1
|
Pang X, Xu W, Liang J, Liu Y, Li H, Chen L. Research progress and perspectives of dual-target inhibitors. Eur J Med Chem 2025; 289:117453. [PMID: 40024166 DOI: 10.1016/j.ejmech.2025.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The occurrence and development of diseases are complex, and single-target drugs that affect only a single target or pathway often fail to achieve the expected therapeutic effect. The simultaneous effect on two key targets could not only increase patient tolerance but also accelerate disease remission. Dual-target inhibitors have already been studied the most intensively in the development of dual-target drugs. This article briefly introduces the function of drug therapy targets, and mainly summarizes the design strategies and research progress of dual-target inhibitors in neurodegenerative diseases, infectious diseases, metabolic diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Liu X, Zheng S, Ge Q, Cao T, Zeng F, Tian F, He Z, Gao Z, Wu X. Rhodium-Catalyzed C(sp 2)-H Activation and [3+3] Annulation: Accessing Pyrano[3,2- c]chromene-2,5-diones as TASK-3 Activators. J Org Chem 2025; 90:4646-4651. [PMID: 40116176 DOI: 10.1021/acs.joc.5c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Herein, an efficient Rh-catalyzed C-H activation/annulation between α,β-unsaturated amides and coumarin-derived iodonium ylides has been developed, affording novel pyrano[3,2-c]chromene-2,5-diones and analogues in high yields. Most products could be easily isolated by precipitation in ethanol, followed by simple filtration. Additionally, this protocol demonstrated the benefits of environmentally friendly conditions, air compatibility, good functional group compatibility, scale-up synthesis with low catalyst loading, and a recyclable Rh catalyst. Importantly, compounds 3m and 3w demonstrated moderate agonist activity on the TASK-3 channel, with I/I0 values of 1.7650 ± 0.1058 and 1.400 ± 0.0589, respectively.
Collapse
Affiliation(s)
- Xueqing Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Shuoshuo Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qionglin Ge
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Tian Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Fengmei Zeng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zhiyue He
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaobing Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaowei Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Suleiman M, Almalki FA, Ben Hadda T, Kawsar SMA, Chander S, Murugesan S, Bhat AR, Bogoyavlenskiy A, Jamalis J. Recent Progress in Synthesis, POM Analyses and SAR of Coumarin-Hybrids as Potential Anti-HIV Agents-A Mini Review. Pharmaceuticals (Basel) 2023; 16:1538. [PMID: 38004404 PMCID: PMC10675815 DOI: 10.3390/ph16111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), one of the deadliest pandemic diseases. Various mechanisms and procedures have been pursued to synthesise several anti-HIV agents, but due to the severe side effects and multidrug resistance spawning from the treatment of HIV/AIDS using highly active retroviral therapy (HAART), it has become imperative to design and synthesise novel anti-HIV agents. Literature has shown that natural sources, particularly the plant kingdom, can release important metabolites that have several biological, mechanistic and structural representations similar to chemically synthesised compounds. Certainly, compounds from natural and ethnomedicinal sources have proven to be effective in the management of HIV/AIDS with low toxicity, fewer side effects and affordability. From plants, fungi and bacteria, coumarin can be obtained, which is a secondary metabolite and is well known for its actions in different stages of the HIV replication cycle: protease, integrase and reverse transcriptase (RT) inhibition, cell membrane fusion and viral host attachment. These, among other reasons, are why coumarin moieties will be the basis of a good building block for the development of potent anti-HIV agents. This review aims to outline the synthetic pathways, structure-activity relationship (SAR) and POM analyses of coumarin hybrids with anti-HIV activity, detailing articles published between 2000 and 2023.
Collapse
Affiliation(s)
- Mustapha Suleiman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
- Department of Chemistry, Sokoto State University, Birnin Kebbi Road, Sokoto 852101, Nigeria
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida 201313, India;
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani Campus, Pilani 333031, India;
| | - Ajmal R. Bhat
- Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, India;
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
4
|
Vanangamudi M, Palaniappan S, Kathiravan MK, Namasivayam V. Strategies in the Design and Development of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Viruses 2023; 15:1992. [PMID: 37896769 PMCID: PMC10610861 DOI: 10.3390/v15101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, Madhya Pradesh, India;
| | - Senthilkumar Palaniappan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India;
- Center for Active Pharmaceutical Ingredients, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India;
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
- LIED, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
5
|
Tocco G, Canton S, Laus A, Caboni P, Le Grice SFJ, Tramontano E, Esposito F. Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules 2023; 28:6700. [PMID: 37764476 PMCID: PMC10537185 DOI: 10.3390/molecules28186700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).
Collapse
Affiliation(s)
- Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Serena Canton
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Stuart F. J. Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA;
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| |
Collapse
|
6
|
Sanna C, D’Abrosca B, Fiorentino A, Giammarino F, Vicenti I, Corona A, Caredda A, Tramontano E, Esposito F. HIV-1 Integrase Inhibition Activity by Spiroketals Derived from Plagius flosculosus, an Endemic Plant of Sardinia (Italy) and Corsica (France). Pharmaceuticals (Basel) 2023; 16:1118. [PMID: 37631033 PMCID: PMC10457970 DOI: 10.3390/ph16081118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In this work we investigated, for the first time, the effect of Plagius flosculosus (L.) Alavi & Heywood, a Sardinian-Corsican endemic plant, on HIV-1 integrase (IN) activity. The phytochemical analysis of the leaves chloroform extract led us to isolate and characterize three compounds (SPK1, SPK2, and SPK3) belonging to the spiroketals, a group of naturally occurring metabolites of phytochemical relevance with interesting biological properties. Due to their structural diversity, these cyclic ketals have attracted the interest of chemists and biologists. SPK1, SPK2, and SPK3 were evaluated here for their ability to inhibit HIV-1 integrase activity in biochemical assays. The results showed that all the compounds inhibited HIV-1 IN activity. In particular, the most active one was SPK3, which interfered in a low molecular range (IC50 of 1.46 ± 0.16 µM) with HIV-1 IN activity in the presence/absence of the LEDGF cellular cofactor. To investigate the mechanism of action, the three spiroketals were also tested on HIV-1 RT-associated Ribonuclease H (RNase H) activity, proving to be active in inhibiting this function. Although SPK3 was unable to inhibit viral replication in cell culture, it promoted the IN multimerization. We hypothesize that SPK3 inhibited HIV-1 IN through an allosteric mechanism of action.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Brigida D’Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Federica Giammarino
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.G.); (I.V.)
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.G.); (I.V.)
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Italy; (A.C.); (A.C.); (E.T.)
| |
Collapse
|
7
|
Corona A, Meleddu R, Delelis O, Subra F, Cottiglia F, Esposito F, Distinto S, Maccioni E, Tramontano E. 5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action. Front Cell Infect Microbiol 2023; 13:1193280. [PMID: 37424782 PMCID: PMC10328743 DOI: 10.3389/fcimb.2023.1193280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Olivier Delelis
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Frederic Subra
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
8
|
Zhu M, Shan Q, Ma L, Dong B, Wang J, Zhang G, Wang M, Zhou J, Cen S, Wang Y. Structure based design and evaluation of benzoheterocycle derivatives as potential dual HIV-1 protease and reverse transcriptase inhibitors. Eur J Med Chem 2023; 246:114981. [PMID: 36481598 DOI: 10.1016/j.ejmech.2022.114981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
The development of dual inhibitors of HIV-1 protease and reverse transcriptase is an attractive strategy for multi-target therapeutic of AIDS, which may be privileged in delaying the occurrence of drug resistance. We herein designed a novel kind of dual inhibitors with benzofuran or indole cores. Biological results showed that a number of inhibitors displayed significant activity against both HIV-1 protease and reverse transcriptase. Among which, inhibitor 10f exhibited a good correlation with an approximate ratio of 1: 2 between the two enzymes. Furthermore, the dual inhibitors illustrated similar potency against both the wild-type virus and drug-resistant mutant. In addition, the molecular dynamic simulation studies verified the dual actions of such inhibitors.
Collapse
Affiliation(s)
- Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Qi Shan
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Kumar A, Wahan SK, Virendra SA, Chawla PA. Recent Advances on the Role of Nitrogen‐Based Heterocyclic Scaffolds in Targeting HIV through Reverse Transcriptase Inhibition. ChemistrySelect 2022. [DOI: 10.1002/slct.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankur Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| |
Collapse
|
10
|
Hybrid Molecules as Potential Drugs for the Treatment of HIV: Design and Applications. Pharmaceuticals (Basel) 2022; 15:ph15091092. [PMID: 36145313 PMCID: PMC9502546 DOI: 10.3390/ph15091092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major problem for humanity because HIV is constantly changing and developing resistance to current drugs. This necessitates the development of new anti-HIV drugs that take new approaches to combat an ever-evolving virus. One of the promising alternatives to combination antiretroviral therapy (cART) is the molecular hybrid strategy, in which two or more pharmacophore units of bioactive scaffolds are combined into a single molecular structure. These hybrid structures have the potential to have higher efficacy and lower toxicity than their parent molecules. Given the potential advantages of the hybrid molecular approach, the development and synthesis of these compounds are of great importance in anti-HIV drug discovery. This review focuses on the recent development of hybrid compounds targeting integrase (IN), reverse transcriptase (RT), and protease (PR) proteins and provides a brief description of their chemical structures, structure–activity relationship, and binding mode.
Collapse
|
11
|
Lai JR, Yin FD, Guo QS, Yuan F, Nian BF, Zhang M, Wu ZB, Zhang HB, Tang E. Silver-catalysed three-component reactions of alkynyl aryl ketones, element selenium, and boronic acids leading to 3-organoselenylchromones. Org Biomol Chem 2022; 20:5104-5114. [PMID: 35703142 DOI: 10.1039/d2ob00696k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ag-catalysed three-component reaction of alkynyl aryl ketones bearing an ortho-methoxy group, element selenium, and arylboronic acid, providing a facile route to selenofunctionalized chromone products has been developed. This protocol features high efficiency and high regioselectivity, and the use of selenium powder as the selenium source. Mechanistic experiments indicated that the combined oxidative effect of (bis(trifluoroacetoxy)iodo)benzene and oxygen in the air pushes the catalytic redox cycle of the Ag catalyst and the phenylselenium trifluoroacetate formed in situ is the key intermediate of the PIFA-mediated 6-endo-electrophilic cyclization and selenofunctionalization reaction of alkynyl aryl ketones.
Collapse
Affiliation(s)
- Jin-Rong Lai
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fu-Dan Yin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qing-Song Guo
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fei Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Bei-Fang Nian
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Ming Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhi-Bang Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 2022; 233:114217. [DOI: 10.1016/j.ejmech.2022.114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
|
13
|
Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis 2022; 9:80-94. [PMID: 35005109 PMCID: PMC8720699 DOI: 10.1016/j.gendis.2021.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by viruses are one of the foremost causes of morbidity and mortality in the world. Although a number of antiviral drugs are currently used for treatment of various kinds of viral infection diseases, there is still no available therapeutic agent for most of the viruses in clinical practice. Coumarin is a chemical compound which is found naturally in a variety of plants, it can also be synthetically produced possessing diverse biological effects. More recently, reports have highlighted the potential role of coumarin derivatives as antiviral agents. This review outlines the advances in coumarin-based compounds against various viruses including human immunodeficiency virus, hepatitis virus, herpes simplex virus, Chikungunya virus and Enterovirus 71, as well as the structure activity relationship and the possible mechanism of action of the most potent coumarin derivatives.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Dehui Kong
- School of Nursing, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yongsheng Liu
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Mingkai Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Corresponding author. Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi Province 710032, PR China.
| |
Collapse
|
14
|
Kang D, Urhan Ç, Wei F, Frutos-Beltrán E, Sun L, Álvarez M, Feng D, Tao Y, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Discovery, optimization, and target identification of novel coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors. Eur J Med Chem 2021; 225:113769. [PMID: 34403976 DOI: 10.1016/j.ejmech.2021.113769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022]
Abstract
Despite significant advances in antiretroviral therapy, acquired immunodeficiency syndrome remains as one of the leading causes of death worldwide. New antiretroviral drugs combined with updated treatment strategies are needed to improve convenience, tolerability, safety, and antiviral efficacy of available therapies. In this work, a focused library of coumarin derivatives was exploited by cell phenotypic screening to discover novel inhibitors of HIV-1 replication. Five compounds (DW-3, DW-4, DW-11, DW-25 and DW-31) showed moderate activity against wild-type and drug-resistant strains of HIV-1 (IIIB and RES056). Four of those molecules were identified as inhibitors of the viral RT-associated RNase H. Structural modification of the most potent DW-3 and DW-4 led to the discovery of compound 8a. This molecule showed increased potency against wild-type HIV-1 strain (EC50 = 3.94 ± 0.22 μM) and retained activity against a panel of mutant strains, showing EC50 values ranging from 5.62 μM to 202 μM. In enzymatic assays, 8a was found to inhibit the viral RNase H with an IC50 of 12.3 μM. Molecular docking studies revealed that 8a could adopt a binding mode similar to that previously reported for other active site HIV-1 RNase H inhibitors.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China.
| | - Çagil Urhan
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
15
|
Sanna C, Marengo A, Acquadro S, Caredda A, Lai R, Corona A, Tramontano E, Rubiolo P, Esposito F. In Vitro Anti-HIV-1 Reverse Transcriptase and Integrase Properties of Punica granatum L. Leaves, Bark, and Peel Extracts and Their Main Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:2124. [PMID: 34685933 PMCID: PMC8539310 DOI: 10.3390/plants10102124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022]
Abstract
In a search for natural compounds with anti-HIV-1 activity, we studied the effect of the ethanolic extract obtained from leaves, bark, and peels of Punica granatum L. for the inhibition of the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) and integrase (IN) LEDGF-dependent activities. The chemical analyses led to the detection of compounds belonging mainly to the phenolic and flavonoid chemical classes. Ellagic acid, flavones, and triterpenoid molecules were identified in leaves. The bark and peels were characterized by the presence of hydrolyzable tannins, such as punicalins and punicalagins, together with ellagic acid. Among the isolated compounds, the hydrolyzable tannins and ellagic acid showed a very high inhibition (IC50 values ranging from 0.12 to 1.4 µM and 0.065 to 0.09 µM of the RNase H and IN activities, respectively). Of the flavonoids, luteolin and apigenin were found to be able to inhibit RNase H and IN functions (IC50 values in the 3.7-22 μM range), whereas luteolin 7-O-glucoside showed selective activity for HIV-1 IN. In contrast, betulinic acid, ursolic acid, and oleanolic acid were selective for the HIV-1 RNase H activity. Our results strongly support the potential of non-edible P. granatum organs as a valuable source of anti-HIV-1 compounds.
Collapse
Affiliation(s)
- Cinzia Sanna
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Stefano Acquadro
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Alessia Caredda
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Roberta Lai
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Angela Corona
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Francesca Esposito
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| |
Collapse
|
16
|
Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:333-369. [PMID: 34567166 PMCID: PMC8457747 DOI: 10.22037/ijpr.2021.115446.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The significant threat to humanity is HIV infection, and it is uncertain whether a definitive treatment or a safe HIV vaccine is. HIV-1 is continually evolving and resistant to commonly used HIV-resistant medications, presenting significant obstacles to HIV infection management. The drug resistance adds to the need for new anti-HIV drugs; it chooses ingenious approaches to fight the emerging virus. Highly Active Antiretroviral Therapy (HAART), a multi-target approach for specific therapies, has proved effective in AIDS treatment. Therefore, it is a dynamic system with high prescription tension, increased risk of medication reactions, and adverse effects, leading to poor compliance with patients. In the HIV-1 lifecycle, two critical enzymes with high structural and functional analogies are reverse transcriptase (RT) and integrase (IN), which can be interpreted as druggable targets for modern dual-purpose inhibitors. Designed multifunctional ligand (DML) is a new technique that recruited many targets to be achieved by one chemical individual. A single chemical entity that acts for multiple purposes can be much more successful than a complex multidrug program. The production of these multifunctional ligands as antiretroviral drugs is valued with the advantage that the viral-replication process may end in two or more phases. This analysis will discuss the RT-IN dual-inhibitory scaffolds' developments documented so far.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
18
|
Zhu M, Shan Q, Ma L, Wen J, Dong B, Zhang G, Wang M, Wang J, Zhou J, Cen S, Wang Y. Design and biological evaluation of cinnamic and phenylpropionic amide derivatives as novel dual inhibitors of HIV-1 protease and reverse transcriptase. Eur J Med Chem 2021; 220:113498. [PMID: 33933756 DOI: 10.1016/j.ejmech.2021.113498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023]
Abstract
Upon the basis of both possible ligand-binding site interactions and the uniformity of key residues in active sites, a novel class of HIV-1 PR/RT dual inhibitors was designed and evaluated. Cinnamic acids or phenylpropionic acids with more flexible chain and smaller steric hindrance were introduced into the inhibitors, giving rise to significant improvement in HIV-1 RT inhibitory activity by one or two orders of magnitude, with comparable or even improved potency against PR at the same time, compared with coumarin anologues in our previous studies. Among these inhibitors, 38d displayed a 19-fold improvement in anti-PR activity with IC50 value of 0.081 nM compared to the control DRV. In addition, inhibitor 38c exhibited an excellent anti-RT IC50 value of 0.43 μM, only a 4.7-fold less potent activity than the control EFV. More significantly, the disparate ratio between HIV-1 PR and RT inhibition became more reasonable with ratio of 1: 10.4, just as 37b. Furthermore, the assays on HIV-1 late stage and early stage supported the rationality of designing dual inhibitors. The SAR data as well as molecular modeling studies provided new insight for further optimization of more potent HIV-1 PR/RT dual inhibitors.
Collapse
Affiliation(s)
- Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jiajia Wen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Xu Z, Chen Q, Zhang Y, Liang C. Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia 2021; 150:104863. [PMID: 33582266 DOI: 10.1016/j.fitote.2021.104863] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS), as a result of human immunodeficiency virus (HIV) infection which leads to severe suppression of immune functions, is an enormous world-wide health threat. The anti-HIV agents are critical for the HIV/AIDS therapy, but the generation of viral mutants and the severe side effects of the anti-HIV agents pose serious hurdles in the treatment of HIV infection, and creat an urgent need to develop novel anti-HIV agents. The plant-derived compounds possess structural and mechanistic diversity, and among them, coumarin-based derivatives have the potential to inhibit different stages in the HIV replication cycle, inclusive of virus-host cell attachment, cell membrane fusion, integration, assembly besides the conventional target like inhibition of the reverse transcriptase, protease, and integrase. Moreover, (+)-calanolide A, a coumarin-based natural product, is a potential anti-HIV agent. Thus, coumarin-based derivatives are useful scaffolds for the development of anti-HIV agents. This review article describes the recent progress in the discovery, structural modification, and structure-activity relationship studies of potent anti-HIV coumarin-based derivatives including natural coumarin compounds, synthetic hybrids, dimers, and other synthetic derivatives covering articles published between 2000 and 2020.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China.
| | - Qingtai Chen
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China
| | - Yan Zhang
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China
| | - Changli Liang
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China.
| |
Collapse
|
21
|
Search for new therapeutics against HIV-1 via dual inhibition of RNase H and integrase: current status and future challenges. Future Med Chem 2021; 13:269-286. [PMID: 33399497 DOI: 10.4155/fmc-2020-0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reverse transcriptase and integrase are key enzymes that play a pivotal role in HIV-1 viral maturation and replication. Reverse transcriptase consists of two active sites: RNA-dependent DNA polymerase and RNase H. The catalytic domains of integrase and RNase H share striking similarity, comprising two aspartates and one glutamate residue, also known as the catalytic DDE triad, and a Mg2+ pair. The simultaneous inhibition of reverse transcriptase and integrase can be a rational drug discovery approach for combating the emerging drug resistance problem. In the present review, the dual inhibition of RNase H and integrase is systematically discussed, including rationality of design, journey of development, advancement and future perspective.
Collapse
|
22
|
Maruca A, Rocca R, Catalano R, Mesiti F, Costa G, Lanzillotta D, Salatino A, Ortuso F, Trapasso F, Alcaro S, Artese A. Natural Products Extracted from Fungal Species as New Potential Anti-Cancer Drugs: A Structure-Based Drug Repurposing Approach Targeting HDAC7. Molecules 2020; 25:E5524. [PMID: 33255661 PMCID: PMC7728054 DOI: 10.3390/molecules25235524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mushrooms can be considered a valuable source of natural bioactive compounds with potential polypharmacological effects due to their proven antimicrobial, antiviral, antitumor, and antioxidant activities. In order to identify new potential anticancer compounds, an in-house chemical database of molecules extracted from both edible and non-edible fungal species was employed in a virtual screening against the isoform 7 of the Histone deacetylase (HDAC). This target is known to be implicated in different cancer processes, and in particular in both breast and ovarian tumors. In this work, we proposed the ibotenic acid as lead compound for the development of novel HDAC7 inhibitors, due to its antiproliferative activity in human breast cancer cells (MCF-7). These promising results represent the starting point for the discovery and the optimization of new HDAC7 inhibitors and highlight the interesting opportunity to apply the "drug repositioning" paradigm also to natural compounds deriving from mushrooms.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Roberta Rocca
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Delia Lanzillotta
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Alessandro Salatino
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
23
|
Velappan AB, Datta D, Ma R, Rana S, Ghosh KS, Hari N, Franzblau SG, Debnath J. 2-Aryl benzazole derived new class of anti-tubercular compounds: Endowed to eradicate mycobacterium tuberculosis in replicating and non-replicating forms. Bioorg Chem 2020; 103:104170. [PMID: 32890990 DOI: 10.1016/j.bioorg.2020.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 11/30/2022]
Abstract
The high mortality rate and the increasing prevalence of Mtb resistance are the major concerns for the Tuberculosis (TB) treatment in this century. To counteract the prevalence of Mtb resistance, we have synthesized 2-aryl benzazole based dual targeted molecules. Compound 9m and 9n were found to be equally active against replicating and non-replicating form of Mtb (MIC(MABA) 1.98 and 1.66 μg/ml; MIC(LORA) 2.06 and 1.59 μg/ml respectively). They arrested the cell division (replicating Mtb) by inhibiting the GTPase activity of FtsZ with IC50 values 45 and 64 μM respectively. They were also capable of kill Mtb in non-replicating form by inhibiting the biosynthesis of menaquinone which was substantiated by the MenG inhibition (IC50 = 11.62 and 7.49 μM respectively) followed by the Vit-K2 rescue study and ATP production assay.
Collapse
Affiliation(s)
- Anand Babu Velappan
- Department of Chemistry, SCBT, SASTRA Deemed to be University, Tamilnadu 613401, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh 177005, India
| | - Natarajan Hari
- NMR Laboratory, SCBT, SASTRA Deemed to be University, Tamilnadu 613401, India
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Joy Debnath
- Department of Chemistry, SCBT, SASTRA Deemed to be University, Tamilnadu 613401, India.
| |
Collapse
|
24
|
Esposito V, Esposito F, Pepe A, Gomez Monterrey I, Tramontano E, Mayol L, Virgilio A, Galeone A. Probing the Importance of the G-Quadruplex Grooves for the Activity of the Anti-HIV-Integrase Aptamer T30923. Int J Mol Sci 2020; 21:ijms21165637. [PMID: 32781637 PMCID: PMC7460552 DOI: 10.3390/ijms21165637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2′-deoxyguanosines have been singly replaced by 8-methyl-2′-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Antonietta Pepe
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Isabel Gomez Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| |
Collapse
|
25
|
Ai Z, Xiao J, Li Y, Guo B, Du Y, Zhao K. Metal-free synthesis of 3-chalcogenyl chromones from alkynyl aryl ketones and diorganyl diselenides/disulfides mediated by PIFA. Org Chem Front 2020. [DOI: 10.1039/d0qo01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3-Selenyl/sulfenyl chromones/thiochromones were conveniently synthesized from the PIFA-mediated reactions between alkynyl aryl ketones bearing an ortho-methoxy/methylthio group and diorganyl diselenides/disulfides.
Collapse
Affiliation(s)
- Zhenkang Ai
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jiaxi Xiao
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yadong Li
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Boying Guo
- Department of Chemistry
- Monell Chemical Senses Center and Laboratory for Research on the Structure of Matter
- University of Pennsylvania
- Philadelphia
- USA
| | - Yunfei Du
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Kang Zhao
- State Key Laboratory of Microbial Technology
- Institute of Microbial Technology
- Shandong University
- Qingdao 266237
- China
| |
Collapse
|
26
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|