1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Chu JC, Tsai KC, Wang TY, Chen TY, Tsai JY, Lee T, Lin MH, Hsieh YSY, Wu CC, Huang WJ. Discovery and biological evaluation of potent 2-trifluoromethyl acrylamide warhead-containing inhibitors of protein disulfide isomerase. Eur J Med Chem 2025; 283:117169. [PMID: 39708767 DOI: 10.1016/j.ejmech.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Protein disulfide isomerase (PDI) regulates multiple protein functions by catalyzing the oxidation, reduction, and isomerization of disulfide bonds. The enzyme is considered a potential target for treating thrombosis. We previously developed a potent PDI inhibitor, CPD, which contains the propiolamide as a warhead targeting cysteine residue in PDI. To address its issues with undesirable off-target effects and weak metabolic stability, we replaced the propiolamide group with various electrophiles. Among these, compound 2d, which contains 2-trifluoromethyl acrylamide exhibited potent PDI inhibition compared to the reference PACMA31. Further structural optimization of compound 2d led to a novel series of 2-trifluoromethyl acrylamide derivatives. Several of these compounds displayed substantially improved enzyme inhibition. Notably, compound 14d demonstrated the strongest inhibition against PDI, with an IC50 value of 0.48 ± 0.004 μM. Additionally, compound 14d was found to exhibit a reversible binding mode with PDI enzyme. Further biological evaluations show that 14d suppressed platelet aggregation and thrombus formation by attenuating GPIIb/IIIa activation without significantly causing cytotoxicity. Altogether, these findings suggest PDI inhibitors could be a potential strategy for anti-thrombosis.
Collapse
Affiliation(s)
- Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ju-Ying Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE-10691, Sweden
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Ogos M, Stary D, Bajda M. Recent Advances in the Search for Effective Anti-Alzheimer's Drugs. Int J Mol Sci 2024; 26:157. [PMID: 39796014 PMCID: PMC11720639 DOI: 10.3390/ijms26010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression. Moreover, these drugs typically target a single pathogenic mechanism, leaving other contributing factors unaddressed. Recent advancements in drug design have led to the development of multi-target-directed ligands (MTDLs), which have gained popularity for their ability to simultaneously target multiple pathogenic mechanisms. This paper focuses on analyzing the activity, mechanism of action, and binding properties of the anti-Alzheimer's MTDLs developed between 2020 and 2024.
Collapse
Affiliation(s)
| | | | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (M.O.); (D.S.)
| |
Collapse
|
4
|
Liu S, Zheng X, Luo Z, Tang C, Hu Y, Peng Q, Mi P, Chen H, Yao X. The synthesis and bioactivity of apigenin derivatives. Fitoterapia 2024; 179:106228. [PMID: 39332505 DOI: 10.1016/j.fitote.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Apigenin, a naturally occurring compound with a flavone core structure, is known for its diverse bioactivities, including anti-inflammation, anti-toxicant, anti-cancer and so on. There has been significant interest in the medicinal chemistry community. To address these challenges, researchers have developed various derivatives of apigenin to address challenges such as poor water-solubility and low intestinal absorption, aiming to enhance the pharmacological activities and pharmacokinetic properties of this compound. OBJECTIVE In recent years, there has been a proliferation of apigenin derivatives with enhanced bioactivity. However, there is a lack of comprehensive reviews on the function-based modification of these derivatives. In this paper, we provide an overview of the apigenin derivatives with varying bioactivities and explored their structure activity relationships. And the functions of different groups of apigenin derivatives were also analyzed. CONCLUSION This review summarized the current achievements that could provide some clues for further study of apigenin-based drugs.
Collapse
Affiliation(s)
- Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan 422000, China
| | - Caihong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yufei Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Bartolić M, Matošević A, Maraković N, Bušić V, Roca S, Vikić-Topić D, Sabljić A, Bosak A, Gašo-Sokač D. Evaluation of hydrazone and N-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde as potential drugs against Alzheimer's disease. J Enzyme Inhib Med Chem 2024; 39:2431832. [PMID: 39654394 PMCID: PMC11633425 DOI: 10.1080/14756366.2024.2431832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
The growing prevalence of Alzheimer's disease calls for a drug that can simultaneously act towards several targets involved in the pathophysiology of the disease. In our study, we evaluated the potential of hydrazone and N-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde to be used as multi-target directed ligands targeting cholinergic system by inhibiting acetyl- and butyrylcholinesterase, lowering the accumulation of β-amyloid plaques by inhibiting both the β-secretase activity and amyloid self-aggregation, and maintaining the biometal balance by chelating certain biometals. Our results showed that all of the tested hydrazones were potent inhibitors of human cholinesterases with inhibition constants (Ki) in micromolar range able to lower the activity of β-secretase, inhibit amyloid aggregation, chelate biometals and act as antioxidants. Also, most of them were estimated to be able to cross the blood-brain barrier by passive transport and to be absorbed in human intestines as well as with moderate metabolic stability in liver microsomes.
Collapse
Affiliation(s)
- Marija Bartolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ana Matošević
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikola Maraković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Bušić
- Faculty of Food and Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Sunčica Roca
- NMR Centre, Rudjer Bošković Institute, Zagreb, Croatia
| | - Dražen Vikić-Topić
- NMR Centre, Rudjer Bošković Institute, Zagreb, Croatia
- Department of Natural and Health Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Antonio Sabljić
- Faculty of Food and Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Bosak
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dajana Gašo-Sokač
- Faculty of Food and Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
6
|
Luo L, Yan T, Yang L, Zhao M. Aluminum chloride and D-galactose induced a zebrafish model of Alzheimer's disease with cognitive deficits and aging. Comput Struct Biotechnol J 2024; 23:2230-2239. [PMID: 38827230 PMCID: PMC11140485 DOI: 10.1016/j.csbj.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Transgenic and pharmacological AD models are extensively studied to understand AD mechanisms and drug discovery. However, they are time-consuming and relatively costly, which hinders the discovery of potential anti-AD therapeutics. Here, we established a new model of AD in larval zebrafish by co-treatment with aluminum chloride (AlCl3) and D-galactose (D-gal) for 72 h. In particular, exposure to 150 μM AlCl3 + 40 mg/mL D-gal, 200 μM AlCl3 + 30 mg/mL D-gal, or 200 μM AlCl3 + 40 mg/mL D-gal successfully induced AD-like symptoms and aging features. Co-treatment with AlCl3 and D-gal caused significant learning and memory deficits, as well as impaired response ability and locomotor capacity in the plus-maze and light/dark test. Moreover, increased acetylcholinesterase and β-galactosidase activities, β-amyloid 1-42 deposition, reduced telomerase activity, elevated interleukin 1 beta mRNA expression, and enhanced reactive oxygen species production were also observed. In conclusion, our zebrafish model is simple, rapid, effective and affordable, incorporating key features of AD and aging, thus may become a unique and powerful tool for high-throughput screening of anti-AD compounds in vivo.
Collapse
Affiliation(s)
- Li Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Minggao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
7
|
Nuha D, Evren AE, Özkan BNS, Gundogdu-Karaburun N, Karaburun AÇ. Design, synthesis, biological evaluation, and molecular modeling simulations of new phthalazine-1,4-dione derivatives as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2024; 357:e2400067. [PMID: 38967191 DOI: 10.1002/ardp.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
The development of targeted phthalazine-1,4-dione acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease involved the synthesis of 32 compounds via a multistage process. Various analytical techniques confirmed the compounds' identities. Thirteen compounds were found to inhibit AChE by more than 50% without affecting butyrylcholinesterase (BChE). Among these, three compounds, 8m, 8n, and 8p, exhibited extraordinary activity similar to donepezil, a reference AChE inhibitor. During enzyme kinetic studies, compound 8n, displaying the highest AChE inhibitory activity, underwent evaluation at three concentrations (2 × IC50, IC50, and IC50/2). Lineweaver-Burk plots indicated mixed inhibition activity for compound 8n against AChE, suggesting a combination of competitive and noncompetitive characteristics. Additionally, effective derivatives 8m, 8n, and 8p exhibited high blood-brain barrier (BBB) permeability in in vitro parallel artificial membrane permeability assay tests. Molecular docking studies revealed that these compounds bind to the enzyme's active site residues in a position similar to donepezil. Molecular dynamic simulations confirmed the stability of the protein-ligand system, and the chemical reactivity characteristics of the compounds were investigated using density functional theory. The compounds' wide energy gaps suggest stability and therapeutic potential. This research represents a significant step toward finding a potential cure for Alzheimer's disease. However, further research and testing are required to determine the compounds' safety and efficacy. The unique structure of phthalazine derivatives makes them suitable for various biological activities, and these compounds show promise for developing effective drugs for treating Alzheimer's disease. Overall, the development of these targeted compounds is a crucial advancement in the search for an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ahmet Çagri Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
8
|
Chen J, He Z, Luo K, Luo Q, Wang Y, Liu T, Li L, Dai Z, Yang S, Li Y, Zhao Y, Tang L, Fu X. Scutellarein derivatives with histamine H 3 receptor antagonism and cholinesterase inhibitory potency as multi target-directed ligands for possible Alzheimer's disease therapy. Bioorg Chem 2024; 151:107704. [PMID: 39126870 DOI: 10.1016/j.bioorg.2024.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A series of scutellarein 7-l-amino acid carbamate-4'-cycloalkylamine propyl ether conjugates were designed and synthesized for the first time as multifunctional agents for Alzheimer's disease (AD) therapy. The designed compounds exhibited more balanced and effective multi-target potency. Among them, compound 11l, l-Valine carbamate derivative of scutellarein cycloheptylamine ether, exhibited the most potent inhibition of electric eel AChE enzymes and human AChE enzymes, with an IC50 values of 7.04 μM and 9.73 μM, respectively. Moreover, 11l exhibited more potent H3R antagonistic activities than clobenpropit, with an IC50 value of 1.09 nM. Compound 11l not only displayed excellent inhibition of self- and Cu2+-induced Aβ1-42 aggregation (95.48 % and 88.63 % inhibition, respectively) but also induced the disassembly of self- and Cu2+-induced Aβ fibrils (80.16 % and 89.30 % disaggregation, respectively). Moreover, 11l significantly reduced tau protein hyperphosphorylation induced by Aβ25-35. It exhibited effective antioxidant activity and neuroprotective potency, and inhibited RSL3-induced PC12 cell ferroptosis. Assays of hCMEC/D3 and hPepT1-MDCK cell line permeability indicated that 11l would have optimal blood-brain barrier permeability and intestinal absorption characteristics. In addition, in vivo studies revealed that compound 11l significantly attenuated learning and memory impairment in an AD mouse model. Finally, a pharmacokinetic characterization of 11l indicated favorable druggability and pharmacokinetic properties. Taken together, our results suggest that 11l is a potential candidate for AD treatment and merits further investigation.
Collapse
Affiliation(s)
- Jiao Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Zhu He
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Keke Luo
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Qianhen Luo
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yujie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Li Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zeqin Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Shenggang Yang
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Yongjun Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China.
| | - Xiaozhong Fu
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China.
| |
Collapse
|
9
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
10
|
Chen H, Mi J, Li S, Liu Z, Yang J, Chen R, Wang Y, Ban Y, Zhou Y, Dong W, Sang Z. Design, synthesis and evaluation of quinoline- O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2169682. [PMID: 36688444 PMCID: PMC9873282 DOI: 10.1080/14756366.2023.2169682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A series of novel quinoline-O-carbamate derivatives was rationally designed for treating Alzheimer's disease (AD) by multi-target-directed ligands (MTDLs) strategy. The target compounds were synthesised and evaluated by AChE/BuChE inhibition and anti-inflammatory property. The in vitro activities showed that compound 3f was a reversible dual eeAChE/eqBuChE inhibitor with IC50 values of 1.3 µM and 0.81 µM, respectively. Moreover, compound 3f displayed good anti-inflammatory property by decreasing the production of IL-6, IL-1β and NO. In addition, compound 3f presented significant neuroprotective effect on Aβ25-35-induced PC12 cell injury. Furthermore, compound 3f presented good stabilities in artificial gastrointestinal fluids, liver microsomes in vitro and plasma. Furthermore, compound 3f could improve AlCl3-induced zebrafish AD model by increasing the level of ACh. Therefore, compound 3f was a promising multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Hongsong Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Sen Li
- Department of Orthopaedics Surgery, Nanyang Central Hospital, Nanyang, Henan, China
| | - Zhengwei Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yujie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China,Yi Zhou College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China,Wu Dong Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China,School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China,CONTACT Zhipei Sang College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
11
|
Wang G, Du J, Ma J, Liu P, Xing S, Xia J, Dong S, Li Z. Discovery of Novel Tryptanthrin Derivatives with Benzenesulfonamide Substituents as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1468. [PMID: 37895939 PMCID: PMC10610214 DOI: 10.3390/ph16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood-brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jie Ma
- Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| |
Collapse
|
12
|
Luo K, Chen J, Li H, Wu D, Du Y, Zhao S, Liu T, Li L, Dai Z, Li Y, Zhao Y, Tang L, Fu X. Design, synthesis and biological evaluation of new multi-target scutellarein hybrids for treatment of Alzheimer's disease. Bioorg Chem 2023; 138:106596. [PMID: 37186997 DOI: 10.1016/j.bioorg.2023.106596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
Scutellarein hybrids were designed, synthesized and evaluated as multifunctional therapeutic agents for the treatment of Alzheimer's disease (AD). Compounds 11a-i, containing a 2-hydroxymethyl-3,5,6-trimethylpyrazine fragment at the 7-position of scutellarein, were found to have balanced and effective multi-target potencies against AD. Among them, compound 11e exhibited the most potent inhibition of electric eel and human acetylcholinesterase enzymes with IC50 values of 6.72 ± 0.09 and 8.91 ± 0.08 μM, respectively. In addition, compound 11e displayed not only excellent inhibition of self- and Cu2+-induced Aβ1-42 aggregation (91.85% and 85.62%, respectively) but also induced disassembly of self- and Cu2+-induced Aβ fibrils (84.54% and 83.49% disaggregation, respectively). Moreover, 11e significantly reduced tau protein hyperphosphorylation induced by Aβ25-35, and also exhibited good inhibition of platelet aggregation. A neuroprotective assay demonstrated that pre-treatment of PC12 cells with 11e significantly decreased lactate dehydrogenase levels, increased cell viability, enhanced expression of relevant apoptotic proteins (Bcl-2, Bax and caspase-3) and inhibited RSL3-induced PC12 cell ferroptosis. Furthermore, hCMEC/D3 and hPepT1-MDCK cell line permeability assays indicated that 11e would have optimal blood-brain barrier and intestinal absorption characteristics. In addition, in vivo studies revealed that compound 11e significantly attenuated learning and memory impairment in an AD mice model. Toxicity experiments with the compound did not reveal any safety concerns. Notably, 11e significantly reduced β-amyloid precursor protein (APP) and β-site APP cleaving enzyme-1 (BACE-1) protein expression in brain tissue of scopolamine-treated mice. Taken together, these outstanding properties qualified compound 11e as a promising multi-target candidate for AD therapy, worthy of further studies.
Collapse
Affiliation(s)
- Keke Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Jiao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Hui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Dirong Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yuanjiang Du
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Shanshan Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zeqin Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China.
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China.
| |
Collapse
|
13
|
Etemadi A, Hemmati S, Shahrivar-Gargari M, Abibiglue YT, Bavili A, Hamzeh-Mivehroud M, Dastmalchi S. Design, Synthesis, and Biological Evaluation of Novel Indanone Derivatives as Cholinesterase Inhibitors for Potential Use in Alzheimer's Disease. Chem Biodivers 2023; 20:e202300075. [PMID: 37458518 DOI: 10.1002/cbdv.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50 =0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b. The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.
Collapse
Affiliation(s)
- Aysan Etemadi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahrivar-Gargari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasaman Tamaddon Abibiglue
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bavili
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, POBOX: 99138, Nicosia, Turkey
| |
Collapse
|
14
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
15
|
Development of the "hidden" multi-target-directed ligands by AChE/BuChE for the treatment of Alzheimer's disease. Eur J Med Chem 2023; 251:115253. [PMID: 36921526 DOI: 10.1016/j.ejmech.2023.115253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/09/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Accumulation of evidences suggested that excessive amounts of AChE and BuChE in the brain of AD patients at the different stage of AD, which could hydrolyze ACh and accelerated Aβ aggregation. To develop new "hidden" multifunctional agents through AChE/BuChE would be a promising strategy to treat AD. To this end, firstly, a series of chalcone derivatives with chelating property was designed and synthesized. The in vitro results showed that compound 3f indicated significant selective MAO-B inhibitory activity (IC50 = 0.67 μM) and remarkable anti-inflammatory property. It also significantly inhibited self-induced Aβ1-42 aggregation and showed remarkable neuroprotective effects on Aβ25-35-induced PC12 cell injury. Furthermore, compound 3f was a selective metal chelator and could inhibit Cu2+-induced Aβ1-42 aggregation. Based on this, the carbamate fragment was introduced to compound 3f to obtain carbamate derivatives. The biological activity results exhibited that compound 4b showed good BBB permeability, good AChE inhibitory potency (IC50 = 5.3 μM), moderate BuChE inhibitory potency (IC50 = 12.4 μM), significant MAO-B inhibitory potency, anti-inflammation potency on LPS-induced BV-2 cells and neuroprotective effects on Aβ25-35-induced PC12 cell injury. Compared with 3f, compound 4b did not show obvious chelation property. Significantly, compound 4b could be activated by AChE/BuChE following inhibition of AChE/BuChE to liberate an active multifunctional chelator 3f, which was consistent with our original intention. More importantly, compounds 3f and 4b presented favorable ADME properties and good stability in artificial gastrointestinal fluid, blood plasma and rat liver microsomes. The in vivo results suggested that compound 4b (0.0195 μg/mL) could significantly improve dyskinesia and reaction capacity of the AlCl3-induced zebrafish AD model by increasing the level of ACh. Together our data suggest that compound 4b was a promising "hidden" multifunctional agent by AChE/BuChE, and this strategy deserved further development for the treatment of AD.
Collapse
|
16
|
Liu X, Yu C, Su B, Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer's disease. RSC Med Chem 2023; 14:268-276. [PMID: 36846369 PMCID: PMC9945874 DOI: 10.1039/d2md00383j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The kojic acid dimer (KAD) is a metabolite derived from developing cottonseed when contaminated with aflatoxin. The KAD has been shown to exhibit bright greenish-yellow fluorescence, but little else is known about its biological activity. In this study, using kojic acid as a raw material, we developed a four-step synthetic route that achieved the gram-scale preparation of the KAD in approximately 25% total yield. The structure of the KAD was verified by single-crystal X-ray diffraction. The KAD showed good safety in a variety of cells and had a good protective effect in SH-SY5Y cells. At concentrations lower than 50 μM, the KAD was superior to vitamin C in ABTS+ free radical scavenging assay; the KAD resisted the production of reactive oxygen species induced by H2O2 as confirmed by fluorescence microscopy observation and flow cytometry analysis. Notably, the KAD could enhance the superoxide dismutase activity, which might be the mechanism of its antioxidant activity. The KAD also moderately inhibited the deposition of amyloid-β (Aβ) and selectively chelated Cu2+, Zn2+, Fe2+, Fe3+, and Al3+, which are related to the progress of Alzheimer's disease. Based on its good effects in terms of oxidative stress, neuroprotection, inhibition of Aβ deposition, and metal accumulation, the KAD shows potential for the multi-target treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| | - Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| |
Collapse
|
17
|
Design, synthesis and evaluation of salicylic acid-donepezil hybrids as functional agents for the treatment of Alzheimer’s disease. Med Chem Res 2023. [DOI: 10.1007/s00044-022-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Collins AE, Saleh TM, Kalisch BE. VANL-100 Attenuates Beta-Amyloid-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 24:ijms24010442. [PMID: 36613883 PMCID: PMC9820495 DOI: 10.3390/ijms24010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidants are being explored as novel therapeutics for the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) through strategies such as chemically linking antioxidants to synthesize novel co-drugs. The main objective of this study was to assess the cytoprotective effects of the novel antioxidant compound VANL-100 in a cellular model of beta-amyloid (Aβ)-induced toxicity. The cytotoxic effects of Aβ in the presence and absence of all antioxidant compounds were measured using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-tetrazolium bromide (MTT) assay in SH-SY5Y cells in both pre-treatment and co-treatment experiments. In pre-treatment experiments, VANL-100, or one of its parent compounds, naringenin (NAR), alpha-lipoic acid (ALA), or naringenin + alpha-lipoic acid (NAR + ALA), was administrated 24 h prior to an additional 24-h incubation with 20 μM non-fibril or fibril Aβ25-35. Co-treatment experiments consisted of simultaneous treatment with Aβ and antioxidants. Pre-treatment and co-treatment with VANL-100 significantly attenuated Aβ-induced cell death. There were no significant differences between the protective effects of VANL-100, NAR, ALA, and NAR + ALA with either form of Aβ, or in the effect of VANL-100 between 24-h pre-treatment and co-treatment. These results demonstrate that the novel co-drug VANL-100 is capable of eliciting cytoprotective effects against Aβ-induced toxicity.
Collapse
|
19
|
Zou J, Qian J, Liu S, Li R, Zhang X, Yang S, Liu Y, Liu W, Ma S, Shi D. Design, Synthesis, Biological Evaluation and Molecular Dynamics Simulations Study of Genistein‐
O
‐1,3,5‐Triazine Derivatives as Multifunctional Anti‐Alzheimer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing‐Pei Zou
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Jing‐Jing Qian
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Shan‐Ming Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Rui Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Xiao‐Qing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Shun Yang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Yu‐Wei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| | - Wei‐Wei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| | - Shao‐Jie Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| | - Da‐Hua Shi
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| |
Collapse
|
20
|
Zhu G, Bai P, Wang K, Mi J, Yang J, Hu J, Ban Y, Xu R, Chen R, Wang C, Tang L, Sang Z. Design, synthesis, and evaluation of novel O-alkyl ferulamide derivatives as multifunctional ligands for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:1375-1388. [PMID: 35549612 PMCID: PMC9116242 DOI: 10.1080/14756366.2022.2073442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Herein, a series of novel O-alkyl ferulamide derivatives were designed and synthesised through the multi-target-directed ligands (MTDLs) strategy. The biological activities in vitro showed that compounds 5a, 5d, 5e, 5f, and 5h indicated significantly selective MAO-B inhibitory potency (IC50 = 0.32, 0.56, 0.54, 0.73, and 0.86 μM, respectively) and moderate antioxidant activity. Moreover, compounds 5a, 5d, 5e, 5f, and 5h showed potent anti-inflammatory properties, remarkable effects on self-induced Aβ1-42 aggregation, and potent neuroprotective effect on Aβ1-42-induced PC12 cell injury. Furthermore, compounds 5a, 5d, 5e, 5f, and 5h presented good blood-brain barrier permeation in vitro and drug-like properties. More interesting, the PET/CT images with [11C]5f demonstrated that [11C]5f could penetrate the BBB with a high brain uptake and exhibited good brain clearance kinetic property. Therefore, compound 5f would be a promising multi-functional agent for the treatment of AD.
Collapse
Affiliation(s)
- Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Ping Bai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Jiaqi Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Ran Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Changning Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Zhipei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
21
|
Miao S, He Q, Li C, Wu Y, Liu M, Chen Y, Qi S, Gong K. Aaptamine - a dual acetyl - and butyrylcholinesterase inhibitor as potential anti-Alzheimer's disease agent. PHARMACEUTICAL BIOLOGY 2022; 60:1502-1510. [PMID: 35968601 PMCID: PMC9380430 DOI: 10.1080/13880209.2022.2102657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 05/31/2023]
Abstract
CONTEXT Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are promising therapeutic targets for AD. OBJECTIVE To evaluate the inhibitory effects of aaptamine on two cholinesterases and investigate the in vivo therapeutic effect on AD in a zebrafish model. MATERIALS AND METHODS Aaptamine was isolated from the sponge Aaptos suberitoides Brøndsted (Suberitidae). Enzyme inhibition, kinetic analysis, surface plasmon resonance (SPR) and molecular docking assays were used to determine its inhibitory effect on AChE and BuChE in vitro. Zebrafish were divided into six groups: control, model, 8 μM donepezil, 5 , 10 and 20 μM aaptamine. After three days of drug treatment, the behaviour assay was performed. RESULTS The IC50 values of aaptamine towards AChE and BuChE were 16.0 and 4.6 μM. And aaptamine directly inhibited the two cholinesterases in the mixed inhibition type, with Ki values of 6.96 ± 0.04 and 6.35 ± 0.02 μM, with Kd values of 87.6 and 10.7 μM. Besides, aaptamine interacts with the crucial anionic sites of AChE and BuChE. In vivo studies indicated that the dyskinesia recovery rates of 5 , 10 and 20 μM aaptamine group were 34.8, 58.8 and 60.0%, respectively, and that of donepezil was 63.7%. DISCUSSION AND CONCLUSIONS Aaptamine showed great potential to exert its anti-AD effects by directly inhibiting the activities of AChE and BuChE. Therefore, this study identified a novel medicinal application of aaptamine and provided a new structural scaffold for the development of anti-AD drugs.
Collapse
Affiliation(s)
- Shuang Miao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Qianqian He
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, PR China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Yan Wu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Mengshan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Yongshou Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Shizhou Qi
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Kaikai Gong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| |
Collapse
|
22
|
Wu J, Zhang H, Wang Y, Yin G, Li Q, Zhuo L, Chen H, Wang Z. From tryptamine to the discovery of efficient multi-target directed ligands against cholinesterase-associated neurodegenerative disorders. Front Pharmacol 2022; 13:1036030. [PMID: 36518670 PMCID: PMC9742383 DOI: 10.3389/fphar.2022.1036030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
A novel class of benzyl-free and benzyl-substituted carbamylated tryptamine derivatives (CDTs) was designed and synthesized to serve as effective building blocks for the development of novel multi-target directed ligands (MTDLs) for the treatment of neurological disorders linked to cholinesterase (ChE) activity. The majority of them endowed butyrylcholinesterase (BuChE) with more substantial inhibition potency than acetylcholinesterase (AChE), according to the full study of ChE inhibition. Particularly, hybrids with dibenzyl groups (2b-2f, 2j, 2o, and 2q) showed weak or no neuronal toxicity and hepatotoxicity and single-digit nanomolar inhibitory effects against BuChE. Through molecular docking and kinetic analyses, the potential mechanism of action on BuChE was first investigated. In vitro H2O2-induced HT-22 cells assay demonstrated the favorable neuroprotective potency of 2g, 2h, 2j, 2m, 2o, and 2p. Besides, 2g, 2h, 2j, 2m, 2o, and 2p endowed good antioxidant activities and COX-2 inhibitory effects. This study suggested that this series of hybrids can be applied to treat various ChE-associated neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as promising building blocks for further structure modification to develop efficient MTDLs.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Honghua Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Gaofeng Yin
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qien Li
- Tibetan Medical College, Qinghai University, Xining, Qinghai, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongjin Chen
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Wang
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
23
|
Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur J Med Chem 2022; 242:114695. [PMID: 36044812 DOI: 10.1016/j.ejmech.2022.114695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Aβ becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Aβ aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Aβ accumulation begins to occur 10-15 years before AD onset, modulating Aβ is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Aβ if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Aβ accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Aβ modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Aβ modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
Collapse
|
24
|
Wu J, Li XY, Liang J, Fang DL, Yang ZJ, Wei J, Chen ZJ. Network pharmacological analysis of active components of Xiaoliu decoction in the treatment of glioblastoma multiforme. Front Genet 2022; 13:940462. [PMID: 36046228 PMCID: PMC9420933 DOI: 10.3389/fgene.2022.940462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most aggressive primary nervous system brain tumor. There is still a lack of effective methods to control its progression and recurrence in clinical treatment. It is clinically found that Xiaoliu Decoction (XLD) has the effect of treating brain tumors and preventing tumor recurrence. However, its mechanism is still unclear. Methods: Search the Traditional Chinese Medicine System Pharmacology Database (TCSMP) for efficient substances for the treatment of XLD in the treatment of GBM, and target the targeted genes of the effective ingredients to construct a network. At the same time, download GBM-related gene expression data from the TCGA and GTEX databases, screen differential expression bases, and establish a drug target disease network. Through bioinformatics analysis, the target genes and shared genes of the selected Chinese medicines are analyzed. Finally, molecular docking was performed to further clarify the possibility of XLD in multiple GBMs. Results: We screened 894 differentially expressed genes in GBM, 230 XLD active ingredients and 169 predicted targets of its active compounds, of which 19 target genes are related to the differential expression of GBM. Bioinformatics analysis shows that these targets are closely related to cell proliferation, cell cycle regulation, and DNA synthesis. Finally, through molecular docking, it was further confirmed that Tanshinone IIA, the active ingredient of XLD, was tightly bound to key proteins. Conclusion: To sum up, the results of this study suggest that the mechanism of XLD in the treatment of GBM involves multiple targets and signal pathways related to tumorigenesis and development. This study not only provides a new theoretical basis for the treatment of glioblastoma multiforme with traditional Chinese medicine, but also provides a new idea for the research and development of targeted drugs for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Ji Wu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xue-Yu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jing Liang
- Department of Pediatrics, The Second Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Da-Lang Fang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Da-Lang Fang, ; Zhao-Jian Yang, ; Jie Wei, ; Zhi-Jun Chen,
| | - Zhao-Jian Yang
- Department of Neurosurgery, Red Cross Hospital of Yulin City, Yulin, China
- *Correspondence: Da-Lang Fang, ; Zhao-Jian Yang, ; Jie Wei, ; Zhi-Jun Chen,
| | - Jie Wei
- Department of Hematology, People’s Hospital of Baise, Baise, China
- *Correspondence: Da-Lang Fang, ; Zhao-Jian Yang, ; Jie Wei, ; Zhi-Jun Chen,
| | - Zhi-Jun Chen
- Department of Neurosurgery, Red Cross Hospital of Yulin City, Yulin, China
- *Correspondence: Da-Lang Fang, ; Zhao-Jian Yang, ; Jie Wei, ; Zhi-Jun Chen,
| |
Collapse
|
25
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
26
|
Sang Z, Bai P, Ban Y, Wang K, Wu A, Mi J, Hu J, Xu R, Zhu G, Wang J, Zhang J, Wang C, Tan Z, Tang L. Novel donepezil-chalcone-rivastigmine hybrids as potential multifunctional anti-Alzheimer's agents: Design, synthesis, in vitro biological evaluation, in vivo and in silico studies. Bioorg Chem 2022; 127:106007. [PMID: 35849893 DOI: 10.1016/j.bioorg.2022.106007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a chronic, progressive brain neurodegenerative disorder. Up to now, there is no effective drug to halt or reverse the progress of AD. Given the complex pathogenesis of AD, the multi-target-directed ligands (MTDLs) strategy is considered as the promising therapy. Herein, a series of novel donepezil-chalone-rivastigmine hybrids was rationally designed and synthesized by fusing donepezil, chalone and rivastigmine. The in vitro bioactivity results displayed that compound 10c was a reversible huAChE (IC50 = 0.87 μM) and huBuChE (IC50 = 3.3 μM) inhibitor. It also presented significant anti-inflammation effects by suppressing the level of IL-6 and TNF-α production, and significantly inhibited self-mediated Aβ1-42 aggregation (60.6%) and huAChE-mediated induced Aβ1-40 aggregation (46.2%). In addition, 10c showed significant neuroprotective effect on Aβ1-42-induced PC12 cell injury and activated UPS pathway in HT22 cells to degrade tau and amyloid precursor protein (APP). Furthermore, compound 10c presented good stabilty in artificial gastrointestinal fluids and liver microsomes in vitro. The pharmacokinetic study showed that compound 10c was rapidly absorbed in rats and distributed in rat brain after intragastric administration. The PET-CT imaging demonstrated that [11C]10c could quickly enter the brain and washed out gradually in vivo. Further, compound 10c at a dose of 5 mg/kg improved scopolamine-induced memory impairment, deserving further investigations.
Collapse
Affiliation(s)
- Zhipei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiaqi Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Rui Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
27
|
Yang X, Yang W, Xia X, Lei T, Yang Z, Jia W, Zhou Y, Cheng G, Gao H. Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer's Disease Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203182. [PMID: 35771092 DOI: 10.1002/smll.202203182] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), as a progressive and irreversible brain disorder, remains the most universal neurodegenerative disease. No effective therapeutic methods are established yet due to the hindrance of the blood-brain barrier (BBB) and the complex pathological condition of AD. Therefore, a multifunctional nanocarrier (Rapa@DAK/siRNA) for AD treatment is constructed to achieve small interfering RNA of β-site precursor protein (APP) cleaving enzyme-1 (BACE1 siRNA) and rapamycin co-delivery into the brain, based on Aleuria aurantia lectin (AAL) and β-amyploid (Aβ)-binding peptides (KLVFF) modified PEGylated dendrigraft poly-l-lysines (DGLs) via intranasal administration. Nasal administration provides an effective way to deliver drugs directly into the brain through the nose-to-brain pathway. AAL, specifically binding to L-fucose located in the olfactory epithelium, endows Rapa@DAK/siRNA with high brain entry efficiency through intranasal administration. KLVFF peptide as an Aβ targeting ligand and aggregation inhibitor enables nanoparticles to bind with Aβ, inhibit Aβ aggregation, and reduce toxicity. Meanwhile, the release of BACE1 siRNA and rapamycin is confirmed to reduce BACE1 expression, promote autophagy, and reduce Aβ deposition. Rapa@DAK/siRNA is verified to improve the cognition of transgenic AD mice after intranasal administration. Collectively, the multifunctional nanocarrier provides an effective and potential intranasal avenue for combination therapy of AD.
Collapse
Affiliation(s)
- Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Wenfeng Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, P. R. China
| |
Collapse
|
28
|
Novel Rivastigmine Derivatives as Promising Multi-Target Compounds for Potential Treatment of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10071510. [PMID: 35884815 PMCID: PMC9313321 DOI: 10.3390/biomedicines10071510] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is the most serious and prevalent neurodegenerative disorder still without cure. Since its aetiology is diverse, recent research on anti-AD drugs has been focused on multi-target compounds. In this work, seven novel hybrids (RIV–BIM) conjugating the active moiety of the drug rivastigmine (RIV) with 2 isomeric hydroxyphenylbenzimidazole (BIM) units were developed and studied. While RIV assures the inhibition of cholinesterases, BIM provides further appropriate properties, such as inhibition of amyloid β-peptide (Aβ) aggregation, antioxidation and metal chelation. The evaluated biological properties of these hybrids included antioxidant activity; inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and Aβ42 aggregation; as well as promotion of cell viability and neuroprotection. All the compounds are better inhibitors of AChE than rivastigmine (IC50 = 32.1 µM), but compounds of series 5 are better inhibitors of BChE (IC50 = 0.9−1.7 µM) than those of series 4. Series 5 also showed good capacity to inhibit self- (42.1−58.7%) and Cu(II)-induced (40.3−60.8%) Aβ aggregation and also to narrow (22.4−42.6%) amyloid fibrils, the relevant compounds being 5b and 5d. Some of these compounds can also prevent the toxicity induced in SH-SY5Y cells by Aβ42 and oxidative stress. Therefore, RIV–BIM hybrids seem to be potential drug candidates for AD with multi-target abilities.
Collapse
|
29
|
Su YL, Liu D, Liu YJ, Ji YL, Liu GS, Wang JLT, Wang B, Wang H. Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Exp Gerontol 2022; 165:111863. [PMID: 35660419 DOI: 10.1016/j.exger.2022.111863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
We explored the effect of phlorizin against cholinergic memory impairment and dysbacteriosis in D-galactose induced ICR mice. The control (CON) group, D-galactose model (DGM) group, and three groups (DG-PL, DG-PM, DG-PH) treated with phlorizin at 0.01%, 0.02%, and 0.04% (w/w) in diets were raised for 12 weeks. Supplementing with phlorizin reversed the loss of organ coefficient and body weight caused by D-galactose. The functional abilities of phlorizin on hippocampal-dependent spatial learning and memory, anti-oxidation, anti-inflammation were also observed. Meanwhile, phlorizin intervention upregulated the gene expression of Nrf2, GSH-PX, SOD1, decreased the gene expression of NF-κB, TLR-4, TNF-α, and IL-1β in the hippocampus, while enhanced the gene expression of JAM-A, Mucin2, Occludin in the caecum. Furthermore, a neurotransmitter of acetylcholine (ACh) was enhanced, while acetylcholinesterase (AChE) activity was inhibited by phlorizin administration. Moreover, phlorizin administration increased short-chain fatty acids (SCFAs) content, and reduced lipopolysaccharides (LPS) levels, which may relate to the rebuilding of gut microbiota homeostasis. Treatment with phlorizin may be an effective intervention for alleviating cognitive decline and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yan-Ling Su
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yao-Jie Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang-Lin Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Gui-Shan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur 015000, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
30
|
Deng C, Mi J, Zhou Y, Li X, Liu Z, Sang Z, Li H. Design, synthesis, and biological evaluation of novel 2-acetylphenol-rivastigmine hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Frank A, Hamidi N, Xue F. Regioselective alkylation of 2,4-dihydroxybenzyaldehydes and 2,4-dihydroxyacetophenones. Tetrahedron Lett 2022; 95:153755. [PMID: 35495552 PMCID: PMC9053733 DOI: 10.1016/j.tetlet.2022.153755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a cesium bicarbonate-mediated alkylation of 2,4-dihydroxybenzyaldehyde and 2,4-dihydroxyacetophenone to generate 4-alkylated products in acetonitrile at 80 °C with excellent regioselectivity, up to 95% isolated yields, and broad substrate scope.
Collapse
Affiliation(s)
- Aziza Frank
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Negar Hamidi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
32
|
Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Singh S, Sharma A, Monga V, Bhatia R. Compendium of naringenin: potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Crit Rev Food Sci Nutr 2022; 63:8868-8899. [PMID: 35357240 DOI: 10.1080/10408398.2022.2056726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naringenin is flavorless, water insoluble active principle belonging to flavanone subclass. It exhibits a diverse pharmacological profile as well as divine nutraceutical values. Although several researchers have explored this phytoconstituent to evaluate its promising properties, still it has not gained recognition at therapeutic levels and more clinical investigations are still required. Also the neutraceutical potential has limited marketed formulations. This compilation includes the description of reported therapeutic potentials of naringenin in variety of pathological conditions alongwith the underlying mechanisms. Details of various analytical investigations carried on this molecule have been provided along with brief description of chemistry and structural activity relationship. In the end, various patents filed and clinical trial data has been provided. Naringenin has revealed promising pharmacological activities including cardiovascular diseases, neuroprotection, anti-diabetic, anticancer, antimicrobial, antiviral, antioxidant, anti-inflammatory and anti-platelet activity. It has been marketed in the form of nanoformulations, co-crystals, solid dispersions, tablets, capsules and inclusion complexes. It is also available in various herbal formulations as nutraceutical supplement. There are some pharmacokinetic issue with naringenin like poor absorption and low dissolution rate. Although these issues have been sorted out upto certain extent still further research to investigate the bioavailability of naringenin from herbal supplements and its clinical efficacy is essential.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Alok Sharma
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
34
|
Wu D, Chen J, Luo K, Li H, Liu T, Li L, Dai Z, Li Y, Zhao Y, Fu X. Design, synthesis and evaluation of novel scutellarin and scutellarein-N,N-bis-substituted carbamate-l-amino acid derivatives as potential multifunctional therapeutics for Alzheimer's disease. Bioorg Chem 2022; 122:105760. [PMID: 35349945 DOI: 10.1016/j.bioorg.2022.105760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
In this study, we designed, synthesized and evaluated a series of scutellarin and scutellarein-N,N-bis-substituted carbamate-l-amino acid derivatives as multifunctional therapeutic agents for the treatment of Alzheimer's disease (AD). Compounds containing scutellarein as the parent nucleus (6a-l) had good inhibitory activity against acetyl cholinesterase (AChE), with compound 6 h exhibiting the most potent inhibition of electric eel AChE and human AChE enzymes with IC50 values of 6.01 ± 1.66 and 7.91 ± 0.49 μM, respectively. In addition, compound 6 h displayed not only excellent inhibition of self- and Cu2+-induced Aβ1-42 aggregation (89.17% and 86.19% inhibition) but also induced disassembly of self- and Cu2+-induced Aβ fibrils (84.25% and 78.73% disaggregation). Moreover, a neuroprotective assay demonstrated that pre-treatment of PC12 cells with 6 h significantly decreased lactate dehydrogenase levels, increased cell viability, enhanced expression of relevant apoptotic proteins (Bcl-2, Bax, and caspase-3) and inhibited RSL3 induced PC12 cell ferroptosis. Furthermore, hCMEC/D3 and hPepT1-MDCK cell line permeability assays indicated that 6 h would have optimal blood-brain barrier and intestinal absorption characteristics. The in vivo experimental data suggested that 6 h ameliorated learning and memory impairment in mice by decreasing AChE activity, increasing ACh levels and alleviating pathological damage of hippocampal tissue cells. These multifunctional properties highlight compound 6 h as a promising candidate for development as a multifunctional drug against AD.
Collapse
Affiliation(s)
- Dirong Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Jiao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Keke Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Hui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zeqin Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China.
| |
Collapse
|
35
|
George G, Koyiparambath VP, Sukumaran S, Nair AS, Pappachan LK, Al-Sehemi AG, Kim H, Mathew B. Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms23063121. [PMID: 35328542 PMCID: PMC8953944 DOI: 10.3390/ijms23063121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the multifaceted pharmacological activities of chalcones, these scaffolds have been considered one of the most privileged frameworks in the drug discovery process. Structurally, chalcones are α, β-unsaturated carbonyl functionalities with two aryl or heteroaryl units. Amongst the numerous pharmacological activities explored for chalcone derivatives, the development of novel chalcone analogs for the treatment of Alzheimer's disease (AD) is among the research topics of most interest. Chalcones possess numerous advantages, such as smaller molecular size, opportunities for further structural modification thereby altering the physicochemical properties, cost-effectiveness, and convenient synthetic methodology. The present review highlights the recent evidence of chalcones as a privileged structure in AD drug development processes. Different classes of chalcone-derived analogs are summarized for the easy understanding of the previously reported analogs as well as the importance of certain functionalities in exhibiting cholinesterase inhibition. In this way, this review will shed light on the medicinal chemistry fraternity for the design and development of novel promising chalcone candidates for the treatment of AD.
Collapse
Affiliation(s)
- Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Sunitha Sukumaran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Leena K. Pappachan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Hoon Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea
- Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
36
|
Yang J, Zhou Y, Ban Y, Mi J, He Y, Li X, Liu Z, Wang K, Zhu G, Liu W, Tan Z, Sang Z. Development of naringenin- O-alkylamine derivatives as multifunctional agents for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:792-816. [PMID: 35193434 PMCID: PMC8881077 DOI: 10.1080/14756366.2022.2041627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, a series of naringenin-O-alkylamine derivatives were designed and obtained by introducing an alkylamine fragment into the naringenin skeleton. The in vitro biological activity results revealed that compounds 5f and 7k showed good antioxidant activity with ORAC values of 2.3eq and 1.2eq, respectively. Compounds 5f and 7k were reversible and excellent huAChE inhibitors with IC50 values of 0.91 μM and 0.57 μM, respectively. Moreover, compounds 5f and 7k could inhibit self-induced Aβ1–42 aggregation with 62.1% and 43.8% inhibition rate, respectively, and significantly inhibited huAChE-Aβ1–40 aggregation with 51.7% and 43.4% inhibition rate, respectively. In addition, compounds 5f and 7k were selective metal chelators and remarkably inhibited Cu2+-induced Aβ1–42 aggregation with 73.5% and 68.7% inhibition rates, respectively. Furthermore, compounds 5f and 7k could cross the blood-brain barrier in vitro and displayed good neuroprotective effects and anti-inflammatory properties. Further investigation showed that compound 5f did not show obvious hepatotoxicity and displayed a good hepatoprotective effect by its antioxidant activity. The in vivo study displayed that compound 5f significantly improved scopolamine-induced mice memory impairment. Therefore, compound 5f was a potential multifunctional candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Ying He
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Xinjuan Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Zhengwei Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| |
Collapse
|
37
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
38
|
Mi J, He Y, Yang J, Zhou Y, Zhu G, Wu A, Liu W, Sang Z. Development of naringenin-O-carbamate derivatives as multi-target-directed liagnds for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2022; 60:128574. [PMID: 35065231 DOI: 10.1016/j.bmcl.2022.128574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
In this work, a series of naringenin-O-carbamate derivatives was designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD) through multi-target-directed ligands (MTDLs) strategy. The biological activity in vitro showed that compound 3c showed good antioxidant potency (ORAC = 1.0 eq), and it was a reversible huAChE (IC50 = 9.7 μM) inhibitor. In addition, compound 3c significantly inhibited self-induced Aβ1-42 aggregation, and it could activate UPS degradation pathway in HT22 cells and clear the aggregated proteins associated with AD. Moreover, compound 3c was a selective metal chelator, and it significantly inhibited and disaggregated Cu2+-mediated Aβ1-42 aggregation. Furthermore, compound 3c displayed remarkable neuroprotective effect and anti-inflammatory property. Interestingly, compound 3c displayed good hepatoprotective effect by its antioxidant activity. More importantly, compound 3c demonstrated favourable blood-brain barrier penetration in vitro and drug-like property. Therefore, compound 3c was a promising multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ying He
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China.
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
39
|
Sang Z, Song Q, Cao Z, Deng Y, Zhang L. Design, synthesis, and evaluation of chalcone-Vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 37:69-85. [PMID: 34894968 PMCID: PMC8667902 DOI: 10.1080/14756366.2021.1993845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A novel series of chalcone-Vitamin E-donepezil hybrids was designed and developed based on multitarget-directed ligands (MTDLs) strategy for treating Alzheimer’s disease (AD). The biological results revealed that compound 17f showed good AChE inhibitory potency (ratAChE IC50 = 0.41 µM; eeAChE IC50 = 1.88 µM). Both the kinetic analysis and docking study revealed that 17f was a mixed type AChE inhibitor. 17f was also a good antioxidant (ORAC = 3.3 eq), selective metal chelator and huMAO-B inhibitor (IC50 = 8.8 µM). Moreover, it showed remarkable inhibition of self- and Cu2+-induced Aβ1–42 aggregation with a 78.0 and 93.5% percentage rate at 25 µM, respectively, and disassembled self-induced and Cu2+-induced aggregation of the accumulated Aβ1–42 fibrils with 72.3 and 84.5% disaggregation rate, respectively. More importantly, 17f exhibited a good neuroprotective effect on H2O2-induced PC12 cell injury and presented good blood-brain barrier permeability in vitro. Thus, 17f was a promising multi-target-directed ligand for treating AD.
Collapse
Affiliation(s)
- Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China.,Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qing Song
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Deng
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Elderly Digestive, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
40
|
Development of novel 2-acetylphenol-O-alkylhydroxyethylamine derivatives as multifunctional agents for Alzheimer’s disease treatment. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Traditional Chinese medicine Bu-Shen-Jian-Pi-Fang attenuates glycolysis and immune escape in clear cell renal cell carcinoma: results based on network pharmacology. Biosci Rep 2021; 41:228654. [PMID: 34002799 PMCID: PMC8202066 DOI: 10.1042/bsr20204421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common malignant type of kidney cancer. The present study aims to explore the underlying mechanism and potential targets of the traditional Chinese medicine Bu-Shen-Jian-Pi-Fang (BSJPF) in the treatment of ccRCC based on network pharmacology. After obtaining the complete composition information for BSJPF from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, we analyzed its chemical composition and molecular targets and then established a pharmacological interaction network. Twenty-four significantly differentially expressed genes and nine pathways mainly related to tumor proliferation were identified and screened. Functional enrichment analysis indicated that the potential targets might be significantly involved in glycolysis and the HIF-1 signaling pathway. To further confirm the effect of BSJPF on ccRCC cell proliferation, a BALB/c xenograft mouse model was constructed. Potential targets involved in regulating glycolysis and the tumor immune microenvironment were evaluated using RT-qPCR. VEGF-A expression levels were markedly decreased, and heparin binding-EGF expression was increased in the BSJPF group. BSJPF also inhibited tumor proliferation by enhancing GLUT1- and LDHA-related glycolysis and the expression of the immune checkpoint molecules PD-L1 and CTLA-4, thereby altering the immune-rejection status of the tumor microenvironment. In summary, the present study demonstrated that the mechanism of BSJPF involves multiple targets and signaling pathways related to tumorigenesis and glycolysis metabolism in ccRCC. Our research provides a novel theoretical basis for the treatment of tumors with traditional Chinese medicine and new strategies for immunotherapy in ccRCC patients.
Collapse
|
42
|
Rioux B, Pinon A, Gamond A, Martin F, Laurent A, Champavier Y, Barette C, Liagre B, Fagnère C, Sol V, Pouget C. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem 2021; 222:113586. [PMID: 34116328 DOI: 10.1016/j.ejmech.2021.113586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
The aim of this study was to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. Indeed, it is well-known that polyamine transport system is upregulated in tumor cells. 3',4,4',5'-tetramethoxychalcone was selected as parent chalcone since it was found to be an efficient anti-proliferative agent on various cancer cells. A series of five chalcone-polyamine conjugates was obtained using the 4-bromopropyloxy-3',4',5'-trimethoxychalcone as a key intermediate. Chalcone core and polyamine tails were fused through an amine bond. These conjugates were found to possess a marked in vitro antiproliferative effect against colorectal (HT-29 and HCT-116) and prostate cancer (PC-3 and DU-145) cell lines. The most active conjugate (compound 8b) was then chosen for further biological evaluations to elucidate mechanisms responsible for its antiproliferative activity. Investigations on cell cycle distribution revealed that this conjugate can prevent the proliferation of human colorectal and prostate cancer cells by blocking the cell cycle at the G1 and G2 phase, respectively. Flow cytometry analysis revealed a sub-G1 peak, characteristic of apoptotic cell population and our inquiries highlighted apoptosis induction at early and later stages through several pro-apoptotic markers. Therefore, this chalcone-N1-spermidine conjugate could be considered as a promising agent for colon and prostatic cancer adjuvant therapy.
Collapse
Affiliation(s)
- Benjamin Rioux
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aline Pinon
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Gamond
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Frédérique Martin
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Laurent
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Yves Champavier
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France; Université de Limoges, BISCEm NMR Platform, GEIST, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Caroline Barette
- Université Grenoble Alpes, CEA, INSERM, IRIG, BGE U1038, Genetics & Chemogenomics, 17 Avenue des Martyrs, Grenoble, 38054, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Catherine Fagnère
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Christelle Pouget
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France.
| |
Collapse
|
43
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
44
|
Wang K, Shi J, Zhou Y, He Y, Mi J, Yang J, Liu S, Tang X, Liu W, Tan Z, Sang Z. Design, synthesis and evaluation of cinnamic acid hybrids as multi-target-directed agents for the treatment of Alzheimer's disease. Bioorg Chem 2021; 112:104879. [PMID: 33915461 DOI: 10.1016/j.bioorg.2021.104879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Herein, combining 1,2,3,4-tetrahydroisoquinoline and benzylpiperidine groups into cinnamic acid derivatives, a series of novel cinnamic acid hybrids was rationally designed, synthesized and evaluated by the multi-target-directed ligands (MTDLs) strategy. Hybrid 4e was the most promising one among these hybrids with a reversible huBuChE inhibitor (IC50 = 2.5 μM) and good MAO-B inhibition activity (IC50 = 1.3 μM) and antioxidant potency (ORAC = 0.4 eq). Moreover, compound 4e significantly inhibited self-mediated Aβ1-42 aggregation (65.2% inhibition rate). Compound 4e exhibited remarkable anti-inflammatory propery and neuroprotective effect. Furthermore, compound 4e displayed favourable blood-brain barrier penetration via parallel artificial membrane permeation assay (PAMPA). The obtained results also revealed that compound 4e significantly improved dyskinesia recovery rate and response efficiency on AD model zebrafish. Further, 4e did not show obvious acute toxicity at dose up to 1500 mg/kg in vivo and improved scopolamine-induced memory impairment. Importantly, compound 4e showed good stability in both artificial gastric fluid and artificial intestinal fluid. Therefore, compound 4e presented a promising multi-targeted active molecule for treating AD.
Collapse
Affiliation(s)
- Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jian Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ying He
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuang Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiangcheng Tang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
45
|
Bures J, Tacheci I, Kvetina J, Radochova V, Prchal L, Kohoutova D, Valis M, Novak M, Dolezal R, Kopacova M, Rejchrt S, Sestak V, Knoblochova V, Peterova E, Zdarova Karasova J. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6- O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules 2021; 26:2160. [PMID: 33918638 PMCID: PMC8070437 DOI: 10.3390/molecules26082160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.
Collapse
Affiliation(s)
- Jan Bures
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Ilja Tacheci
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Jaroslav Kvetina
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Vera Radochova
- Animal Laboratory, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic;
| | - Lukas Prchal
- Centre of Biomedical Research, University Hospital, 500 05 Hradec Kralove, Czech Republic; (L.P.); (M.N.); (R.D.); (J.Z.K.)
| | - Darina Kohoutova
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
- The Royal Marsden Hospital NHS Foundation Trust, London SW3 6JJ, UK
| | - Martin Valis
- Department of Neurology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Martin Novak
- Centre of Biomedical Research, University Hospital, 500 05 Hradec Kralove, Czech Republic; (L.P.); (M.N.); (R.D.); (J.Z.K.)
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University Faculty of Pharmacy, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Centre of Biomedical Research, University Hospital, 500 05 Hradec Kralove, Czech Republic; (L.P.); (M.N.); (R.D.); (J.Z.K.)
| | - Marcela Kopacova
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Stanislav Rejchrt
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Vit Sestak
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic;
| | - Veronika Knoblochova
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Eva Peterova
- 2nd Department of Internal Medicine-Gastroenterology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital, 500 03 Hradec Kralove, Czech Republic; (I.T.); (J.K.); (D.K.); (M.K.); (S.R.); (V.K.); (E.P.)
| | - Jana Zdarova Karasova
- Centre of Biomedical Research, University Hospital, 500 05 Hradec Kralove, Czech Republic; (L.P.); (M.N.); (R.D.); (J.Z.K.)
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
46
|
Cao Z, Song Q, Yu G, Liu Z, Cong S, Tan Z, Deng Y. Novel 3-benzylidene/benzylphthalide Mannich base derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2021; 35:116074. [PMID: 33640707 DOI: 10.1016/j.bmc.2021.116074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022]
Abstract
To discover novel multifunctional agents for the treatment of Alzheimer's disease, a series of 3-benzylidene/benzylphthalide Mannich base derivatives were designed, synthesized and evaluated. The biological screening results indicated that most of these derivatives exhibited good multifunctional activities. Among them, compound (Z)-13c raised particular interest because of its excellent multifunctional bioactivities. It displayed excellent EeAChE and HuAChE inhibition (IC50 = 9.18 × 10-5 and 6.16 × 10-4 μM, respectively), good MAO-B inhibitory activity (IC50 = 5.88 μM) and high antioxidant activity (ORAC = 2.05 Trolox equivalents). Additionally, it also exhibited good antiplatelet aggregation activity, moderate self- and Cu2+-induced Aβ1-42 aggregation inhibitory potency, disaggregation ability on Aβ1-42 fibrils, biometal chelating ability, appropriate BBB permeability and significant neuroprotective effect. Furthermore, (Z)-13c can also ameliorate the learning and memory impairment induced by scopolamine in mice. These multifunctional properties highlight compound (Z)-13c as a promising candidate for further development of multifunctional drug against AD.
Collapse
Affiliation(s)
- Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuoling Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiqing Cong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
47
|
Design, synthesis and evaluation of novel dimethylamino chalcone-O-alkylamines derivatives as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2021; 216:113310. [PMID: 33667847 DOI: 10.1016/j.ejmech.2021.113310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
A novel series of dimethylamino chalcone-O-alkylamines derivatives was designed and synthesized as multifunctional agents for the treatment of AD. All the target compounds exhibited significant abilities to inhibit and disaggregate Aβ aggregation, and acted as potential selective AChE inhibitors, biometal chelators and selective MAO-B inhibitors. Among these compounds, compound TM-6 showed the greatest inhibitory activity against self-induced Aβ aggregation (IC50 = 0.88 μM) and well disaggregation ability toward self-induced Aβ aggregation (95.1%, 25 μM), the TEM images, molecular docking study and molecular dynamics simulations provided reasonable explanation for its high efficiency, and it was also found to be a remarkable antioxidant (ORAC-FL values of 2.1eq.), the best AChE inhibitor (IC50 = 0.13 μM) and MAO-B inhibitor (IC50 = 1.0 μM), as well as a good neuroprotectant. UV-visual spectrometry and ThT fluorescence assay revealed that compound TM-6 was not only a good biometal chelator by inhibiting Cu2+-induced Aβ aggregation (95.3%, 25 μM) but also could disassemble the well-structured Aβ fibrils (88.1%, 25 μM). Further, TM-6 could cross the blood-brain barrier (BBB) in vitro. More importantly, compound TM-6 did not show any acute toxicity in mice at doses of up to 1000 mg/kg and improved scopolamine-induced memory impairment. Taken together, these data indicated that TM-6, an excellent balanced multifunctional inhibitor, was a potential lead compound for the treatment of AD.
Collapse
|
48
|
Chromone derivatives bearing pyridinium moiety as multi-target-directed ligands against Alzheimer's disease. Bioorg Chem 2021; 110:104750. [PMID: 33691251 DOI: 10.1016/j.bioorg.2021.104750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/16/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
A new serise of 7-hydroxy-chromone derivatives bearing pyridine moiety were synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). Most of the compounds were good AChE inhibitors (IC50 = 9.8-0.71 µM) and showed remarkable BuChE inhibition activity (IC50 = 1.9-0.006 µM) compared with donepezil as the standard drug (IC50 = 0.023 and 3.4 µM). Compounds 14 and 10 showed the best inhibitory activity toward AChE (IC50 = 0.71 µM) and BuChE (IC50 = 0.006 µM), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 14 and 10 could bind effectively to the peripheral anionic binding site (PAS) of the AChE and BuChE through mixed-type inhibition. In addition, the most potent compounds showed acceptable neuroprotective activity on H2O2- and Aβ-induced .neurotoxicity in PC12 cells, more than standard drugs. The compounds could block effectively self- and AChE-induced Aβ aggregation. All the results suggest that compounds 14 and 10 could be considered as promising multi-target-directed ligands against AD.
Collapse
|
49
|
Jalili-Baleh L, Nadri H, Forootanfar H, Küçükkılınç TT, Ayazgök B, Sharifzadeh M, Rahimifard M, Baeeri M, Abdollahi M, Foroumadi A, Khoobi M. Chromone-lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. ACTA ACUST UNITED AC 2021; 29:23-38. [PMID: 33420969 DOI: 10.1007/s40199-020-00378-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Alzheimer's disease (AD) is a multifaceted neurodegenerative disease. To target simultaneously multiple pathological processes involved in AD, natural-origin compounds with unique characteristics are promising scaffolds to develop novel multi-target compounds in the treatment of different neurodegenerative disease, especially AD. In this study, novel chromone-lipoic acid hybrids were prepared to find a new multifunctional lead structure for the treatment of AD. METHODS Chromone-lipoic acid hybrids were prepared through click reaction and their neuroprotection and anticholinesterase activity were fully evaluated. The anti-amyloid aggregation, antioxidant and metal-chelation activities of the best compound were also investigated by standard methods to find a new multi-functional agent against AD. RESULTS The primary biological screening demonstrated that all compounds had significant neuroprotection activity against H2O2-induced cell damage in PC12 cells. Compound 19 as the most potent butyrylcholinesterase (BuChE) inhibitor (IC50 = 7.55 μM) having significant neuroprotection activity as level as reference drug was selected for further biological evaluations. Docking and kinetic studies revealed non-competitive mixed-type inhibition of BuChE by compound 19. It could significantly reduce formation of the intracellular reactive oxygen species (ROS) and showed excellent reducing power (85.57 mM Fe+2), comparable with quercetin and lipoic acid. It could also moderately inhibit Aβ aggregation and selectively chelate with copper ions in 2:1 M ratio. CONCLUSION Compound 19 could be considered as a hopeful multifunctional agent for the further development gainst AD owing to the acceptable neuroprotective and anti-BuChE activity, moderate anti-Aβ aggregation activity, outstanding antioxidant activity as well as selective copper chelation ability. A new chromone-lipoic acid hybrid was synthesized as anti-Alzheimer agent with BuChE inhibitory activity, anti-Aβ aggregation, metal-chelation and antioxidant properties.
Collapse
Affiliation(s)
- Leili Jalili-Baleh
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Nadri
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, Hacettepe University, Ankara, Turkey
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Foroumadi
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
50
|
Development of genistein-O-alkylamines derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Chem 2021; 107:104602. [PMID: 33453647 DOI: 10.1016/j.bioorg.2020.104602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/01/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
The multi-target-directed ligands have been regarded as the promising multifunctional agents for the treatment of Alzheimer's disease (AD). Based on our previous work, a series of genistein-O-alkylamines derivatives was developed to further explore the structure-activity-relationship. The results showed that compound 7d indicated reversible and highly selective hAChE inhibitory activity with IC50 value of 0.53 μM. Compound 7d also displayed good antioxidant activity (ORAC = 1.1 eq.), promising neuroprotective effect and selective metal chelation property. Moreover, compound 7d significantly inhibited self-induced, hAChE-induced and Cu2+-induced Aβ aggregation with 39.8%, 42.1% and 74.1%, respectively, and disaggregated Cu2+-induced Aβ1-42 aggregation (67.3%). In addition, compound 7d was a potential autophagy inducer and improved the levels of GPX4 protein. Furthermore, compound 7d presented good blood-brain-barrier permeability in vitro. More importantly, compound 7d did not show any acute toxicity at doses of up to 1000 mg/kg and presented good precognitive effect on scopolamine-induced memory impairment. Therefore, compound 7d was a promising multifunctional agent for the development of anti-AD drugs.
Collapse
|