, Central south University, Changsha, 410083, P.R. China
| | - Haifeng Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Ferreira VF, de Carvalho AS, da Rocha DR. Strategies for the Synthesis of Mono- and Bis-Thionaphthoquinones. Curr Org Synth 2021; 18:535-546. [PMID: 33655837 DOI: 10.2174/1570179418666210224124603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
The subclass of compounds that have the nucleus 1,4-naphthoquinone is the most diverse of the class of quinones, which have a large number of substances and several that have useful applications ranging from medicinal chemistry to application in materials with special properties. The introduction of one or two substituents with the sulfur heteroatom in the naphthoquinone nucleus generates products containing alkyl and aryl groups that amplify certain biological properties against bacteria, viruses and fungi. There are several methods of preparing these compounds, mainly from low molecular weight naphthoquinones with two electrophilic sites capable of reacting with sulfides generating diversity and new classes of compounds, including new sulfur heterocycles and sulfur heterocycles fused with naphthoquinones. These compounds have been shown to be bioactive against several biological targets. This review will describe the methods of their synthesis and, when applicable, their biological activities.
Collapse
Affiliation(s)
- Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, Rua Doutor Mário Viana, 523, Santa Rosa, 24241-000, Niterói-RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| | - David R da Rocha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| |
Collapse
|
21
|
Zhou X, Xiao R, Chen M, Bai L. Synthesis of Uscharin Oxime Analogues and Their Biological Evaluation as HIF‐1 Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology)
| |
Collapse
|
22
|
Huang G, Solano CM, Melendez J, Yu-Alfonzo S, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem 2020; 209:112889. [PMID: 33045660 DOI: 10.1016/j.ejmech.2020.112889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 μM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of β-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Sabrina Yu-Alfonzo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
23
|
Alimohammadi A, Mostafavi H, Mahdavi M. Thiourea Derivatives Based on the Dapsone‐Naphthoquinone Hybrid as Anticancer and Antimicrobial Agents: In Vitro Screening and Molecular Docking Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.201903179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aazam Alimohammadi
- Department of Organic Chemistry & Biochemistry University of Tabriz 29 BahmanBoulvard Tabriz 5166614766 Iran
| | - Hossein Mostafavi
- Department of Organic Chemistry & Biochemistry University of Tabriz 29 BahmanBoulvard Tabriz 5166614766 Iran
| | - Majid Mahdavi
- Biology, Faculty of Natural Sciences University of Tabriz 29 Bahman Boulvard Tabriz 5166614766 Iran
| |
Collapse
|
24
|
Zengin A, Karaoğlu K, Emirik M, Menteşe E, Serbest K. Mononuclear Cu(II) complex of an oxime ligand derived from N-Heterocyclic hydrazide: Synthesis, spectroscopy, electrochemistry, DFT calculations and catecholase activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Wang J, Bian C, Wang Y, Shen Q, Bao B, Fan J, Zuo A, Wu W, Guo R. Syntheses and bioactivities of songorine derivatives as novel G protein-coupled receptor antagonists. Bioorg Med Chem 2019; 27:1903-1910. [PMID: 30926314 DOI: 10.1016/j.bmc.2019.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
Songorine isolated from Aconitum brachypodum Diels possesses prominent activity of inhibiting G protein-coupled receptors (GPCRs) in the early screening process. In this paper, a series of Songorine derivatives were synthesized and their inhibitory activities on GPCRs were also evaluated by using the Double Antibody Sandwich ELISA (DAS-ELISA) in vitro. Among them, three derivatives (3a, 4, 7) exhibited significant inhibitory activity against GPCRs with IC50 values of 0.08-0.29 nM. Moreover, the structure-activity relationships (SARs) of songorine derivatives were discussed in detail. They have great potentials as novel GPCRs antagonists in the future.
Collapse
Affiliation(s)
- Jiangming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhao Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quan Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Bao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Aixue Zuo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|