1
|
Wang Z, Liu T, He K, Wang L, Ma X, Yang Z, Zhang Y, Zhao L. Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells. Cell Adh Migr 2025; 19:1-14. [PMID: 39691959 DOI: 10.1080/19336918.2024.2442349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/19/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Research on the function of HGH1 in breast cancer remains lacking. METHODS TCGAand GEO (GSE45827) datasets investigated discrepancies in HGH1 expression in BC. An aggregate of 106 clinical samples were gathered through immunohistochemistry, KM curves were drawn for prognostic analysis, and the function of HGH1 of BC was predicted. Finally, the effects of HGH1 knockdown on MDA-MB-231 and MCF-7 BC cells were verified via CCK8, invasion, wound healing and colony formation assays. RESULTS HGH1 is highly expressed in BC and is linked to unfavorable prognosis. HGH1 overexpression is connected to keratinization and the cell cycle and is closely related to ER and PR expression and tumor stage in BC patients. Knocking down HGH1 in BC cells inhibited the viability, invasion and migration. CONCLUSION Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Taiyuan Liu
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Kang He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Longyun Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiaoxuan Ma
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yingchao Zhang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
2
|
Li Z, Wu Y, Qian M, Zhang B, Deng X, Mao P, Fan Z, Fang X, Cheng L, Liu X, Wang L, Liu H. Multi-omics analysis reveals BPF exposure causes hepatic glucose and lipid metabolism disorder in rats by disrupting energy homeostasis. Toxicology 2025; 515:154130. [PMID: 40188933 DOI: 10.1016/j.tox.2025.154130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Bisphenol F (BPF) is one of the main substitutes for Bisphenol A (BPA) and is widely used in the manufacture of household products. In addition, BPF threatens human health through environmental pollution and the food chain. However, the hepatotoxicity of BPF and its effects on glucose and lipid metabolism remain unclear. This study used male SD rats as an animal model to investigate the hepatotoxicity of BPF and its effects on glucose and lipid metabolism. The results of the HE staining, serum and liver biochemical indicators show that BPF can damage the basic structure of the liver, cause liver dysfunction and lead to disorders of liver glucose metabolism and lipid metabolism. Furthermore, we conducted metabolomics and proteomics analyses on the livers of the BPF exposed group at 100 mg/kg/d in comparison with the control group. The results indicated that BPF exposure had a significant effect on liver metabolism. Combined with biological analysis and the validation of changes in genes and proteins related to glucose and lipid metabolism in the liver, it was elucidated that BPF can promote fatty acid oxidation and inhibit fatty acid synthesis through the AMPK and PPAR signaling pathways, leading to a reduction in fatty acids. Furthermore, it has been demonstrated that BPF can promote glycogen synthesis and gluconeogenesis via the AKT pathway, which can result in disorders of glucose metabolism.
Collapse
Affiliation(s)
- Zhi Li
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Bingya Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xinxin Deng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Penghui Mao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Zhonghua Fan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xu Fang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China.
| |
Collapse
|
3
|
Chen Y, Zou S, Xu L, Chen J, Wang L, Shen Y, Xu Y, Wei Y, Xu X. NSMCE2 promotes the occurrence and development of HCC by regulating the SUMOylation of PPARα. Int Immunopharmacol 2025; 157:114762. [PMID: 40318278 DOI: 10.1016/j.intimp.2025.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Primary liver cancer is a malignant tumor of the digestive system and ranks as the sixth most commonly diagnosed cancer globally. It has also risen to become the third leading cause of cancer-related deaths globally, following lung and colorectal cancers. Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancer, approximately 75 to 85 %. Several studies suggest that NSMCE2 contributes to cancer through its SUMO E3 ligase activity, yet its specific role in HCC remains poorly understood. METHODS We gathered data from various databases and obtained 10 pairs of tissue samples from HCC patients to detect the NSMCE2 expression levels. Additionally, we conducted both in vivo and in vitro experiments to confirm the impact of NSMCE2 on the development and progression of HCC. We further analyzed the potential mechanism of NSMCE2 regulation on HCC by bioinformatics, and detected the specific mechanism of NSMCE2 regulating PPARα by co-immunoprecipitation. RESULTS Our study shows that NSMCE2 is an important tumor promoter in HCC and acts through the PPARα-CYP7A1 axis. Specifically, NSMCE2 affects the occurrence and progression of HCC by SUMOylating PPARα, reducing its ubiquitination degradation, and activating the PPARα-CYP7A1 axis. CONCLUSIONS Our study uncovered the role of NSMCE2 in the development and progression of HCC, providing new insights into the pathogenesis and potential therapeutic strategies of HCC.
Collapse
Affiliation(s)
- Yukai Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shishi Zou
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Le Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ling Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yuxin Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
4
|
Wu Z, Huang N, Li C, Lin M, Chen Z, Li W, Zhou H. β-Sitosterol suppresses NLRP3 Inflammasome activation and Pyroptosis in myocardial ischemia/reperfusion injury via inhibition of PPARγ2. Int Immunopharmacol 2025; 154:114543. [PMID: 40157084 DOI: 10.1016/j.intimp.2025.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND β-Sitosterol, a plant-derived sterol, has demonstrated potential therapeutic effects in cardiovascular diseases, particularly myocardial ischemia-reperfusion injury (MIRI). Our study investigates its underlying mechanism through regulation of pyroptosis. METHODS To understand the role of β-sitosterol in protecting cardiomyocytes, MIRI rats were treated with β-sitosterol. Rats' cardiac functions were monitored, and hearts were harvested for histology and Western Blot analysis. Immunofluorescence, immunoblot, enzyme-linked immunosorbent assay, as well as overexpression and knockdown techniques were utilized in this study to investigate the molecular mechanisms underlying the cardioprotective effects of β-sitosterol. RESULTS Our results showed that β-Sitosterol significantly reduced H/R-induced pyroptosis in cardiomyocytes by decreasing cleaved caspase-1, gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Immunofluorescence staining confirmed suppression of NLRP3 inflammasome activation. Notably, β-Sitosterol inhibited pyroptosis induced by ATP and ATP/LPS through the regulation of PPARγ2. Moreover, PPARγ2 upregulation promoted ATP and ATP/LPS-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway. In vivo, β-sitosterol alleviates myocardial ischemia-reperfusion injury-induced cardiac dysfunction and myocardial fibrosis in rats. CONCLUSIONS These findings provide new evidence supporting β-sitosterol as a potential therapeutic agent for cardiovascular diseases involving ischemic injury. Its protective effects may be mediated through targeting PPARγ2 and modulating NLRP3-dependent pyroptosis.
Collapse
Affiliation(s)
- Zheyi Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Niwen Huang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Muzhi Lin
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhangrong Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China.
| | - Haiyan Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Egawa D, Ishida H, Katakawa K. Molecular interactions between piperine and peroxisome proliferator-activated receptor gamma ligand-binding domain revealed using co-crystallization studies. Acta Crystallogr F Struct Biol Commun 2025; 81:201-206. [PMID: 40172924 PMCID: PMC12035555 DOI: 10.1107/s2053230x25002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025] Open
Abstract
Piperine has been investigated for a diverse array of biological effects, including a potential role in modulating peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor that plays a pivotal role in regulating lipid and glucose metabolism. This study conducted a comprehensive co-crystallographic analysis of the complex of piperine with the PPARγ ligand-binding domain (PPARγ-LBD), with the objective of elucidating the precise binding interactions of piperine. The co-crystal structure revealed that piperine binds within the ligand-binding pocket of PPARγ-LBD via hydrogen-bonding and hydrophobic interactions with residues of the ligand-binding site. Notably, in contrast to conventional full agonists, piperine does not directly stabilize helix H12. This could contribute to the comparatively weaker agonistic activity of piperine. The results of this study also suggest that piperine binding facilitates a role as a partial agonist or even an antagonist under certain physiological conditions. Collectively, these findings contribute to a greater understanding of the manner in which piperine modulates PPARγ function and its potential as a therapeutic candidate for the treatment of metabolic disorders. Given its natural origin and relatively minimal side-effect profile, piperine and its derivatives could be promising alternatives to synthetic PPARγ modulators such as thiazolidinediones, which have significant side effects.
Collapse
Affiliation(s)
- Daichi Egawa
- Department of Clinical Pharmacy, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yokohama, Kanagawa244-0806, Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design and Medicinal ChemistryShowa Pharmaceutical University3-2-1 Higashi-TamagawagakuenMachidaTokyo194-8543Japan
| | - Kazuaki Katakawa
- Department of Clinical Pharmacy, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yokohama, Kanagawa244-0806, Japan
| |
Collapse
|
6
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
7
|
Chen L, Zhang L, Zhao Y, He M, Wu H, Wang J, Chen Z, Zhao Y, Shen F, Zhang X. Impact of DNA methylation on digestive and metabolic gene expression in red pandas (Ailurus fulgens) during the transition from milk to bamboo diet. BMC Genomics 2025; 26:404. [PMID: 40275147 PMCID: PMC12023452 DOI: 10.1186/s12864-025-11606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND DNA methylation plays a crucial role in species development and environmental adaptation. In mammals, there are significant dietary changes from infancy to adulthood. Notably, the red panda transitions from milk consumption as juveniles to a bamboo-based diet as adults, with significant alterations in food characteristics and nutritional content. However, the regulatory role of DNA methylation in this process remains unclear. In this study, we investigate the regulatory role of DNA methylation on the expression of digestive and metabolic genes in the liver and pancreas during the red panda's dietary transition from suckling stage to adulthood. RESULTS Our findings reveal significant differences in DNA methylation patterns before and after dietary transition, highlighting the specific alterations in the methylation profiles of genes involved in lipid, carbohydrate, and amino acid metabolism. We found that perilipin-4 (PLIN4) is hypomethylated and highly expressed in the liver of adult red pandas, facilitating lipid droplet formation and storage, crucial for adapting to the low-fat content in bamboo. In contrast, genes like lipoprotein lipase (LPL), crucial for lipid breakdown, exhibited hypermethylated with low-expression patterns, reflecting a reduced lipid metabolism capacity in adults. Carbohydrate metabolism-related genes like ADH4 and FAM3C are hypomethylated and highly expressed in adults, enhancing glycogen production and glucose utilization. Genes involved in protein metabolism like CTSZ and GLDC, exhibit hypomethylated with high-expression and hypermethylated with low-expression patterns in the pancreas of adults, respectively, contributing to protein metabolism balance post-weaning. CONCLUSION This study reveals the regulatory role of DNA methylation in the dietary transition of red pandas from milk to bamboo and provides methylation evidence for the molecular regulation of adaptive expression of digestive and metabolic genes in red pandas with specialized diets.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, China
| | - Yanni Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan, 611800, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, 611800, China
| | - Jingheng Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhoulong Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yongqi Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Sellami A, Montes M, Lagarde N. Combining Molecular Docking and Pharmacophore Models Predicts Ligand Binding of Endocrine-Disrupting Chemicals to Nuclear Receptors. Chem Res Toxicol 2025; 38:672-685. [PMID: 40178351 DOI: 10.1021/acs.chemrestox.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Nuclear receptors form a family of proteins capable of accommodating a wide variety of small molecules in their ligand binding domain, ranging from therapeutic compounds to endocrine-disrupting chemicals. The rapid identification of these compounds, especially within the latter category, is of paramount importance. Using data extracted from the CompTox Dashboard, an Environmental Protection Agency initiative, we assessed the effectiveness of a combination of molecular docking and pharmacophore models in identifying ligands binding to six nuclear receptors: androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, peroxisome proliferator-activated receptor gamma, and thyroid hormone receptor alpha. For each nuclear receptor, we selected a specifically designed and optimized in silico protocol that, in conjunction with experimental assays, can prioritize compounds for further evaluation to detect any potential toxicological concerns.
Collapse
Affiliation(s)
- Asma Sellami
- Laboratoire GBCM, EA 7528, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Matthieu Montes
- Laboratoire GBCM, EA 7528, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
- Institut Universitaire de France, Paris 75003, France
| | - Nathalie Lagarde
- Laboratoire GBCM, EA 7528, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| |
Collapse
|
9
|
Mohanty S, Mehrotra N, Khan MT, Sharma S, Tripathi P. Paradoxical Effects of Erucic Acid-A Fatty Acid With Two-Faced Implications. Nutr Rev 2025:nuaf032. [PMID: 40202517 DOI: 10.1093/nutrit/nuaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Erucic acid (EA) is a monounsaturated fatty acid primarily consumed as rapeseed oil and mustard oil (MO). The consumption of EA-rich food has been reported to have adverse effects on health, particularly myocardial lipidosis and hepatic steatosis. Consequently, several countries, including the United States, European countries, New Zealand, and Australia, set limits on their daily intake. However, EA-rich MO (30%-50%) is still consumed in Asia. In contrast, limited studies on humans have reported a protective role of MO in acute myocardial infarction, ischemic heart disease, and neurologic disorders. The previous studies have shown the association of EA with both beneficial and adverse effects. Therefore, a comprehensive review of EA will help us understand its effect on health. Because EA consumption is banned in some countries, a detailed and updated review on EA might help us understand its role as a toxicant or therapeutic.
Collapse
Affiliation(s)
- Sneha Mohanty
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Neha Mehrotra
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Tauseef Khan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sapna Sharma
- School of Forensic Science, Uttar Pradesh State Institute of Forensic Science, Lucknow, Uttar Pradesh 226401, India
| | - Prabhanshu Tripathi
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
10
|
Montagud-Romero S, González-Portilla M, Mellado S, Grandes P, de Fonseca FR, Pascual M, Rodríguez-Arias M. Oleoylethanolamide effects on stress-induced ethanol consumption: A lipid at the crossroads between stress, reward and neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111365. [PMID: 40250786 DOI: 10.1016/j.pnpbp.2025.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
The endocannabinoid system is involved in multiple drug-related behaviors and the transient increase in endogenous cannabinoids and endocannabinoid-like molecules contributes to healthy adaptation to stress exposure. Oleoylethanolamide (OEA) belongs to the N-acylethanolamines and interacts with the endocannabinoid system. In this study, we investigated the effect of systemic OEA treatment (10 mg/kg), before or after social defeat (SD), on ethanol self-administration (SA). Mice were divided into non-stressed (EXP) and stressed (SD) groups and randomly assigned to a treatment condition (control-CTRL, OEA or 10OEA). The EXP/SD-OEA group of mice received four doses of OEA before each SD encounter, while mice in the EXP/SD-10OEA group received a daily dose for 10 consecutive days following stress exposure. Three weeks after SD, mice were trained to self-administer a 20 % (vol/vol) ethanol solution. Upon extinction, a cue-induced reinstatement test was performed. Our results showed that both OEA treatments effectively prevented the stress-induced increase in ethanol consumption observed in defeated mice. No significant effects of OEA on relapse-like behavior were observed. Additionally, we found that animals exposed to OEA during SD encounters showed reduced nuclear factor kappa B (NF-κB) levels, suggesting an anti-inflammatory effect of OEA, while tumor necrosis factor (TNFα) gene expression decreased in defeated animals. In summary, these findings suggest that exogenously increasing OEA levels counteracts the adverse effects of stress on ethanol drinking while having some impact on inflammatory patterns.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Susana Mellado
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain. Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010 Málaga, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - María Pascual
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
11
|
Li Y, Li J, Liu X, Cheng Z, Gao N, Kang J, Wang X. Polygonatum sibiricum Polysaccharides Alleviate LPS-Induced Liver Injury in Chicks by Suppressing Inflammation and Oxidative Stress Through the PPAR Signaling Pathway. Antioxidants (Basel) 2025; 14:418. [PMID: 40298760 PMCID: PMC12024365 DOI: 10.3390/antiox14040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Polygonatum sibiricum polysaccharides (PSPs), plant-derived polysaccharides widely used in the pharmaceutical field, exhibit various biological activities, including anti-inflammatory and antioxidant effects. However, research on their application in chicks remains limited. Therefore, the aim of this study is to investigate the protective mechanism of PSP against liver injury in chicks using an LPS-induced inflammatory model. A total of 200 one-day-old Hy-Line Brown laying chicks were randomly assigned to five groups (40 chicks each): a control group (CON) fed a basal diet, an LPS group, and three PSP groups receiving low (250 mg/L), medium (500 mg/L), and high (1000 mg/L) doses of PSP (PSP250_LPS, PSP500_LPS, and PSP1000_LPS, respectively). The experiment lasted 21 days. During this period, the LPS and PSP groups were intraperitoneally injected with 1500 μg/kg LPS on days 14, 16, 18, and 20, while the CON group received normal saline. On day 21, organs were collected for analysis. The results indicated that PSP treatment significantly reduced the liver and kidney indices that were elevated by LPS (p < 0.05) without affecting the indices of the spleen, thymus, or bursa of Fabricius (p > 0.05). Histological analysis revealed that PSP alleviated LPS-induced ballooning degeneration and cell swelling in hepatocytes. Furthermore, PSP treatment decreased the levels of ALT and AST and significantly mitigated increases in the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α while enhancing the level of the anti-inflammatory cytokine IL-10 (p < 0.05). Transcriptome sequencing of liver samples revealed that LPS significantly altered the expression of 10 genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which were regulated by PSP intervention. qPCR validation supported these findings. Furthermore, biochemical analyses of liver tissue showed that PSP alleviated oxidative stress by affecting levels of SOD, MDA, NADPH, ROS, and H2O2. In conclusion, PSP may alleviate LPS-induced liver injury in chicks by modulating the PPAR signaling pathway. These findings provide valuable insights for promoting healthy chick rearing and ensuring the safe supply of poultry products.
Collapse
Affiliation(s)
- Yang Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (N.G.); (J.K.)
| | - Jian Li
- Hebei Provincial Animal Husbandry Station, Shijiazhuang 050011, China; (J.L.); (X.L.); (Z.C.)
| | - Xiaowang Liu
- Hebei Provincial Animal Husbandry Station, Shijiazhuang 050011, China; (J.L.); (X.L.); (Z.C.)
| | - Zhili Cheng
- Hebei Provincial Animal Husbandry Station, Shijiazhuang 050011, China; (J.L.); (X.L.); (Z.C.)
| | - Nana Gao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (N.G.); (J.K.)
| | - Jungang Kang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (N.G.); (J.K.)
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (N.G.); (J.K.)
| |
Collapse
|
12
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
13
|
Chen S, Hu Z, Zhao M, Sun J, Nie S, Gao X, Huang Y. A comprehensive proteomic analysis reveals novel inflammatory biomarkers in intracranial aneurysms. J Proteomics 2025; 313:105374. [PMID: 39761748 DOI: 10.1016/j.jprot.2025.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
Inflammation is a complex factor in the pathogenesis of intracranial aneurysms (IA), but its specific cellular inflammatory factors remain uncertain. We collected two cohorts and measured the representation of vascular inflammation-related proteins using the Olink CVD II Vascular Inflammation Panel. We subsequently validated our findings using ELISA and RT-qPCR. Our proteomic analysis identified 11 vascular inflammation-related markers that were significantly differentially represented between the IA and control groups. These markers were implicated in leukocyte migration, immune response, triglyceride and lipoprotein metabolism, acute phase response, T cell regulation, and several key biological pathways, including PPAR, HIF-1, cytokine-cytokine interactions, and PI3K-AKT signaling. Further validation with ELISA and RT-qPCR confirmed the differential representation of IL6, PTX3, LPL, and OLR1 between the two groups. Notably, a combination marker incorporating these four factors demonstrated high diagnostic potential for the early detection of IA. Our study has identified a set of informative biomarkers (IL6, PTX3, LPL, and OLR1) that could be valuable for the early diagnosis of IA. Importantly, this is the first report of significantly elevated OLR1 representation in the plasma of IA patients. Further investigation into the role of OLR1 in the pathogenesis of IA is warranted. SIGNIFICANCE: This study significantly advances our understanding of the molecular mechanisms underlying intracranial aneurysm (IA) pathogenesis. By identifying a panel of novel biomarkers, including the previously unreported elevated expression of OLR1 in IA patients, we provide crucial insights into the inflammatory processes involved in aneurysm formation and development. These findings have important clinical implications, as the identified biomarkers could serve as valuable tools for early diagnosis and potentially targeted therapeutic interventions. Furthermore, the study highlights the complex interplay of inflammatory pathways in IA, suggesting that a multi-faceted approach may be necessary for effective management.
Collapse
Affiliation(s)
- Siqi Chen
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Ziliang Hu
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Mingyue Zhao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Jie Sun
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Sheng Nie
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Xiang Gao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China
| | - Yi Huang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
14
|
Cai R, Tan CP, Lai OM, Dang Y, Liu A, Pan D, Du L. Decoding Allergenicity Modulation in Cold Argon Plasma-Treated Casein: A Multi-Omics Exploration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6890-6902. [PMID: 40048467 DOI: 10.1021/acs.jafc.5c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cold argon plasma (CAP) effectively modifies casein (CN) structures by cleaving peptide chains and altering allergenic epitopes. This study assessed the allergenicity of CAP-treated CN in KU812 cells and BALB/c mouse models, supported by a multiomics approach integrating 16S rDNA sequencing, serum metabolomics, and jejunal transcriptomics. CAP treatment reduced CN allergenicity, evidenced by decreased KU812 cell degranulation, alleviated allergic responses in mice, and a Th1/Th2 balance shift toward Th1 dominance. Furthermore, CAP-treated CN restored the gut microbiota equilibrium, increasing the number of beneficial bacteria. Multiomics analysis highlighted its impact on lipid metabolism pathways, with Zbp1 and Hbb-bt identified as potential regulators of allergic responses. These findings underscore the potential of cold argon plasma as an innovative strategy to reduce food allergenicity through multifaceted physiological mechanisms, offering promising therapeutic applications in food allergy management.
Collapse
Affiliation(s)
- Ruiyi Cai
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yali Dang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Huang R, Zhou C, Wang T, Chen Y, Xie Z, Wei L, Duan Y, Liao C, Ma C, Yang X. Lycopene inhibits doxorubicin-induced heart failure by inhibiting ferroptosis through the Nrf2 signaling pathway. Life Sci 2025; 365:123452. [PMID: 39923835 DOI: 10.1016/j.lfs.2025.123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
AIMS Lycopene (LYC) is a dietary nutrient that plays a protective role in various cardiovascular diseases. Doxorubicin (DOX)-induced cardiotoxicity is an important cause of poor prognosis in many cancer patients treated with anthracyclines. This study aims to investigate the protective effects of LYC against DOX-induced heart failure (HF) and specific underlying mechanisms. MATERIALS AND METHODS DOX was used to establish HF model in cardiomyocytes and C57BL/6J mice to assess the protection of LYC against DOX-induced HF on inflammation, oxidative stress, and ferroptosis. KEY FINDINGS LYC ameliorated DOX-induced deterioration of cardiac function. Mechanistically, LYC reduced collagen content and fibrosis by inhibiting the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Additionally, LYC inhibited reactive oxygen species (ROS) production by upregulating antioxidant enzymes expression. LYC enhanced B-cell lymphoma 2 (Bcl-2), but reduced apoptosis positive cells by reducing tumor protein 53 (p53), Bcl-2 associated X protein (Bax), and cleaved-Caspase 3 (c-Casp3) levels. Besides, LYC reduced inflammatory cytokine levels through activating peroxisome proliferator activated receptor gamma (PPARγ). Moreover, LYC ameliorated DOX-induced ferroptosis both in vivo and in vitro. Furthermore, we showed that LYC inhibited DOX-induced ferroptosis via binding to nuclear factor-erythroid 2-related factor 2 (Nrf2) to enhance its expression. SIGNIFICANCE LYC improved DOX-induced cardiac dysfunction by reducing oxidative stress and inflammation, which was contributed by the reduction of ferroptosis. At molecular levels, LYC ameliorated DOX-induced ferroptosis through activating the Nrf2 signaling pathway. These findings indicate the potential of LYC as a therapeutic option for HF treatment.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhouling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lingling Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
16
|
Fu Z, Liu X, Yu W, Kuang Y, Wang F, Qian Z, Xu Q, Dai L, Feng Z. Design, synthesis, and biological evaluation of imidazolidinone derivatives as potent PPARα/δ agonists for the treatment of cholestatic liver diseases. Eur J Med Chem 2025; 286:117284. [PMID: 39827490 DOI: 10.1016/j.ejmech.2025.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Cholestatic liver disease (CLD) represents a significant and growing public health concern, and there is a lack of effective therapeutic drug in clinical practice. Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are regarded as potential therapeutic targets for CLD. In this study, a series of novel imidazolidinone PPARα/δ agonists were developed, and the preferred compound 8 displayed potent and well-balanced agonistic activity. Compound 8 showed high selectivity over other related nuclear receptors and effectively regulated the PPARα/δ target genes expression in mice. Notably, compound 8 demonstrated good pharmacokinetic profiles and potent in vivo anti-CLD effects. Collectively, compound 8 holds promise for developing an anti-CLD agent.
Collapse
Affiliation(s)
- Zhuoxin Fu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenhui Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yufan Kuang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Fengqin Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiqiang Qian
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhiqi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Ma D, Li B, Xin B, Xie B, Zhu E, Zhang Z, Ha X. Metabolomic analysis of rat arterial serum under hypobaric hypoxia: Adaptive regulation of physiological systems by metabolic reprogramming. Biochem Biophys Rep 2025; 41:101943. [PMID: 40041253 PMCID: PMC11876769 DOI: 10.1016/j.bbrep.2025.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 03/06/2025] Open
Abstract
Objective To investigate the associations between metabolic changes and functions, including energy metabolism, immune response, and redox balance, under short-term hypobaric hypoxia exposure. Non-targeted metabolomics and bioinformatics analysis were applied to explore the adaptive mechanisms of organisms in hypobaric hypoxia. Methods Healthy adult male Sprague-Dawley rats were placed in environments simulating altitudes of 6500 m (HC group) and 1588 m (Control group). After 14 days, arterial serum samples were analyzed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Significant metabolites (P < 0.05, VIP >1) were identified, and KEGG enrichment analysis was conducted. Differential metabolites were globally analyzed with MetaboAnalyst 5.0. Results A total of 117 significantly altered metabolites were identified. In the HC group, 84 metabolites significantly increased, while 33 metabolites significantly decreased compared to the Control group. KEGG enrichment analysis revealed significant metabolic pathways, including the PPAR signaling pathway, bile secretion, arginine biosynthesis, alcoholism, and cholesterol metabolism (P < 0.05). Global analysis indicated that these differential metabolites were involved in various pathways, such as energy metabolism, amino acid metabolism, nucleotide metabolism, lipid metabolism, vitamin and cofactor metabolism, steroid metabolism, neurotransmitter metabolism, and heme metabolism, all of which play crucial roles in multiple biological processes. Conclusion Short-term hypobaric hypoxia exposure significantly altered the metabolite profiles in the arterial serum samples of rats, revealing adaptive metabolic reprogramming in energy metabolism, redox balance, immune function, endocrine regulation, and neurological systems.
Collapse
Affiliation(s)
- Dengqin Ma
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou, 730099, China
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730099, China
- The First People's Hospital of Tianshui, Tianshui, 741000, Gansu, China
| | - Bing Li
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730099, China
| | - Bang Xin
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou, 730099, China
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730099, China
| | - Bingfang Xie
- The First People's Hospital of Tianshui, Tianshui, 741000, Gansu, China
| | - Enpen Zhu
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou, 730099, China
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730099, China
| | - Zihao Zhang
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730099, China
| | - Xiaoqin Ha
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730099, China
| |
Collapse
|
18
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2025; 69:225-244. [PMID: 38555000 PMCID: PMC11954843 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
19
|
Li WR, Zhang C, Wang J. PPARs: modulating lipotoxicity and thus inhibiting fibrosis. Hormones (Athens) 2025; 24:85-97. [PMID: 39500811 DOI: 10.1007/s42000-024-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 03/18/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family of ligand-activated receptors and are known for their roles as key factors in the regulation of lipid metabolism. In the more than three decades since their discovery, most reports on PPARs have focused on their roles in lipid metabolism, and a portion of the new research has also focused on the relationship between PPARs and fibrosis. Interestingly, lipid metabolism disorders and fibrosis are also inextricably linked. This implies that PPARs, lipid metabolism and fibrosis are interrelated. On this basis, we have summarized the molecular mechanisms of PPARs regulating fibrosis through lipid metabolism and PPARγ directly regulating fibrosis, and pointed out the contradictions and enigmas that need to be further explored in the processes of PPARs regulating lipid metabolism and fibrosis. The aim of the present review is to provide new ideas for PPARs for the treatment of lipid metabolism disorders and fibrosis.
Collapse
Affiliation(s)
- Wen-Rui Li
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jing Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
20
|
Jin M, Lu Q, Xia N, Fan X, Zhang Z, Huang X, Sun L, Zhang L, Jiang Z, Yu Q. LncRNA Gm35585 transcriptionally activates the peroxidase EHHADH against diet-induced fatty liver. Exp Mol Med 2025; 57:652-666. [PMID: 40082671 PMCID: PMC11958773 DOI: 10.1038/s12276-025-01420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 03/16/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease is one of the most common chronic liver diseases worldwide and has no approved treatment thus far. Here we report that the hepatic overexpression of Gm35585, a novel lncRNA downregulated in the livers of mice fed a high-fat diet, is functionally important in alleviating hepatic lipid accumulation pathologies. Gm35585 activates the peroxisome proliferator-activated receptor α (PPARα) signaling pathway and promotes the expression of downstream PPARα-target gene, enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), which is one of the four enzymes of the peroxisomal β-oxidation pathway. Activation of EHHADH promotes the oxidation of long-chain fatty acids (LCFAs), and the increased levels of hepatic LCFAs contribute to metabolic-dysfunction-associated steatotic liver disease. Mechanistically, Gm35585 binds to retinoid X receptor α (RXRα) and then forms a PPARα/RXRα heterodimer with PPARα and guides the heterodimer to recognize the promoter of EHHADH, which is called peroxisome proliferator-activated receptor response element, causing transcriptional activation of EHHADH. Taken together, Gm35585 is a hepatic lipid metabolism regulator that activates EHHADH transcription, promoting peroxisomal β-oxidation of LCFAs and ultimately ameliorating diet-induced fatty liver.
Collapse
Affiliation(s)
- Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qian Lu
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ziling Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaofei Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
22
|
Palumbo M, Ugolotti M, Zimetti F, Adorni MP. Anti-atherosclerotic effects of natural compounds targeting lipid metabolism and inflammation: Focus on PPARs, LXRs, and PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:39-53. [PMID: 39877131 PMCID: PMC11773090 DOI: 10.1016/j.athplu.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
A large body of evidence has shown that modulation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs), the proprotein convertase subtilisin/kexin type 9 (PCSK9) and inflammatory processes by natural compounds has hypolipidemic and anti-atherosclerotic effects. These beneficial outcomes are certainly related to the crucial function of these targets in maintaining cholesterol homeostasis and regulating systemic inflammation. Currently, the therapeutic scenario for cardiovascular diseases (CVD) offers a plethora of widely validated and functional pharmacological treatments to improve the health status of patients. However, patients are increasingly sceptical of pharmacological treatments which are often associated with moderate to severe side effects. The aim of our review is to provide a collection of the most recent scientific evidence on the most common phytochemicals, used for centuries in the Mediterranean diet and traditional chinese medicine that act on these key regulators of cholesterol homeostasis and systemic inflammation, which could constitute important tools for CVD management.
Collapse
Affiliation(s)
| | | | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| |
Collapse
|
23
|
Yang D, Xu HX, Wang WJ, Yin ZP, Chen JG, Yuan E, Zhang QF. Roselle Extract Ameliorates Abnormal Glucolipid Metabolism and Gut Microbiota in Obese Mice Fed With High-Fat Diet. Mol Nutr Food Res 2025; 69:e202400756. [PMID: 39935166 DOI: 10.1002/mnfr.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Roselle extract (RE) is rich in anthocyanins and chlorogenic acids. This study investigated the health-promoting effects of RE on lipid metabolism, oxidative stress, glycometabolism, and gut microbiota in obese mice fed a high-fat diet (HFD). The obesity model was induced by feeding mice a HFD, with RE supplementation added to their drinking water at concentrations of 2 and 4 mg/mL for 12 weeks. RE significantly reduced body weight gain and fat accumulation compared to the control group, alleviated hepatic steatosis, and improved insulin sensitivity. Additionally, RE restored antioxidative enzyme activities such as SOD and GSH-PX while reducing MDA levels. Transcriptomic analysis of the liver was performed to evaluate gene expression related to lipid metabolism, particularly in the PPAR signaling pathway. Gut microbiota analysis showed that RE increased beneficial bacteria and reduced the Firmicutes-to-Bacteroidetes ratio, suggesting an improvement in gut dysbiosis caused by the HFD. RE enhanced lipid metabolism, reduced oxidative stress, and improved insulin sensitivity in obese mice, potentially through modulation of the PPAR signaling pathway and gut microbiota, suggesting its potential as a therapeutic candidate for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dan Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Hai-Xia Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
24
|
Zhou W, Zhang S, Chen Y, Chen Z, Bi G, Guo M, Jiang X, Yang X, Fang J, Ye L, Fan S, Bi H. PPARα regulates YAP protein levels and activity by affecting its ubiquitination modification. BMC Biol 2025; 23:64. [PMID: 40022055 PMCID: PMC11871725 DOI: 10.1186/s12915-025-02163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in liver physiological and pathological processes. Yes-associated protein (YAP) is a key effector in regulating cell growth and organ size. Ubiquitination is known to modulate YAP protein expression, stability, and nuclear localization. Our previous study demonstrated that PPARα activation promotes hepatomegaly and liver regeneration via YAP activation. However, the underlying molecular mechanisms by which PPARα regulates YAP are unclear. In this study, PPARα was activated by the classical agonist WY-14643, and its effects on YAP ubiquitination were examined using plasmid transfection and immunoprecipitation. The ubiquitination of YAP was further investigated through mutant YAP plasmids, gene knockdown, and immunofluorescence staining. YAP mRNA and protein expression were measured via qRT-PCR and western blotting. RESULTS The results demonstrated that PPARα activation upregulated YAP protein levels and enhanced its activity, while reducing overall YAP ubiquitination. Specifically, PPARα activation inhibited K48-linked ubiquitination while promoting K63-linked ubiquitination of YAP. Mutations at the K252, K321, and K497 residues of YAP markedly reduced the capacity of PPARα activation to facilitate YAP nuclear translocation. Furthermore, knockdown of the E3 ligase TRAF6 abolished the PPARα-induced K63-linked ubiquitination of YAP and the upregulation of its downstream target genes. CONCLUSIONS These findings highlight the pivotal role of ubiquitination in regulating YAP through PPARα activation, providing novel insights for future studies on the post-translational regulation of YAP by PPARα activation.
Collapse
Affiliation(s)
- Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yao Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ziqi Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jianhong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Linhu Ye
- Department of Pharmacy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China.
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Zhou M, Song T, Huang M, Zheng L, Zhao M. Differential Mechanisms of Soybean-Derived ACE2-Activating Peptides IVPQ and IAVPT in ACE2-Mediated Endothelial Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4065-4077. [PMID: 39920612 DOI: 10.1021/acs.jafc.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
This study aimed to investigate the modulatory effects of soybean-derived peptides IVPQ and IAVPT, which were initially identified as potent ACE2-activating peptides, on Ang II-induced endothelial dysfunction in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms via ACE2 activation. IVPQ and IAVPT ameliorated Ang II-induced malignant migration and NO reduction in HUVECs via the activation of the ACE2/Ang-(1-7)/MasR axis, resulting in Ang II degradation and decreased Ang II signaling. These protective effects were attenuated by ACE2 knockdown to different degrees, which was possibly due to different mechanisms of activating ACE2, where IAVPT directly activated ACE2 at a concentration of 1.0 × 10-4 M and IVPQ upregulated ACE2 likely through effects on ACE2 mRNA stability. These results contributed to our understanding of the mechanism of ACE2-activating peptides regulating endothelial function.
Collapse
Affiliation(s)
- Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Famuyiwa SO, Ahmad S, Olufolabo KO, Olanudun EA, Bano N, Oguntimehin SA, Adesida SA, Oyelekan EI, Raza K, Faloye KO. Investigating the multitargeted anti-diabetic potential of cucurbitane-type triterpenoid from Momordica charantia: an LC-MS, docking-based MM\GBSA and MD simulation study. J Biomol Struct Dyn 2025; 43:1159-1170. [PMID: 38069604 DOI: 10.1080/07391102.2023.2291174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/11/2023] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes accounts for the largest percentage of all diabetic cases worldwide. Cucurbitane-type triterpenes are mainly found in Momordica charantia and possess excellent pharmacological activities. This study was designed to identify cucurbitane-type triterpene from Momordica charantia using Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, examine its anti-diabetic property with molecular docking against diabetes enzymes (alpha-amylase, alpha-glucosidase, dipeptidyl dipeptidase IV and peroxisome proliferator-activated receptor gamma). The stability and interactions of the docked complexes were investigated using molecular dynamics simulation, while the pharmacokinetic and toxicity profile of the ligand was examined using an ADMET server. (23E)-Cucurbita-5,23,25-triene-3,7-dione (CUB) was identified from the LC-MS profiling of the methanolic extract of M. charantia. The molecular docking studies showed that the identified phytochemical elicited good binding energy against all the target receptors. The RMSD and RMSF plots obtained from the 100 ns molecular dynamics simulation showed that the ligand was stable and established substantial interactions with the amino acid residues of the diabetes enzymes which were confirmed by the MM\GBSA computations. The pharmacokinetic and toxicity properties of the ligand showed it was safer as an anti-diabetic drug candidate. Extensive isolation, in vitro and in vivo studies of the ligand against the diabetic enzymes is recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samson O Famuyiwa
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Shaban Ahmad
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Katherine O Olufolabo
- Department of Pharmacognosy, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Esther A Olanudun
- Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences, University of Ilesa, Ilesa, Nigeria
| | - Nagmi Bano
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Samuel A Oguntimehin
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Stephen A Adesida
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Esther I Oyelekan
- Department of Biochemistry and Molecular Biology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Kolade O Faloye
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
27
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2025; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Kiani P, Khodadadi ES, Nikdasti A, Yarahmadi S, Gheibi M, Yousefi Z, Ehtiati S, Yahyazadeh S, Shafiee SM, Taghizadeh M, Igder S, Khatami SH, Karima S, Vakili O, Pourfarzam M. Autophagy and the peroxisome proliferator-activated receptor signaling pathway: A molecular ballet in lipid metabolism and homeostasis. Mol Cell Biochem 2025:10.1007/s11010-025-05207-0. [PMID: 39891864 DOI: 10.1007/s11010-025-05207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 02/03/2025]
Abstract
Lipids, which are indispensable for cellular architecture and energy storage, predominantly consist of triglycerides (TGs), phospholipids, cholesterol, and their derivatives. These hydrophobic entities are housed within dynamic lipid droplets (LDs), which expand and contract in response to nutrient availability. Historically perceived as a cellular waste disposal mechanism, autophagy has now been recognized as a crucial regulator of metabolism. Within this framework, lipophagy, the selective degradation of LDs, plays a fundamental role in maintaining lipid homeostasis. Dysregulated lipid metabolism and autophagy are frequently associated with metabolic disorders such as obesity and atherosclerosis. In this context, peroxisome proliferator-activated receptors (PPARs), particularly PPAR-γ, serve as intracellular lipid sensors and master regulators of gene expression. Their regulatory influence extends to both autophagy and lipid metabolism, indicating a complex interplay between these processes. This review explores the hypothesis that PPARs may directly modulate autophagy within the realm of lipid metabolism, thereby contributing to the pathogenesis of metabolic diseases. By elucidating the underlying molecular mechanisms, we aim to provide a comprehensive understanding of the intricate regulatory network that connects PPARs, autophagy, and lipid homeostasis. The crosstalk between PPARs and other signaling pathways underscores the complexity of their regulatory functions and the potential for therapeutic interventions targeting these pathways. The intricate relationships among PPARs, autophagy, and lipid metabolism represent a pivotal area of research with significant implications for understanding and treating metabolic disorders.
Collapse
Affiliation(s)
- Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Sadat Khodadadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122, Padova, Italy
| | - Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
29
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
30
|
Gan H, Lu M, Tong J, Li H, Zhou Q, Han F, Wang X, Yan S, Huang K, Wang Q, Wu X, Zhu B, Gao H, Tao F. Sex- and trimester-specific impact of gestational co-exposure to organophosphate esters and phthalates on insulin action among preschoolers: Findings from the Ma'anshan birth cohort. ENVIRONMENT INTERNATIONAL 2025; 196:109287. [PMID: 39848094 DOI: 10.1016/j.envint.2025.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Prenatal exposure to organophosphate esters (OPEs) and phthalic acid esters (PAEs) is ubiquitous among pregnant individuals. However, research exploring the relationship between prenatal co-exposure to OPEs and PAEs and childhood insulin function remains limited. METHODS In this study, utilizing data from 2,246 maternal-fetal dyads in the Ma'anshan Birth Cohort, associations between co-exposure to OPEs and PAEs and insulin action were analyzed. Repeated measures of tris (2-chloroethyl) phosphate, six OPE metabolites, and seven PAE metabolites were collected from maternal urine. Homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin action index (IAI) served as outcome measures. After adjusting for potential confounders, the effects of repeated exposure on insulin action were evaluated using generalized estimating equations, while mixture effects were assessed through BayesianKernel Machine Regression and Quantile-Based G-Computation. RESULTS The average age of the children at the time of the study was 5.33 years. Repeated measures analysis revealed that prenatal exposure to MEP was positively associated with increased HOMA-IR (β, 0.027; 95 % CI: 0.002, 0.053), while IAI was inversely correlated with rising MEP levels (β, 0.025; 95 % CI: -0.046, -0.004) and MEHHP exposure (β, -0.128; 95 % CI: -0.218, -0.037). Mixed exposure modeling further indicated that co-exposure to OPEs and PAEs was positively linked to HOMA-IR (β, 0.058; 95 % CI: 0.001, 0.114) and negatively correlated with IAI (β, -0.054; 95 % CI: -0.097, -0.010), with stronger effects observed during the second trimester. Notably, the association was more pronounced in female children compared to males. CONCLUSIONS This study provides the first epidemiological evidence highlighting the pregnancy- and sex-specific links between prenatal co-exposure to OPEs and PAEs and childhood insulin action.
Collapse
Affiliation(s)
- Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Huijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Qiong Zhou
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaorui Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Qunan Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China.
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China.
| |
Collapse
|
31
|
Liu T, Chen X, Sun Q, Li J, Wang Q, Wei P, Wang W, Li C, Wang Y. Valerenic acid attenuates pathological myocardial hypertrophy by promoting the utilization of multiple substrates in the mitochondrial energy metabolism. J Adv Res 2025; 68:241-256. [PMID: 38373650 PMCID: PMC11785575 DOI: 10.1016/j.jare.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Valerenic acid (VA) is a unique and biologically active component in Valeriana officinalis L., which has been reported to have a regulatory effect on the cardiovascular system. However, its therapeutic effects on pathological myocardial hypertrophy (PMH) and the underlying mechanisms are undefined. OBJECTIVES Our study aims to elucidate how VA improves PMH, and preliminarily discuss its mechanism. METHODS The efficacy of VA on PMH was confirmed by in vivo and in vitro experiments and the underlying mechanism was investigated by molecular dynamics (MD) simulations and specific siRNA interference. RESULTS VA enhanced cardiomyocyte fatty acid oxidation (FAO), inhibited hyper-activated glycolysis, and improved the unbalanced pyruvate-lactate axis. VA could significantly improve impaired mitochondrial function and reduce the triglyceride (TG) in the hypertrophic myocardium while reducing the lactate (LD) content. Molecular mechanistic studies showed that VA up-regulated the expression of peroxisome proliferator-activated receptor-α (PPARα) and downstream FAO-related genes including CD36, CPT1A, EHHADH, and MCAD. VA reduced the expression of ENO1 and PDK4, the key enzymes in glycolysis. Meanwhile, VA improved the pyruvate-lactate axis and promoted the aerobic oxidation of pyruvate by inhibiting LDAH and MCT4. MD simulations confirmed that VA can bind with the F273 site of PPARα, which proposes VA as a potential activator of the PPARα. CONCLUSION Our results demonstrated that VA might be a potent activator for the PPARα-mediated pathway. VA directly targets the PPARα and subsequently promotes energy metabolism to attenuate PMH, which can be applied as a potentially effective drug for the treatment of HF.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junjun Li
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangdong 510006, China..
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangdong 510006, China..
| | - Yong Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
32
|
Miyata R, Suzuki M, Okazaki Y, Abe D, Nakajima Y. Peroxisome Proliferator-Activated Receptor-Gamma Activation by an Active Compound in Lythrum anceps (Koehne) Makino. J Cell Biochem 2025; 126:e70009. [PMID: 39980354 DOI: 10.1002/jcb.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Lythrum anceps (Koehne) Makino (Japanese common name: "Misohagi") is an edible plant belonging to the Lythraceae family. It is mainly distributed in Asia, Northern Africa, and Europe. Plants of the genus Lythrum exhibit a broad range of biological activities including anti-inflammatory and antimicrobial activities. Because of this, the plants are used in traditional medicine to treat hemorrhage, infected wounds, and dysentery. The activation of peroxisome proliferator-activated receptor-gamma (PPARγ) is an effective target for improving insulin resistance and anti-inflammatory activity. However, PPARγ activation by the genus Lythrum remains unclear. Aiming to evaluate PPARγ activation by L. anceps, we generated a reporter cell line using an artificial chromosome vector that stably expresses dual-color beetle luciferases. Dual-color real-time bioluminescence monitoring revealed marked PPARγ activation in L. anceps extracts. Moreover, ellagic acid was identified as a PPARγ activator present in L. anceps by a bioassay-guided fractionation approach.
Collapse
Affiliation(s)
- Ryo Miyata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Masanobu Suzuki
- Resources and Environment Division, Kochi Prefectural Industrial Technology Center, Kochi, Kochi, Japan
| | - Yuka Okazaki
- Resources and Environment Division, Kochi Prefectural Industrial Technology Center, Kochi, Kochi, Japan
| | - Daigo Abe
- Western Region Agricultural Research Center, National Agricultural and Food Research Organization (NARO), Zentsuji, Kagawa, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| |
Collapse
|
33
|
Shan X, Li D, Yin H, Tao W, Zhou L, Gao Y, Xing C, Zhang C. Recent Insights on the Role of Nuclear Receptors in Alzheimer's Disease: Mechanisms and Therapeutic Application. Int J Mol Sci 2025; 26:1207. [PMID: 39940973 PMCID: PMC11818835 DOI: 10.3390/ijms26031207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad array of biological processes, including inflammation, lipid metabolism, cell proliferation, and apoptosis. Among the diverse family of NRs, peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), liver X receptor (LXR), farnesoid X receptor (FXR), retinoid X receptor (RXR), and aryl hydrocarbon receptor (AhR) have garnered significant attention for their roles in neurodegenerative diseases, particularly Alzheimer's disease (AD). NRs influence the pathophysiology of AD through mechanisms such as modulation of amyloid-beta (Aβ) deposition, regulation of inflammatory pathways, and improvement of neuronal function. However, the dual role of NRs in AD progression, where some receptors may exacerbate the disease while others offer therapeutic potential, presents a critical challenge for their application in AD treatment. This review explores the functional diversity of NRs, highlighting their involvement in AD-related processes and discussing the therapeutic prospects of NR-targeting strategies. Furthermore, the key challenges, including the necessity for the precise identification of beneficial NRs, detailed structural analysis through molecular dynamics simulations, and further investigation of NR mechanisms in AD, such as tau pathology and autophagy, are also discussed. Collectively, continued research is essential to clarify the role of NRs in AD, ultimately facilitating their potential use in the diagnosis, prevention, and treatment of AD.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dawei Li
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huihui Yin
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenwen Tao
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lele Zhou
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Gao
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengjie Xing
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Caiyun Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
34
|
Wang C, Lv T, Jin B, Li Y, Fan Z. Regulatory role of PPAR in colorectal cancer. Cell Death Discov 2025; 11:28. [PMID: 39875357 PMCID: PMC11775197 DOI: 10.1038/s41420-025-02313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors in the digestive system, and the majority of patients are found to be in advanced stages, which is a burden to human health all over the world. Moreover, in recent years, CRC has been progressively becoming younger, with an increasing incidence mainly among patients <50 years old. Despite the increase in awareness of CRC and the continuous improvement of medical treatment nowadays, the challenge of CRC still needs to be conquered. By now, the pathogenesis of CRC is complex and not fully understood. With the deepening of research, it has been revealed that PPARs, as a transcription factor, are inextricably linked to CRC. This article outlines the mechanisms by which PPARs are involved in CRC development. An in-depth understanding of the pathways related to PPARs may provide new ways of developing effective therapies for CRC with PPARs as potential targets.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Tingcong Lv
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China.
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
35
|
Chen F, Liu Q, Ma L, Yan C, Zhang H, Zhou Z, Yi W. Identification of Novel Organo-Se BTSA-Based Derivatives as Potent, Reversible, and Selective PPARγ Covalent Modulators for Antidiabetic Drug Discovery. J Med Chem 2025; 68:819-831. [PMID: 39705161 DOI: 10.1021/acs.jmedchem.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Recent studies have identified selective peroxisome proliferator-activated receptor γ (PPARγ) modulators, which synergistically engage in the inhibition mechanism of PPARγ-Ser273 phosphorylation, as a promising approach for developing safer and more effective antidiabetic drugs. Herein, we present the design, synthesis, and evaluation of a new class of organo-Se compounds, namely, benzothiaselenazole-1-oxides (BTSAs), acting as potent, reversible, and selective PPARγ covalent modulators. Notably, 2n, especially (R)-2n, displayed a high binding affinity and superior antidiabetic effects with diminished side effects. This is mainly because it can reversibly form a unique covalent bond with the Cys285 residue in PPARγ-LBD. Further mechanistic investigations revealed that it manifested such desired pharmacological profiles primarily by effectively suppressing PPARγ-Ser273 phosphorylation, enhancing glucose metabolism, and selectively upregulating the expression of insulin-sensitive genes. Collectively, our results suggest that (R)-2n holds promise as a lead compound for treating T2DM and also provides an innovative reversible covalent warhead reference for future covalent drug design.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Cuishi Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
36
|
Masyita A, Hardinasinta G, Astuti AD, Firdayani F, Mayasari D, Hori A, Nisha INA, Nainu F, Kuraishi T. Natural pigments: innovative extraction technologies and their potential application in health and food industries. Front Pharmacol 2025; 15:1507108. [PMID: 39845791 PMCID: PMC11750858 DOI: 10.3389/fphar.2024.1507108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries. Special emphasis is placed on emerging technologies for natural pigment extraction (thermal technologies, non-thermal technologies, and supercritical fluid extraction), their pharmacological effects, and their potential application in intelligent food packaging and as food colorants. Natural pigments show several pharmaceutical prospects. For example, delphinidin (30 µM) significantly inhibited the growth of three cancer cell lines (B16-F10, EO771, and RM1) by at least 90% after 48 h. Furthermore, as an antioxidant agent, fucoxanthin at the highest concentration (50 μg/mL) significantly increased the ratio of glutathione to glutathione disulfide (p < 0.05). In the food industry, natural pigments have been used to improve the nutritional value of food without significantly altering the sensory experience. Moreover, the use of natural pH-sensitive pigments as food freshness indicators in intelligent food packaging is a cutting-edge technological advancement. This innovation could provide useful information to consumers, increase shelf life, and assist in evaluating the quality of packaged food by observing color variations over time. However, the use of natural pigments presents certain challenges, particularly regarding their stability and higher production costs compared to synthetic pigments. This situation underscores the need for further investigation into alternative pigment sources and improved stabilization methods. The instability of these natural pigments emphasizes their tendency to degrade and change color when exposed to various external conditions, including light, oxygen, temperature fluctuations, pH levels, and interactions with other substances in the food matrix.
Collapse
Affiliation(s)
- Ayu Masyita
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Gemala Hardinasinta
- Department of Agricultural Engineering, Faculty of Agricultural, Hasanuddin University, Makassar, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Dian Mayasari
- Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ira Nur Ainun Nisha
- Department of Biological Sciences, Faculty of Teacher Training and Education, Muslim Maros University, Maros, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
37
|
Ding Y, Jie K, Xin L, Shao B. Astragaloside IV plays a neuroprotective role by promoting PPARγ in cerebral ischemia-reperfusion rats. Behav Brain Res 2025; 476:115267. [PMID: 39341463 DOI: 10.1016/j.bbr.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) usually occurs during the treatment phase of ischemic disease, which is closely related to high morbidity and mortality. Promoting neurogenesis and synaptic plasticity are effective neural recovery strategies for CIRI. Astragaloside IV (AS-IV) has been shown to play a neuroprotective role in some neurological diseases. In the current study, we evaluated the effect and possible mechanism of AS-IV in CIRI rats. METHODS The middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats to simulate the occurrence of human CIRI. First, we determined the cerebral injury on the 1st, 3rd, 5th and 7th day after cerebral ischemia-reperfusion (I/R) surgery by neurological deficit detection, TTC staining, TUNEL staining and Western blot analysis. Furthermore, rats were pre administered with AS-IV and then subjected to cerebral I/R surgery. Brains were collected on the 3rd day to evaluate the neuroprotective effect of AS-IV. RESULTS Our results showed that on the 3rd day after I/R, the neurological impairment score and infarct volume were highest, the levels of apoptosis and expression of Caspase3 and Bax reached the peak. AS-IV treatment apparently attenuated neurological dysfunction, reduced infarct volume and pathological damage, promoted the neurogenesis, and alleviated the pathological damage caused by cerebral I/R involved in thickening and blurring of synaptic membranes, reduction of microtubules and synaptic vesicles, and loss of synaptic cleft. Our study also showed that AS-IV promoted the transcription and expression of the peroxisome proliferators-activated receptors γ (PPARγ) and brain-derived neurotrophic factor (BDNF), increased the expression of phosphorylation of tyrosine kinase receptor B (TrkB) and downstream PI3K/Akt/mTOR pathway proteins. Notably, when GW9662, an inhibitor of PPARγ was administered with AS-IV, the neuroprotective effect of AS-IV was reduced. CONCLUSIONS These findings suggested that AS-IV has neuroprotective function in CIRI rats, and its molecular mechanism may depend on the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt signalling pathway activated by PPARγ. AS-IV could be an effective therapeutic drug candidate for CIRI treatment.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life Science, Northwest Normal University, Lanzhou 730000, China
| | - Kang Jie
- School of Life Science, Northwest Normal University, Lanzhou 730000, China
| | - Liu Xin
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Baoping Shao
- School of Life Science, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
38
|
Luo X, Zhang N, Liu Y, Du B, Wang X, Zhao T, Liu B, Zhao S, Qiu J, Wang G. Resolving the developmental mechanisms of cardiac microthrombosis of SARS-CoV-2 based on single-cell transcriptome analysis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:103-115. [PMID: 39470924 DOI: 10.1007/s11427-023-2624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 11/01/2024]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) developed into a global health emergency. Systemic microthrombus caused by SARS-CoV-2 infection is a common complication in patients with COVID-19. Cardiac microthrombosis as a complication of SARS-CoV-2 infection is the primary cause of cardiac injury and death in patietns with severe COVID-19. In this study, we performed single-cell sequencing analysis of the right ventricular free wall tissue from healthy donors, patients who died during the hypercoagulable period of characteristic coagulation abnormality (CAC), and patients who died during the fibrinolytic period of CAC. We collected 61,187 cells enriched in 24 immune cell subsets and 13 cardiac-resident cell subsets. We found that in the course of SARS-CoV-2 infected heart microthrombus, MYO1EhighRASGEF1Bhighmonocyte-derived macrophages promoted hyperactivation of the immune system and initiated the extrinsic coagulation pathway by activating chemokines CCL3, CCL5. This series of events is the main cause of cardiac microthrombi following SARS-CoV-2 infection. In a SARS-CoV-2 infected heart microthrombus, excessive immune activation is accompanied by an increase in cellular iron content, which in turn promotes oxidative stress and intensifies intercellular competition. This induces cells to alter their metabolic environment, resulting in increased sugar uptake via the glycosaminoglycan synthesis pathway. In addition, high levels of reactive oxygen species generated by elevated iron levels promote increased endogenous malondialdehyde synthesis in a subpopulation of cardiac endothelial cells. This exacerbates endothelial cell dysfunction and exacerbates the coagulopathy process.
Collapse
Affiliation(s)
- Xizi Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
- College of Mathematics, Jilin University, Changchun, 130021, China
| | - Yuntao Liu
- Bioinformatic Lab, School of Mathematics, Shandong University, Jinan, 250100, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
| | - Tianxu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
| | - Bingqiang Liu
- Bioinformatic Lab, School of Mathematics, Shandong University, Jinan, 250100, China
| | - Shishun Zhao
- College of Mathematics, Jilin University, Changchun, 130021, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China.
| |
Collapse
|
39
|
Abdel-Dayem SIA, Otify AM, Iannotti FA, Saber FR, Moriello AS, Giovannuzzi S, Świątek Ł, Bonardi A, Gratteri P, Skalicka-Woźniak K, Supuran CT. Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors. Bioorg Chem 2025; 154:108032. [PMID: 39672074 DOI: 10.1016/j.bioorg.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO2 hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
40
|
Mahmoudi A, Butler AE, Orekhov AN, Jamialahmadi T, Sahebkar A. Statins as a Potential Treatment for Non-alcoholic Fatty Liver Disease: Target Deconvolution using Protein-protein Interaction Network Analysis. Curr Med Chem 2025; 32:1355-1377. [PMID: 37644746 DOI: 10.2174/0929867331666230829164832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The hallmark of non-alcoholic fatty liver disease (NAFLD) is aberrant buildup of triglycerides (TGs) in hepatocytes. Many genes promote NAFLD development. Using bioinformatics tools, we investigated the possible effect of statins on genes involved in NAFLD progression. METHODS Protein interactions of statins and NAFLD were searched in gene-drug and gene-disease databases. A Protein-Protein interaction (PPI) network was constructed to find hub genes and Molecular Complex Detection (MCODE) of NAFLD-related genes. Shared protein targets between protein targets of statins and NAFLD-associated genes were identified. Next, targets of each statin were assayed with all modular clusters in the MCODEs related to NAFLD. Biological process and pathway enrichment analysis for shared proteins was performed. RESULTS Screening protein targets for conventional statins and curated NAFLD-related genes identified 343 protein targets and 70 genes, respectively. A Venn diagram of NAFLD-related genes and protein targets of statins showed 24 shared proteins. The biological pathways on KEGG enrichment associated with the 24 shared protein sets were evaluated and included cytokine-cytokine receptor interaction, adipocytokine, PPAR, TNF and AMPK signaling pathways. Gene Ontology analysis showed major involvement in lipid metabolic process regulation and inflammatory response. PPI network analysis of 70 protein targets indicated 13 hub genes (PPARA, IL4, CAT, LEP, SREBF1, PRKCA, CYP2E1, NFE2L2, PTEN, NR1H4, ADIPOQ, GSTP1 and TGFB1). Comparing all seven statins with the three MCODE clusterings and 13 hub genes revealed that simvastatin as the most associated statin with NAFLD. CONCLUSION Simvastatin has the most impact on NAFLD-related genes versus other statins.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Department of Medical Sciences, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Tannaz Jamialahmadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Zhou W, Chen H, Chen X, Gao J, Ji W. Recent advances in research on common targets of neurological and sex hormonal influences on asthma. Clin Transl Allergy 2025; 15:e70022. [PMID: 39800672 PMCID: PMC11725405 DOI: 10.1002/clt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Asthma is currently one of the most common of respiratory diseases, severely affecting the lives of patients. With the in-depth study of the role of the nervous system and sex hormones on the development of asthma, it has been found that the nervous system and sex hormones are related to each other in the pathway of asthma. OBJECTIVE To investigate the effects of sex hormones and the nervous system on the development of asthma. METHODS In this review, we searched for a large number of relevant literature to elucidate the unique mechanisms of sex hormones and the nervous system on asthma development, and summarized several common targets in the pathways of sex hormones and the nervous system on asthma. CONCLUSION We summarize several common important targets in the pathways of action of sex hormones and the nervous system in asthma, provide new directions and ideas for asthma treatment, and discuss current therapeutic limitations and future possibilities. Finally, the article predicts future applications of several important targets in asthma therapy.
Collapse
Affiliation(s)
- Wenting Zhou
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huan Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xinyu Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Gao
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Wenting Ji
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
42
|
Li T, Xiong Z, Rong W, Yang Q, Chen Y, Zhao H, Liu Q, Song J, Wang W, Liu Y, Wang X, Liu S. Effects of exposure to 17α-methyltestosterone on hepatic lipid metabolism in Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110041. [PMID: 39278608 DOI: 10.1016/j.cbpc.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to investigate the effects of 17α-Methyltestosterone (MT) on hepatic lipid metabolism in Gobiocypris rarus. G. rarus was exposed to varying concentrations of MT (0, 25, 50, and 100 ng/L) for durations of 7, 14, and 21 d. Biochemical and transcriptomic analyses were conducted using methods, such as ELISA, RT-qPCR, Western Blotting, and RNA-seq, to decipher the key signals and molecular mechanisms triggered by MT in vivo. The results revealed that MT induced hepatomegaly in G. rarus and markedly increased the hepatic steatosis index (HSI). After 14 d of exposure, significant increase in PPARγ mRNA expression was observed, whereas after 21 d, PPARα mRNA expression was significantly reduced. The expression pattern of SREBP1C mRNA initially decreased before increasing, mirroring the trend observed for SREBP1C protein expression. Furthermore, MT increased the levels of key lipid synthesis enzymes, including HSL, CPT1, GPAT, and FAS, thereby fostering lipid accumulation. RNA-seq analysis revealed that MT modulated hepatic bile acid metabolism via the PPAR pathway, consequently influencing cholesterol and lipid metabolism. Considering the differential metabolic pathways of MT across genders, it is postulated that MT may undergo aromatization to estrogen within G. rarus, thereby exerting estrogenic effects. These findings provide crucial experimental insights into the detrimental effects of MT in aquatic settings, underscoring its implications for safeguarding aquatic organisms and human health.
Collapse
Affiliation(s)
- Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiong Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yue Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jing Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China.
| | - Shaozhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China.
| |
Collapse
|
43
|
Wu CJ, Liu H, Tu LJ, Hu JY. Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature. World J Diabetes 2024; 15:2360-2369. [PMID: 39676812 PMCID: PMC11580599 DOI: 10.4239/wjd.v15.i12.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Familial partial lipodystrophy disease (FPLD) is a collection of rare genetic diseases featuring partial loss of adipose tissue. However, metabolic difficulties, such as severe insulin resistance, diabetes, hypertriglyceridemia, and hypertension frequently occur alongside adipose tissue loss, making it susceptible to misdiagnosis and delaying effective treatment. Numerous genes are implicated in the occurrence of FPLD, and genetic testing has been for conditions linked to single gene mutation related to FPLD. Reviewing recent reports, treatment of the disease is limited to preventing and improving complications in patients. CASE SUMMARY In 2017, a 31-year-old woman with diabetes, hypertension and hypertriglyceridemia was hospitalized. We identified a mutation in her peroxisome proliferator-activated receptor gamma (PPARG) gene, Y151C (p.Tyr151Cys), which results in a nucleotide substitution residue 452 in the DNA-binding domain (DBD) of PPARG. The unaffected family member did not carry this mutation. Pioglitazone, a PPARG agonist, improved the patient's responsiveness to hypoglycemic and antihypertensive therapy. After one year of treatment in our hospital, the fasting blood glucose and glycosylated hemoglobin of the patient were close to normal. CONCLUSION We report a rare PPARG mutation, Y151C, which is located in the DBD of PPARG and leads to FPLD, and the preferred agent is PPARG agonists. We then summarized clinical phenotypic characteristics of FPLD3 caused by PPARG gene mutations, and clarified the relationship between different mutations of PPARG gene and the clinical manifestations of this type of FPLD. Additionally, current treatments for FPLD caused by PPARG mutations are reviewed.
Collapse
Affiliation(s)
- Chao-Jun Wu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Hao Liu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Li-Juan Tu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jiong-Yu Hu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
44
|
Ji H, Zhu X, Qiu J, Zhang S, Li J, Liu L, Li X, Muneeb M. Milk fat globule membranes ameliorate diet-induced obesity in mice by modulating glucolipid metabolism, body inflammation, and oxidative stress. Food Funct 2024; 15:11903-11917. [PMID: 39584542 DOI: 10.1039/d4fo04072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This study aimed to explore the lipid-lowering effect and the mechanism of action of the milk fat globule membrane (MFGM) in obese mice. All findings indicated that MFGM supplementation impeded weight gain in mice with obesity. qPCR and western blot analysis further revealed that MFGM could reduce lipid deposition and improve lipid metabolism by downregulating the expression levels of Fas, Scd1, PPARγ, and Srebp-1c and increasing the expression levels of Mcad, Cpt-1c, and PPAR-α. MFGM also reduced glucose metabolism disorders by downregulating the expression levels of Pepck and G6pase and upregulating the expression levels of PK and GK. MFGM can reduce the expression levels of TNF-α, IL-6, and IL-1β, thus reducing inflammation in the body. In addition, MFGM also increased the expression of the Nrf2 gene, strengthening the antioxidant enzymes' (GSH, CAT, and SOD) vitality, which strengthened the body's defenses against oxidative stress. In summary, our experiment demonstrated that the MFGM has the potential to treat obesity by controlling the metabolism of fat and glucose, thereby reducing oxidative stress and inflammation, which provides a theoretical foundation for the development of products related to the treatment of obesity.
Collapse
Affiliation(s)
- Haowen Ji
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Xiaojun Zhu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Jiaxin Qiu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Shouwen Zhang
- Postdoctoral Research Station of Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Muhammad Muneeb
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| |
Collapse
|
45
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2678-2691. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
46
|
Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, Cai G, Chen X, Hong Q. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail 2024; 46:2295431. [PMID: 38174742 PMCID: PMC10769532 DOI: 10.1080/0886022x.2023.2295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guannan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
47
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
48
|
Małodobra-Mazur M, Ołdakowska M, Dobosz T. Exploring PPAR Gamma and PPAR Alpha's Regulation Role in Metabolism via Epigenetics Mechanism. Biomolecules 2024; 14:1445. [PMID: 39595621 PMCID: PMC11591816 DOI: 10.3390/biom14111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear receptors. To date, three types of PPARs, namely PPARα, PPARδ, and PPARγ, have been identified, demonstrating co-expression across numerous tissues. PPARγ is primarily distributed in adipose tissue, the colon, the immune system, and the retina, while PPARα is predominantly expressed in metabolic tissues such as brown adipose tissue, the liver, and the kidneys. Both PPARγ and PPARα play crucial roles in various cellular processes. Recent data suggest that the PPAR family, among other mechanisms, might also be regulated by epigenetic mechanisms. Our recent studies, alongside numerous others, have highlighted the pivotal roles of DNA methylation and histone modifications in the regulation of PPARγ and PPARα, implicating them in the deterioration of metabolic disorders via epigenetic mechanisms. This still not fully understood mechanism of regulation in the nuclear receptors family has been summarized and described in the present paper. The present review summarizes the available data on PPARγ and PPARα regulation via epigenetic mechanisms, elucidating the link between the development of metabolic disorders and the dysregulation of PPARγ and PPARα resulting from these mechanisms.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Science, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 51-367 Wroclaw, Poland; (M.O.); (T.D.)
| | | | | |
Collapse
|
49
|
Feng L, He B, Xia J, Wang Z. Untargeted and Targeted Lipidomics Unveil Dynamic Lipid Metabolism Alterations in Type 2 Diabetes. Metabolites 2024; 14:610. [PMID: 39590846 PMCID: PMC11596168 DOI: 10.3390/metabo14110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with a growing body of evidence suggesting the central role of lipid metabolism in its pathogenesis. However, the dynamic changes in lipid metabolism across different stages of T2DM remain understudied. OBJECTIVE This study aimed to elucidate the temporal alterations in lipid metabolism in T2DM using an integrated lipidomics approach. METHOD Serum samples from 155 subjects were analyzed using LC-MS-based lipidomics, including untargeted and targeted approaches. RESULTS We identified significant alterations in 44 lipid metabolites in newly diagnosed T2DM patients and 29 in high-risk individuals, compared with healthy controls. Key metabolic pathways such as sphingomyelin, phosphatidylcholine, and sterol ester metabolism were disrupted, highlighting the involvement of insulin resistance and oxidative stress in T2DM progression. Moreover, 13 lipid metabolites exhibited diagnostic potential for T2DN, showing consistent trends of increase or decrease as the disease progressed. CONCLUSION Our findings underscore the importance of lipid metabolism in T2D development and identify potential lipid biomarkers for early diagnosis and monitoring of disease progression, which contribute to paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Li Feng
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China;
| | - Bingshu He
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China;
| | - Jianzhen Xia
- School Hospital, Minzu University of China, Beijing 100081, China;
| | - Zhonghua Wang
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China;
| |
Collapse
|
50
|
Li Z, Wei H, Li R, Wu B, Xu M, Yang X, Zhang Y, Liu Y. The effects of antihypertensive drugs on glucose metabolism. Diabetes Obes Metab 2024; 26:4820-4829. [PMID: 39140233 DOI: 10.1111/dom.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Abnormal glucose metabolism is a common disease of the endocrine system. The effects of drugs on glucose metabolism have been reported frequently in recent years, and since abnormal glucose metabolism increases the risk of microvascular and macrovascular complications, metabolic disorders, and infection, clinicians need to pay close attention to these effects. A variety of common drugs can affect glucose metabolism and have different mechanisms of action. Hypertension is a common chronic cardiovascular disease that requires long-term medication. Studies have shown that various antihypertensive drugs also have an impact on glucose metabolism. Among them, α-receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers can improve insulin resistance, while β-receptor blockers, thiazides and loop diuretics can impair glucose metabolism. The aim of this review was to discuss the mechanisms underlying the effects of various antihypertensive drugs on glucose metabolism in order to provide reference information for rational clinical drug use.
Collapse
Affiliation(s)
- Zhe Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Baofeng Wu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ming Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xifeng Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Clinical Research Center For Metabolic Diseases Of Shanxi Medical University, Taiyuan, China
| |
Collapse
|