1
|
Zhu L, Fu S, Ma L, Chen Z, Zeng Q, Li R, Zhou Y, Qian H, Meng X, Ge J. Reversing an agonist into an inhibitor: Development of mTOR degraders. Eur J Med Chem 2025; 294:117774. [PMID: 40398155 DOI: 10.1016/j.ejmech.2025.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Targeted protein degradation using proteolysis-targeting chimeras (PROTACs) has emerged as a powerful strategy for modulating protein function. In this study, we developed mTOR-targeting PROTACs by conjugating the mTOR agonist MHY-1485 to the Cereblon (CRBN) ligand pomalidomide, demonstrating that even activators can serve as effective warheads for targeted protein degradation. Through systematic screening, we identified PD-M6 as a potent bifunctional molecule capable of degrading mTOR (DC50 = 4.8 μM), reversing the proliferative effects of MHY-1485, and inhibiting cell proliferation (IC50 = 11.3 μM) while inducing autophagy, akin to the mTOR known inhibitor rapamycin. Proteomic analysis further revealed that PD-M6 downregulated key proteins in the mTOR signaling pathway, including LAMTOR1, MAPKAP1, and CASTOR1, which are involved in proteasome-mediated degradation, cell division, apoptosis, and lysosomal signaling. Notably, PD-M6 specifically induced the degradation of LAMTOR1. These findings highlight a novel approach for designing PROTACs from agonists, broadening the scope of targeted protein degradation strategies for therapeutic applications.
Collapse
Affiliation(s)
- Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, PR China
| | - Siyi Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Longfei Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zhe Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ruichen Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yiyu Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Huijuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, PR China.
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Younis AM, Attia G, Saleh MM, Ibrahim MAA, Hegazy MEF, Paré PW, El-Tayeb MA, Sidhom PA, Kabbash A, Ibrahim ARS. The use of the white biotechnology toolkit to edit natural purines for studying their anticancer activity via mTOR pathway. Bioorg Chem 2025; 159:108391. [PMID: 40154233 DOI: 10.1016/j.bioorg.2025.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
Purine alkaloids were proven to have significant cytotoxic activity against different cancer cell lines via modulating several cellular pathways, leading to inhibition of cell proliferation and increasing cell death. The search for new potential cytotoxic compounds produced by natural eco-friendly means is of great importance. The microbial transformation of natural purine alkaloids, caffeine (Cf), theophylline (Tp), theobromine (Tb), and theacrine (Tc) via filamentous fungi was explored using Aspergillus versicolor (AUMC 4807), Aspergillus niger (NRRL 328), Cunninghamella echinulata (ATCC 1382), and Penicillium chrysogeneum (ATCC 9480). Nine metabolites were isolated via demethylation, and oxidation reactions, namely; 1.3.7-trimethyl uric acid (M1), theacrine (M2), theobromine (M3), paraxanthine (M4), theophylline (M5), 3-methylxanthine (M6), caffeine (M7), 7-methylxanthine (M8) and 3,7,9-trimethyl uric acid (M9). The structure elucidation of the metabolites was based primarily on 1D, 2D-NMR analyses and HRMS. In vitro cytotoxic activity of metabolites was evaluated against CNS (SNB-75) and melanoma (MDA-MB-435) cancer cell lines. Based on the pharmacophore and structural similarity, mTOR enzyme inhibition assay was carried out, and results were confirmed by molecular docking and molecular dynamic studies using mTOR as the target enzyme. Furthermore, the binding mode of M9 with mTOR was investigated using docking computations. The steadiness and binding affinities of compound M9 in complex with mTOR were estimated and compared to caffeine (M7) over the 100 ns MD course. Results confirmed that M9 has great potential as a cytotoxic agent with experimentally proved safety that can be produced by biotransformation.
Collapse
Affiliation(s)
- Ahmed M Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ghada Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Nizwa 611, Oman; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Zhang X, Hong Y, Hu C, Zhai Y, Pan N, Ding L, Han W, Cui W. Chryxanthone A, an extracted substance from endophytic fungal Aspergillus versicolor, produces anti-oxidant neuroprotection possibly via the action on mTOR/CREB axis. Gene 2025; 944:149298. [PMID: 39884402 DOI: 10.1016/j.gene.2025.149298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Neurons are susceptible to oxidative stress due to the elevated reactive oxygen species (ROS) production and the limited antioxidant defense mechanisms. Therefore, it is possible to treat oxidative stress-related neurological disorders via the inhibition of oxidative stress. Chryxanthone A is an extracted substance derived from the endophytic fungal Aspergillus versicolor, with an atypical dihydropyran ring. However, it is unknown whether and how chryxanthone A could produce anti-oxidant protection. PURPOSES The activity and mechanisms underlying the anti-oxidant protection of chryxanthone A were explored in the study. STUDY DESIGN AND METHODS HT22 neuronal cells were used to evaluate the anti-oxidant protection of chryxanthone A. Comprehensive bioinformatic methods, including RNA-seq analysis, transcription factor prediction, CMap prediction and molecular docking analysis, were utilized to explore the molecular mechanisms how chryxanthone A prevented oxidative stress, which was confirmed by Western blotting analysis. RESULTS Chryxanthone A concentration-dependently prevented H2O2-induced cell death and increase in intracellular ROS in HT22 cells. Results from RNA-seq and bioinformatic analysis indicated that chryxanthone A might act on mTOR/CREB axis, possibly via binding to the Val2227 site within ATP binding pocket of mTOR. The action of chryxanthone A on H2O2-induced alteration of mTOR/CREB axis were further confirmed in HT22 cells. CONCLUSION These results suggested that chryxanthone A produced anti-oxidant protection via the action on mTOR/CREB axis, providing a support that chryxanthone A might be developed as a novel drug candidate for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Xinyu Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Zhejiang 315211, China; Department of Marine Pharmacy, Ningbo University, Zhejiang 315211, China
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Yijie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Nanyi Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Zhejiang 315211, China; Department of Marine Pharmacy, Ningbo University, Zhejiang 315211, China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China.
| |
Collapse
|
4
|
Li Y, Han Q, Sun Q, Wang X, Ran Y, Ma Y, Lu J, Jin Z, Huang J, Wang Y, Wang J, Chai Y, Li H, Zhang JQ. Discovery of highly potent mTOR inhibitors aimed at suppressing the progression of acute myeloid leukemia. Bioorg Chem 2025; 157:108287. [PMID: 40010131 DOI: 10.1016/j.bioorg.2025.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Acute myeloid leukemia (AML) is a common hematological malignancy with complex etiology; however, current standard chemotherapy regimens for AML show limited efficacy and unsatisfactory tolerability. Herein, a novel class of trisubstituted triazine mTOR inhibitors was designed and synthesized, and the optimal compound, HPT-11, exhibited potent inhibition against mTOR kinase and Molm-13 cell proliferation activities with inhibitory IC50 values of 0.7 and 12 nM, respectively. An antitumor mechanism investigation demonstrated that HPT-11 could potently block the downstream signaling pathway of mTOR and effectively induce apoptosis and autophagy. In addition, in vitro metabolic stability tests further confirmed the stable profiles of HPT-11 in artificial gastrointestinal fluids, rat plasma, and liver microsomes incubating conditions. Overall, our current medicinal chemistry work confirmed that compound HPT-11 is a potent mTOR inhibitor with promising activity in vitro, suggesting its potential as a candidate for further development in the treatment of AML.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Qiu Han
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Qiwen Sun
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Xue Wang
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, PR China
| | - Yunsheng Ran
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Yifei Ma
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Jiangrong Lu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Ziqi Jin
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, PR China
| | - Jing Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Yujie Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Jianta Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China
| | - Yue'e Chai
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China.
| | - Hongliang Li
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, PR China.
| | - Ji-Quan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, P.R. China.
| |
Collapse
|
5
|
Molefi T, Mabonga L, Hull R, Mwazha A, Sebitloane M, Dlamini Z. The Histomorphology to Molecular Transition: Exploring the Genomic Landscape of Poorly Differentiated Epithelial Endometrial Cancers. Cells 2025; 14:382. [PMID: 40072110 PMCID: PMC11898822 DOI: 10.3390/cells14050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
The peremptory need to circumvent challenges associated with poorly differentiated epithelial endometrial cancers (PDEECs), also known as Type II endometrial cancers (ECs), has prompted therapeutic interrogation of the prototypically intractable and most prevalent gynecological malignancy. PDEECs account for most endometrial cancer-related mortalities due to their aggressive nature, late-stage detection, and poor response to standard therapies. PDEECs are characterized by heterogeneous histopathological features and distinct molecular profiles, and they pose significant clinical challenges due to their propensity for rapid progression. Regardless of the complexities around PDEECs, they are still being administered inefficiently in the same manner as clinically indolent and readily curable type-I ECs. Currently, there are no targeted therapies for the treatment of PDEECs. The realization of the need for new treatment options has transformed our understanding of PDEECs by enabling more precise classification based on genomic profiling. The transition from a histopathological to a molecular classification has provided critical insights into the underlying genetic and epigenetic alterations in these malignancies. This review explores the genomic landscape of PDEECs, with a focus on identifying key molecular subtypes and associated genetic mutations that are prevalent in aggressive variants. Here, we discuss how molecular classification correlates with clinical outcomes and can refine diagnostic accuracy, predict patient prognosis, and inform therapeutic strategies. Deciphering the molecular underpinnings of PDEECs has led to advances in precision oncology and protracted therapeutic remissions for patients with these untamable malignancies.
Collapse
Affiliation(s)
- Thulo Molefi
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
- Department of Medical Oncology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lloyd Mabonga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| | - Absalom Mwazha
- Department of Anatomical Pathology, National Health Laboratory Services, Durban 4058, South Africa
| | - Motshedisi Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| |
Collapse
|
6
|
Li H, Gong Y, Wang Y, Sang W, Wang C, Zhang Y, Zhang H, Liu P, Liu M, Sun H. β-Sitosterol modulates osteogenic and adipogenic balance in BMSCs to suppress osteoporosis via regulating mTOR-IMP1-Adipoq axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156400. [PMID: 39848018 DOI: 10.1016/j.phymed.2025.156400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Osteoporosis (OP) is a prevalent global health concern, impacting millions of individuals, especially the elderly. The etiology of senile OP is associated with the imbalance of osteogenic and adipogenic differentiation in the bone marrow mesenchymal stem cells (BMSCs). The imbalance of BMSCs differentiation fate will leading to bone loss and lipids accumulation. β-sitosterol, a naturally occurring phytosterol which is abundant in plants and has a similar structure to cholesterol, demonstrates diverse bioactivities, including lipid-lowering effect and osteogenesis-inducing effects. These effects indicate that β-sitosterol might have anti-OP effects. Nevertheless, the precise mechanism underlying β-sitosterol's anti-osteoporotic efficacy via modulating BMSCs differentiation fate remains obscure. PURPOSE This study endeavors to elucidate whether β-sitosterol has the potential to augment the osteogenic differentiation of BMSCs while mitigating their adipogenic differentiation, thereby exerting an anti-OP effect; and to reveal its molecular mechanisms of action. METHODS In this study, a dosage form HP-β-cyclodextrin-coated β-sitosterol was developed for intragastric administration in mice to enhancing its bioavailability. Subsequently by using an integrative approach encompassing bioinformatics, computer molecular simulations, high-throughput sequencing, and in vitro/vivo as well as in-tube experiments, we investigated the anti-osteoporotic and bone healing effects of β-sitosterol and delineated its underlying mechanisms. RESULTS Our findings demonstrate that β-sitosterol exhibits anti-osteoporotic and bone healing effects both in vitro and in vivo by modulating the osteogenic and adipogenic differentiation of BMSCs. Mechanistically, these effects are mediated through the direct inhibition of mTOR's kinase activity independent of mediating autophagy, leading to the suppression of the mTOR-IMP1-Adipoq axis in BMSCs. CONCLUSION These results unveil β-sitosterol as a promising therapeutic agent for OP, shedding light on its underlying mechanisms. This research contributes potential candidates for diagnostic and therapeutic interventions in the realm of OP.
Collapse
Affiliation(s)
- Hao Li
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ying Gong
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yanna Wang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wanyu Sang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yukun Zhang
- Three Gorges Medical College, Wanzhou, Chongqing, China
| | - Hanrui Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Peixuan Liu
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Huijun Sun
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Mubarak HM, Racette BA, Killion JA, Faust IM, Laurido-Soto OJ, Doddamreddy SA, Searles Nielsen S. Exploring the neuroprotective potential of immunosuppressants in Parkinson's disease. Parkinsonism Relat Disord 2025; 132:107294. [PMID: 39874798 DOI: 10.1016/j.parkreldis.2025.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Neuroprotective therapy to slow Parkinson's disease (PD) progression is a critical unmet need. Neuroinflammation likely represents an important pathophysiologic mechanism for disease progression. Medications that target this inflammation, such as immunosuppressants, represent potential disease-modifying therapies for PD. The relation between these medications and PD risk might inform candidate selection. METHODS We conducted a population-based case-control study using Medicare data from the United States. The study included 207,532 incident PD cases and 975,177 controls from 2016 to 2018, age 67-110. We examined the association between PD risk and immunosuppressant use before PD diagnosis/control selection. We considered 37 immunosuppressants, representing >10 medication classes, in Part D prescription claims. We used logistic regression to estimate the relative risk (RR) and 95 % confidence interval (CI) between each medication and PD, while accounting for age, sex, race/ethnicity, smoking, and healthcare utilization. In sensitivity analyses we applied exposure lagging, restricted to immunosuppressant users, and corrected for multiple comparisons. RESULTS Medicare beneficiaries using the calcineurin inhibitor tacrolimus (RR 0.49, CI 0.40-0.60) and mTOR inhibitors everolimus (RR 0.38, CI 0.26-0.56) and sirolimus (RR 0.59, CI 0.37-0.93) had a lower risk of PD compared to those not taking the medication. The TNF inhibitor certolizumab was also associated with lower PD risk (RR 0.54, CI 0.34-0.84). Tacrolimus and everolimus remained significant after Bonferroni correction. Sensitivity analyses otherwise confirmed results for all four medications. CONCLUSION Calcineurin or mTOR inhibition might reduce PD risk. Future studies should examine whether these medications or structurally similar agents might have potential as disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Huiam M Mubarak
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| | - Brad A Racette
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ, 85013, USA; Department of Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO, 63110, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Rd, Parktown, 2193, South Africa.
| | - Jordan A Killion
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| | - Irene M Faust
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| | - Osvaldo J Laurido-Soto
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Sai Anmisha Doddamreddy
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Wang J, Huang Y, Wang Z, Liu J, Liu Z, Yang J, He Z. The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines 2025; 13:397. [PMID: 40002810 PMCID: PMC11853667 DOI: 10.3390/biomedicines13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Heart disease, including myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathy, remains a leading cause of mortality worldwide. The mammalian target of rapamycin (mTOR) is a centrally regulated kinase that governs key cellular processes, including growth, proliferation, metabolism, and survival. Notably, mTOR plays a pivotal role in cardiovascular health and disease, particularly in the onset and progression of cardiac conditions. In this review, we discuss mTOR's structure and function as well as the regulatory mechanisms of its associated signaling pathways. We focus on the molecular mechanisms by which mTOR signaling regulates cardiac diseases and the potential of mTOR inhibitors and related regulatory drugs in preventing these conditions. We conclude that the mTOR signaling pathway is a promising therapeutic target for heart disease.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Yuxuan Huang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhaoxia Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Jing Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhijian Liu
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Zuping He
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
9
|
Liu Z, Jia J. Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice. Mol Neurobiol 2025; 62:2191-2202. [PMID: 39088030 DOI: 10.1007/s12035-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease associated with aging, characterized by progressive cognitive impairment and memory loss. However, treatments that delay AD progression or improve its symptoms remain limited. The aim of the present study was to investigate the therapeutic effects of omaveloxolone (Omav) on AD and to explore the underlying mechanisms. Thirty-week-old APP/PS1 mice were selected as an experimental model of AD. The spatial learning and memory abilities were tested using the Morris water maze. Amyloid-beta (Aβ) deposition in the brains was measured using immunohistochemistry. Network pharmacological analyses and molecular docking were conducted to gain insights into the therapeutic mechanisms of Omav. Finally, validation analyses were conducted to detect changes in the associated pathways and proteins. Our finding revealed that Omav markedly rescued cognitive dysfunction and reduced Aβ deposition in the brains of APP/PS1 mice. Network pharmacological analysis identified 112 intersecting genes, with CASP3 and MTOR emerging as the key targets. In vivo validation experiments indicated that Omav attenuated neuronal apoptosis by regulating apoptotic proteins, including caspase 3, Bax, and Bcl-2. Moreover, Omav suppressed neuroinflammation and induced autophagy by inhibiting the phosphorylation of mTOR. These findings highlight the therapeutic efficacy of Omav in AD and that its neuroprotective effects were associated with inhibiting neuronal apoptosis and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zhaojun Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, PR China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, PR China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, PR China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, PR China.
| |
Collapse
|
10
|
Zhong H, Zhou Z, Wang H, Wang R, Shen K, Huang R, Wang Z. The Biological Roles and Clinical Applications of the PI3K/AKT Pathway in Targeted Therapy Resistance in HER2-Positive Breast Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:13376. [PMID: 39769140 PMCID: PMC11677710 DOI: 10.3390/ijms252413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) is a highly invasive and malignant type of tumor. Due to its resistance to HER2-targeted therapy, HER2+ BC has a poor prognosis and a tendency for metastasis. Understanding the mechanisms underlying this resistance and developing effective treatments for HER2+ BC are major research challenges. The phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway, which is frequently altered in cancers, plays a critical role in cellular proliferation and drug resistance. This signaling pathway activates various downstream pathways and exhibits complex interactions with other signaling networks. Given the significance of the PI3K/AKT pathway in HER2+ BC, several targeted drugs are currently in development. Multiple drugs have entered clinical trials or gained market approval, bringing new hope for HER2+ BC therapy. However, new drugs and therapies raise concerns related to safety, regulation, and ethics. Populations of different races and disease statuses exhibit varying responses to treatments. Therefore, in this review, we summarize current knowledge on the alteration and biological roles of the PI3K/AKT pathway, as well as its clinical applications and perspectives, providing new insights for advancing targeted therapies in HER2+ BC.
Collapse
Affiliation(s)
| | | | | | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.Z.); (Z.Z.); (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.Z.); (Z.Z.); (H.W.); (R.W.); (K.S.)
| |
Collapse
|
11
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
12
|
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S, Wang Y, Chen X, Yan X, Xu H, Li S, Feng L, Xie X. TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci 2024; 14:68. [PMID: 38824577 PMCID: PMC11143692 DOI: 10.1186/s13578-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
Collapse
Affiliation(s)
- Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chuxin Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yifan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
13
|
Xie PL, Zheng MY, Han R, Chen WX, Mao JH. Pharmacological mTOR inhibitors in ameliorating Alzheimer's disease: current review and perspectives. Front Pharmacol 2024; 15:1366061. [PMID: 38873415 PMCID: PMC11169825 DOI: 10.3389/fphar.2024.1366061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Traditionally, pharmacological mammalian/mechanistic targets of rapamycin (mTOR) kinase inhibitors have been used during transplantation and tumor treatment. Emerging pre-clinical evidence from the last decade displayed the surprising effectiveness of mTOR inhibitors in ameliorating Alzheimer's Disease (AD), a common neurodegenerative disorder characterized by progressive cognitive function decline and memory loss. Research shows mTOR activation as an early event in AD development, and inhibiting mTOR may promote the resolution of many hallmarks of Alzheimer's. Aberrant protein aggregation, including amyloid-beta (Aβ) deposition and tau filaments, and cognitive defects, are reversed upon mTOR inhibition. A closer inspection of the evidence highlighted a temporal dependence and a hallmark-specific nature of such beneficial effects. Time of administration relative to disease progression, and a maintenance of a functional lysosomal system, could modulate its effectiveness. Moreover, mTOR inhibition also exerts distinct effects between neurons, glial cells, and endothelial cells. Different pharmacological properties of the inhibitors also produce different effects based on different blood-brain barrier (BBB) entry capacities and mTOR inhibition sites. This questions the effectiveness of mTOR inhibition as a viable AD intervention strategy. In this review, we first summarize the different mTOR inhibitors available and their characteristics. We then comprehensively update and discuss the pre-clinical results of mTOR inhibition to resolve many of the hallmarks of AD. Key pathologies discussed include Aβ deposition, tauopathies, aberrant neuroinflammation, and neurovascular system breakdowns.
Collapse
Affiliation(s)
- Pei-Lun Xie
- University College London, London, United Kingdom
| | | | - Ran Han
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Xin Chen
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Hua Mao
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Sun Q, Chu Y, Zhang N, Chen R, Wang L, Wu J, Dong Y, Li H, Wang L, Tang L, Zhan C, Zhang JQ. Design, Synthesis, Formulation, and Bioevaluation of Trisubstituted Triazines as Highly Selective mTOR Inhibitors for the Treatment of Human Breast Cancer. J Med Chem 2024; 67:7330-7358. [PMID: 38661655 DOI: 10.1021/acs.jmedchem.4c00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The aberrant activation of the PI3K/mTOR signaling pathway is implicated in various human cancers. Thus, the development of inhibitors targeting mTOR has attracted considerable attention. In this study, we used a structure-based drug design strategy to discover a highly potent and kinase-selective mTOR inhibitor 24 (PT-88), which demonstrated an mTOR inhibitory IC50 value of 1.2 nM without obvious inhibition against another 195 kinases from the kinase profiling screening. PT-88 displayed selective inhibition against MCF-7 cells (IC50: 0.74 μM) with high biosafety against normal cells, in which autophagy induced by mTOR inhibition was implicated. After successful encapsulation in a lipodisc formulation, PT-88 demonstrated favorable pharmacokinetic and biosafety profiles and exerted a large antitumor effect in an MCF-7 subcutaneous bearing nude mice model. Our study shows the discovery of a highly selective mTOR inhibitor using a structure-based drug discovery strategy and provides a promising antitumor candidate for future study and development.
Collapse
Affiliation(s)
- Qiwen Sun
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Yuxiu Chu
- Department of Pharmacy, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Nana Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Rui Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Lili Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Jiangxia Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yongxi Dong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Hongliang Li
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming 650091, China
| | - Ling Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| |
Collapse
|
15
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Yang X, Liu S, Wang C, Fan H, Zou Q, Pu Y, Cai Z. Dietary salt promotes cognition impairment through GLP-1R/mTOR/p70S6K signaling pathway. Sci Rep 2024; 14:7970. [PMID: 38575652 PMCID: PMC10995169 DOI: 10.1038/s41598-024-57998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.
Collapse
Affiliation(s)
- Xu Yang
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, People's Republic of China
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Shu Liu
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Chuanling Wang
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
- Department of Pathophysiology, School of Basic Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Haixia Fan
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Yingshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China
| | - Zhiyou Cai
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, People's Republic of China.
- Department of Neurology, Chongqing General Hospital, Chongqing university, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing No. 312, Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China.
- Department of Neurology, Chongqing General Hospital, No. 312 Zhongshan First Road, Yuzhong District, Chongqing, 400013, People's Republic of China.
| |
Collapse
|
17
|
Yang L, Liao W, Dong J, Chen X, Huang L, Yang W, Jiang S. Zearalenone Promotes Uterine Hypertrophy through AMPK/mTOR Mediated Autophagy. Toxins (Basel) 2024; 16:73. [PMID: 38393151 PMCID: PMC10892946 DOI: 10.3390/toxins16020073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Zearalenone (ZEN), a non-steroidal Fusarium graminearum with an estrogen effect, can cause damage to the gastrointestinal tract, immune organs, liver, and reproductive system. Further analysis of the mechanism of ZEN has become an important scientific issue. We have established in vivo and in vitro models of ZEN intervention, used AMPK/mTOR as a targeted pathway for ZEN reproductive toxicity, and explored the molecular mechanism by which ZEN may induce uterine hypertrophy in weaned piglets. Our study strongly suggested that ZEN can activate the phosphorylation of AMPK in uterine endometrial epithelium cells, affect the phosphorylation level of mTOR through TSC2 and Rheb, induce autophagy, upregulate the expression of proliferative genes PCNA and BCL2, downregulate the expression of apoptotic gene BAX, promote uterine endometrial epithelium cells proliferation, and ultimately lead to thickening of the endometrial and myometrium, increased density of uterine glands, and induce uterine hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.Y.); (W.L.); (J.D.); (X.C.); (L.H.); (W.Y.)
| |
Collapse
|
18
|
Lin X, Deng N, Li H, Duan J, Chen W, Liu T, Sun S, Chu J. The skin photoprotective effect of trilinolein: Induction of cellular autophagy via the AMPK-mTOR signaling pathway. Toxicol Appl Pharmacol 2024; 483:116836. [PMID: 38272316 DOI: 10.1016/j.taap.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Trilinolein (TL) is an active substance contained in traditional Chinese herbs; modern studies have shown that trilinolein has anti-inflammatory and antioxidant effects on the body. This study delves into the photoprotective effect of trilinolein on UVB-irradiated Human Skin Fibroblast (HSF) cells and the underlying mechanisms. Our findings reveal that trilinolein had a photoprotective effect on HSF cells: trilinolein enhanced cellular autophagy, restored UVB-inhibited cell proliferative viability, and curbing UVB-induced reactive oxygen species (ROS) and apoptosis. Intriguingly, after inhibition of TL-induced autophagy via wortmannin, diminished trilinolein's photoprotective effects. Meanwhile, trilinolein was shown to modulate the AMPK-mTOR signaling pathway, thus enhance cellular autophagy in HSF cells, and this tendency was suppressed after the administration of compound C (AMPK inhibitor). In a mouse model of skin photodamage, trilinolein significantly mitigated photodamage extent through morphological and histopathological analyses. This study illuminates trilinolein could inhibit the photodamaging effects of UVB irradiation by regulating cellular autophagy through the AMPK-mTOR signaling pathway, suggesting its promising application in combating UV-induced skin disorders.
Collapse
Affiliation(s)
- Xianghong Lin
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Na Deng
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Huijuan Li
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Jingxian Duan
- Medical Cosmetology Teaching and Research Section, College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Wenqiu Chen
- College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Tao Liu
- Department of Skin Medical Beauty, People's Hospital of Pengshui County, Pengshui 409600, Chongqing, China
| | - Sujiao Sun
- Medical Cosmetology Teaching and Research Section, College of Clinical Medicine, Dali University, Dali 671000, Yunnan, China.
| | - Jimin Chu
- Department of Skin Medical Beauty, People's Hospital of Pengshui County, Pengshui 409600, Chongqing, China.
| |
Collapse
|
19
|
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, Hua S. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm (Beijing) 2024; 5:e474. [PMID: 38318160 PMCID: PMC10838672 DOI: 10.1002/mco2.474] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Traditional treatment methods such as surgical resection, radiotherapy, chemotherapy, and interventional therapies have limited therapeutic effects for HCC patients with recurrence or metastasis. With the development of molecular biology and immunology, molecular signaling pathways and immune checkpoint were identified as the main mechanism of HCC progression. Targeting these molecules has become a new direction for the treatment of HCC. At present, the combination of targeted drugs and immune checkpoint inhibitors is the first choice for advanced HCC patients. In this review, we mainly focus on the cutting-edge research of signaling pathways and corresponding targeted therapy and immunotherapy in HCC. It is of great significance to comprehensively understand the pathogenesis of HCC, search for potential therapeutic targets, and optimize the treatment strategies of HCC.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xin He
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xingmei Zhang
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaohui Zhao
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yuzhe Zhang
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yusheng Shi
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Shengni Hua
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
20
|
Zhang Q, Sun G, Huang Y, Cui S, Li T, Zhao L, Lu K, Yu P, Zhang Y, Galons H, Oumata N, Teng Y. Synthesis and mechanism of action of new purine derivatives against triple negative breast cancer. Eur J Med Chem 2023; 261:115797. [PMID: 37708799 DOI: 10.1016/j.ejmech.2023.115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Triple negative breast cancer (TNBC) is considered to be the most difficult subtype of breast cancer to treat because of its extremely prone to metastasis and the lack of targeted therapy drugs. New purine derivatives were synthesized and evaluated in a series of kinases and cell lines. The most active compounds 3g and 3j were selected based on their antiproliferative activities, then their pharmaceutical activity and mechanism in MDA-MB-231 cells were analyzed. The results in vitro indicated that compounds 3g and 3j can induce MDA-MB-231 cells apoptosis, and inhibit its migration and angiogenesis through influencing protein expression such as Bcl-2, Bax, Bcl-xl, P38, MMP2, MMP9, AKT and EGFR. In vivo results indicate that compounds 3g and 3j can inhibit tumor growth and metastasis and reduce the expression of Ki67 and CD31 protein in TNBC xenograft models. These findings not only broaden our understanding of the anti-TNBC effects and mechanisms of compounds 3g and 3j, but also provide new ideas and reference directions for the treatment of TNBC.
Collapse
Affiliation(s)
- Qian Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guoyang Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuna Huang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shanshan Cui
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tingshen Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lianbo Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR8232 CNRS, 4 place Jussieu, 75005, Paris, France
| | - Herve Galons
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China; Université Paris Cité, 4, avenue de l'Observatoire, 75006, Paris, France
| | - Nassima Oumata
- Université Paris Cité, 4, avenue de l'Observatoire, 75006, Paris, France
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China; Université Paris Cité, 4, avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
21
|
Wang N, Zhou K, Liang Z, Sun R, Tang H, Yang Z, Zhao W, Peng Y, Song P, Zheng S, Xie H. RapaLink-1 outperforms rapamycin in alleviating allogeneic graft rejection by inhibiting the mTORC1-4E-BP1 pathway in mice. Int Immunopharmacol 2023; 125:111172. [PMID: 37951193 DOI: 10.1016/j.intimp.2023.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Inhibition of mammalian target of rapamycin (mTOR), which is a component of both mTORC1 and mTORC2, leads to clinical benefits for organ transplant recipients. Pathways to inhibit mTOR include strengthening the association of FKBP12-mTOR or competing with ATP at the active site of mTOR, which have been applied to the design of first- and second-generation mTOR inhibitors, respectively. However, the clinical efficacy of these mTOR inhibitors may be limited by side effects, compensatory activation of kinases and attenuation of feedback inhibition of receptor expression. A new generation of mTOR inhibitors possess a core structure similar to rapamycin and covalently link to mTOR kinase inhibitors, resulting in moderate selectivity and potent inhibition of mTORC1. Since the immunosuppressive potential of this class of compounds remains unknown, our goal is to examine the therapeutic efficacy of a third-generation mTOR inhibitor in organ transplantation. In this study, RapaLink-1 outperformed rapamycin in inhibiting T-cell proliferation and significantly prolonged graft survival time. Mechanistically, the ameliorated rejection induced by RapaLink-1 is associated with a reduction in p-4E-BP1 in T cells, resulting in an elevation in Treg cells alongside a decline in Th1 and Th17 cells. For the first time, these studies demonstrate the effectiveness of third-generation mTOR inhibitors in inhibiting allograft rejection, highlighting the potential of this novel class of mTOR inhibitors for further investigation.
Collapse
Affiliation(s)
- Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Lung Transplantation and Thoracic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
22
|
Vlasova VV, Shmagel KV. T Lymphocyte Metabolic Features and Techniques to Modulate Them. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1857-1873. [PMID: 38105204 DOI: 10.1134/s0006297923110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/27/2023] [Indexed: 12/19/2023]
Abstract
T cells demonstrate high degree of complexity and broad range of functions, which distinguish them from other immune cells. Throughout their lifetime, T lymphocytes experience several functional states: quiescence, activation, proliferation, differentiation, performance of effector and regulatory functions, memory formation, and apoptosis. Metabolism supports all functions of T cells, providing lymphocytes with energy, biosynthetic substrates, and signaling molecules. Therefore, T cells usually restructure their metabolism as they transition from one functional state to another. Strong association between the metabolism and T cell functions implies that the immune response can be controlled by manipulating metabolic processes within T lymphocytes. This review aims to highlight the main metabolic adaptations necessary for the T cell function, as well as the recent progress in techniques to modulate metabolic features of lymphocytes.
Collapse
Affiliation(s)
- Violetta V Vlasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia.
| | - Konstantin V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| |
Collapse
|
23
|
Zhang NN, Ban YJ, Wang YJ, He SY, Qi PP, Bi T, Ma YF, Dong YX, Guo B, Weng J, Li HL, Tang L, Zhang JQ. Virtual screening of novel mTOR inhibitors for the potential treatment of human colorectal cancer. Bioorg Chem 2023; 140:106781. [PMID: 37597440 DOI: 10.1016/j.bioorg.2023.106781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
The abnormal activation of the mTOR pathway is closely related to the occurrence and progression of cancer, especially colorectal cancer. In this study, a rational virtual screening strategy has been established and MT-5, a novel mTOR inhibitor with a quinoline scaffold, was obtained from the ChemDiv database. MT-5 showed potent kinase inhibitory activity (IC50: 8.90 μM) and antiproliferative effects against various cancer cell lines, especially HCT-116 cells (IC50: 4.61 μM), and this was 2.2-fold more potent than that of the cisplatin control (IC50: 9.99 μM). Western blot, cell migration, cycle arrest, and apoptosis assays were performed with HCT-116 cells to investigate the potential anticancer mechanism of MT-5. Metabolic stability results in vitro indicated that MT-5 exhibited good stability profiles in artificial gastrointestinal fluids, rat plasma, and liver microsomes. In addition, the key contribution of the residues around the binding pocket of MT-5 in binding to the mTOR protein was also investigated from a computational perspective.
Collapse
Affiliation(s)
- Na-Na Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Yu-Juan Ban
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Yu-Jie Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Si-Yu He
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Pan-Pan Qi
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Ting Bi
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yi-Fei Ma
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yong-Xi Dong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Jiang Weng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Liang Li
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming 650091, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
24
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
25
|
Gao X, Zhao F, Wang Y, Ma X, Chai H, Han J, Fang F. Discovery of novel hybrids of mTOR inhibitor and NO donor as potential anti-tumor therapeutics. Bioorg Med Chem 2023; 91:117402. [PMID: 37421709 DOI: 10.1016/j.bmc.2023.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Nitric oxide (NO) may be beneficial to overcoming drug resistance resulting from mutation of mTOR kinases and bypass mechanisms. In this study, a novel structural series of hybrids of mTOR inhibitor and NO donor were designed and synthesized via structure-based drug design (SBDD). Throughout the 20 target compounds, half of the compounds (13a, 13b, 19a-19d, 19f-19j) demonstrated attractive mTOR inhibitory activity with IC50 at single-digit nanomolar level. In particular, 19f exerted superior anti-proliferative activity against HepG2, MCF-7, HL-60 cells (HepG2, IC50 = 0.24 μM; MCF-7, IC50 = 0.88 μM; HL-60, IC50 = 0.02 μM) to that of the clinical investigated mTOR inhibitor MLN0128, and show mild cytotoxicity against normal cells with IC50 over 10 μM. 19a, with the most potent mTOR inhibitory activity in this series (IC50 = 3.31 nM), also displayed attractive cellular potency. In addition, 19f treatment in HL-60 reduces the levels of Phos-Akt and Phos-S6 in a dose-dependent manner, and releases NO in cells. In summary, 19f deserves further development as a novel mTOR-based multi-target anti-cancer agent.
Collapse
Affiliation(s)
- Xin Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Huayi Chai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingjing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
26
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
27
|
Dai Q, Zhang J, Long W, Haybaeck J, Yang Z. Genetic alterations of GI-NECs involving three main signaling pathways. Cancer Med 2023; 12:8238-8250. [PMID: 36653904 PMCID: PMC10134267 DOI: 10.1002/cam4.5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI)-neuroendocrine neoplasms (NENs) are subclassified in neuroendocrine tumors (NETs), neuroendocrine carcinomas (NECs), and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs). The genetic characteristics of GI-NEN has been a hot issue in recent years, but more studies are needed to provide further details. This study aims to provide additional data about genomic characteristics of GI-NENs and the genetic differences between NETs and NECs. PATIENTS AND METHODS Thirteen samples were selected for next-generation sequencing (NGS) analysis with a 425-gene panel. Microsatellite instability (MSI) and tumor mutational burden (TMB) were calculated as well as immunohistochemistry (IHC) was used to test for protein expression. RESULTS Genetic alterations were very common in NECs, but rare in NETs. The average TMB of NETs and NECs was 2.3 and 6.9, respectively. The TMB of NECs was significantly higher compared to NETs. The TP53 mutation rate was significantly higher in NECs than in NETs (100% vs. 20%), other mutations involved MTOR (n = 2, 15.4%), DDR2 (n = 3, 23.1%), ERBB4 (n = 1, 7.7%), BRCA1 (n = 1, 7.7%), BRCA2 (n = 1, 7.7%), ATM (n = 1, 7.7%), and SMAD4 (n = 1, 7.7%). Deep loss of SMAD4 (1/3, 33.3%), SDHB (1/3, 33.3%), RB1 (1/3, 33.3%), and BRCA2 (1/3, 33.3%), high-level amplification of CRKL (1/3, 33.3%), CCNE1(1/3, 33.3%), and MCL1(1/3, 33.3%) were found in NECs. The integrated analysis found these genetic alterations frequently involve DNA repair and cell cycle, PI3K/AKT/mTOR and TGF-β/SMAD4 signaling pathways. CONCLUSION Genetic alterations were very common in NECs and rare in NETs, and frequently involved three main signaling pathways. NEC patients harboring these genetic alterations may benefit from targeted therapy and PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Qiong Dai
- Department of Human AnatomySouthwest Medical UniversityLuzhouSichuanChina
| | - Jinping Zhang
- Department of PathologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Weili Long
- Department of PathologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of InnsbruckInnsbruckAustria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of GrazGrazAustria
| | - Zhihui Yang
- Department of PathologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
28
|
Tomaszewicz M, Ronowska A, Zieliński M, Jankowska-Kulawy A, Trzonkowski P. T regulatory cells metabolism: The influence on functional properties and treatment potential. Front Immunol 2023; 14:1122063. [PMID: 37033990 PMCID: PMC10081158 DOI: 10.3389/fimmu.2023.1122063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
CD4+CD25highFoxP3+ regulatory T cells (Tregs) constitute a small but substantial fraction of lymphocytes in the immune system. Tregs control inflammation associated with infections but also when it is improperly directed against its tissues or cells. The ability of Tregs to suppress (inhibit) the immune system is possible due to direct interactions with other cells but also in a paracrine fashion via the secretion of suppressive compounds. Today, attempts are made to use Tregs to treat autoimmune diseases, allergies, and rejection after bone marrow or organ transplantation. There is strong evidence that the metabolic program of Tregs is connected with the phenotype and function of these cells. A modulation towards a particular metabolic stage of Tregs may improve or weaken cells’ stability and function. This may be an essential tool to drive the immune system keeping it activated during infections or suppressed when autoimmunity occurs.
Collapse
Affiliation(s)
- Martyna Tomaszewicz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
- *Correspondence: Martyna Tomaszewicz,
| | - Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| |
Collapse
|
29
|
Cao X, Jin X, Zhang X, Utsav P, Zhang Y, Guo R, Lu W, Zhao M. Small-Molecule Compounds Boost CAR-T Cell Therapy in Hematological Malignancies. Curr Treat Options Oncol 2023; 24:184-211. [PMID: 36701037 PMCID: PMC9992085 DOI: 10.1007/s11864-023-01049-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
OPINION STATEMENT Although chimeric antigen receptor T cell immunotherapy has been successfully applied in patients with hematological malignancies, several obstacles still need to be overcome, such as high relapse rates and side effects. Overcoming the limitations of CAR-T cell therapy and boosting the efficacy of CAR-T cell therapy are urgent issues that must be addressed. The exploration of small-molecule compounds in combination with CAR-T cell therapies has achieved promising success in pre-clinical and clinical studies in recent years. Protein kinase inhibitors, demethylating drugs, HDAC inhibitors, PI3K inhibitors, immunomodulatory drugs, Akt inhibitors, mTOR inhibitors, and Bcl-2 inhibitors exhibited potential synergy in combination with CAR-T cell therapy. In this review, we will discuss the recent application of these combination therapies for improved outcomes of CAR-T cell therapy.
Collapse
Affiliation(s)
- Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiaomei Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Paudel Utsav
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
30
|
Occhiuzzi MA, Lico G, Ioele G, De Luca M, Garofalo A, Grande F. Recent advances in PI3K/PKB/mTOR inhibitors as new anticancer agents. Eur J Med Chem 2023; 246:114971. [PMID: 36462440 DOI: 10.1016/j.ejmech.2022.114971] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The biochemical role of the PI3K/PKB/mTOR signalling pathway in cell-cycle regulation is now well known. During the onset and development of different forms of cancer it becomes overactive reducing apoptosis and allowing cell proliferation. Therefore, this pathway has become an important target for the treatment of various forms of malignant tumors, including breast cancer and follicular lymphoma. Recently, several more or less selective inhibitors targeting these proteins have been identified. In general, drugs that act on multiple targets within the entire pathway are more efficient than single targeting inhibitors. Multiple inhibitors exhibit high potency and limited drug resistance, resulting in promising anticancer agents. In this context, the present survey focuses on small molecule drugs capable of modulating the PI3K/PKB/mTOR signalling pathway, thus representing drugs or drug candidates to be used in the pharmacological treatment of different forms of cancer.
Collapse
Affiliation(s)
| | - Gernando Lico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
31
|
Mutational profiles of head and neck squamous cell carcinomas based upon human papillomavirus status in the Veterans Affairs National Precision Oncology Program. J Cancer Res Clin Oncol 2023; 149:69-77. [PMID: 36117189 DOI: 10.1007/s00432-022-04358-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Patients with advanced head and neck squamous cell carcinoma (HNSCC) associated with human papillomavirus (HPV) demonstrate favorable clinical outcomes compared to patients bearing HPV-negative HNSCC. We sought to characterize the association between HPV status and mutational profiles among patients served by the Veterans Health Administration (VHA). METHODS We performed a retrospective analysis of all Veterans with primary HNSCC tumors who underwent next-generation sequencing (NGS) through the VHA's National Precision Oncology Program between July 2016 and February 2019. HPV status was determined by clinical pathology reports of p16 immunohistochemical staining; gene variant pathogenicity was classified using OncoKB, an online precision oncology knowledge database, and mutation frequencies were compared using Fisher's exact test. RESULTS A total of 79 patients met inclusion criteria, of which 48 (60.8%) had p16-positive tumors. Patients with p16-negative HNSCC were more likely to have mutations in TP53 (p < 0.0001), and a trend towards increased mutation frequency was observed within NOTCH1 (p = 0.032) and within the composite CDK/Rb pathway (p = 0.065). Mutations in KRAS, NRAS, HRAS, and FBXW7 were exclusively identified within p16-positive tumors, and a trend towards increased frequency was observed within the PI3K pathway (p = 0.051). No difference in overall mutational burden was observed between the two groups. CONCLUSIONS In accordance with the previous studies, no clear molecular basis for improved prognosis among patients harboring HPV-positive disease has been elucidated. Though no targeted therapies are approved based upon HPV-status, current efforts to trial PI3K inhibitors and mTOR inhibitors across patients with HPV-positive disease bear genomic rationale based upon the current findings.
Collapse
|
32
|
Tetrahydroquinoline: an efficient scaffold as mTOR inhibitor for the treatment of lung cancer. Future Med Chem 2022; 14:1789-1809. [PMID: 36538021 DOI: 10.4155/fmc-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Efforts have been made to find an efficient scaffold (and its substitution) that can be used for the treatment of lung cancer via mTOR inhibition. A detailed literature search was carried out for previously reported mTOR inhibitors. The present review is focused on lung cancer; therefore, descriptions of some mTOR inhibitors that are currently in clinical trials for the treatment of lung cancer are provided. Based on previous research findings, tetrahydroquinoline was found to be the most efficient scaffold to be explored for the treatment of lung cancer. A possible efficient substitution of the tetrahydroquinoline scaffold could also be beneficial for the treatment of lung cancer.
Collapse
|
33
|
Petsri K, Thongsom S, Racha S, Chamni S, Jindapol S, Kaekratoke N, Zou H, Chanvorachote P. Novel mechanism of napabucasin, a naturally derived furanonaphthoquinone: apoptosis and autophagy induction in lung cancer cells through direct targeting on Akt/mTOR proteins. BMC Complement Med Ther 2022; 22:250. [PMID: 36180880 PMCID: PMC9524025 DOI: 10.1186/s12906-022-03727-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear. Method Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis. Result A structure modification from changing methyl moiety of acetyl group of NB to hydroxyl moiety of carboxyl group of NB derivative (napabucasin-acid or NB-acid) greatly affected the compound activities. NB showed more potent anti-cancer activity. NB reduced cell viability with an approximately 20 times lower IC50 and inhibited the colony formation capacity much more than NB-acid treated cells. NB induced cell apoptosis, which was accompanied by decrease Bcl‑2 and Mcl-1 and clevage of PARP, while NB-acid show lesser effect on Mcl-1. NB was found to strongly induce autophagy indicated by acidic vesicle staining and the LC3B conversion. Interestingly, computational molecular docking analysis further demonstrated that NB directly bound to Akt and mTOR (complex 1 and 2) proteins at their critical sites indicating that NB targets the upstream regulators of apoptosis and autophagy. The docking results were confirmed by decrease of p-Akt/Akt, p-mTOR/mTOR, and c-Myc a downstream target of Akt protein levels. Conclusion Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03727-6.
Collapse
|
34
|
Dai M, Chen S, Teng X, Chen K, Cheng W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer 2022; 13:3209-3220. [PMID: 36118526 PMCID: PMC9475360 DOI: 10.7150/jca.76695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors, with a 5-year survival rate of less than 10%. At present, the comprehensive treatment based on surgery, radiotherapy and chemotherapy has encountered a bottleneck, and targeted immunotherapy turns to be the direction of future development. About 90% of PDAC patients have KRAS mutations, and KRAS has been widely used in the diagnosis, treatment, and prognosis of PDAC in recent years. With the development of liquid biopsy and gene testing, KRAS is expected to become a new biomarker to assist the stratification and prognosis of PDAC patients. An increasing number of small molecule inhibitors acting on the KRAS pathway are being developed and put into the clinic, providing more options for PDAC patients.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Shaofeng Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang 414000, Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| |
Collapse
|
35
|
Pan Z, Chen Y, Pang H, Wang X, Zhang Y, Xie X, He G. Design, synthesis, and biological evaluation of novel dual inhibitors of heat shock protein 90/mammalian target of rapamycin (Hsp90/mTOR) against bladder cancer cells. Eur J Med Chem 2022; 242:114674. [PMID: 35987020 DOI: 10.1016/j.ejmech.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel class of thieno [2,3-d] pyrimidine derivatives containing resorcinol and morpholine fragments as Hsp90/mTOR dual inhibitors was designed, synthesized, and evaluated. In vitro anti-tumor assay results: the obtained compounds demonstrated effectiveness in suppressing the enzymatic activities of the Hsp90 and mTOR and inhibiting the proliferation of J82, T24, and SW780 cancer cell lines. Among these dual inhibitors, the most potent compound 17o, confirmed remarkable inhibitory activities on Hsp90, mTOR, and SW780 cell. Furthermore, the molecular dynamics simulation and a panel of mechanism studies revealed that inhibitor 17o suppressed the proliferation of SW780 cells through the over-activation of the PI3K/AKT/mTOR pathway regulated by mTOR inhibition and apoptosis regulated by the mitochondrial pathway. In subcutaneous J82 xenograft models, the compound 17o also presented considerable in vivo anti-tumor activity. Therefore, our investigations highlight that a new-found dual Hsp90/mTOR inhibitor by rational drug design strategies could be a promising lead compound for targeted bladder cancer therapy and deserves further studies.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haiying Pang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuehua Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
36
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Leclercq G, Steinhoff N, Haegel H, De Marco D, Bacac M, Klein C. Novel strategies for the mitigation of cytokine release syndrome induced by T cell engaging therapies with a focus on the use of kinase inhibitors. Oncoimmunology 2022; 11:2083479. [PMID: 35694193 PMCID: PMC9176235 DOI: 10.1080/2162402x.2022.2083479] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022] Open
Abstract
T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies. This emphasizes the need to elaborate mitigation strategies, which reduce cytokine release while retaining efficacy. Here, we review pre-clinical and clinical approaches applied for the management of CRS symptoms in the context of T cell engaging therapies, highlighting the use of tyrosine kinase inhibitors as an emerging mitigation strategy. In particular, we focus on the effects of Bruton's tyrosine kinase (BTK), Src family including Lck, mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK) inhibitors on T cell functionality and cytokine release, to provide a rationale for their use as mitigation strategies against CRS in the context of T cell engaging therapies.
Collapse
Affiliation(s)
- Gabrielle Leclercq
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Nathalie Steinhoff
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Hélène Haegel
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Donata De Marco
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Marina Bacac
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Christian Klein
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| |
Collapse
|
38
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
39
|
Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015–2021). Eur J Med Chem 2022; 238:114498. [DOI: 10.1016/j.ejmech.2022.114498] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
|
40
|
Huang R, Dai Q, Yang R, Duan Y, Zhao Q, Haybaeck J, Yang Z. A Review: PI3K/AKT/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:817916. [PMID: 35574327 PMCID: PMC9096244 DOI: 10.3389/fonc.2022.817916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the esophageal squamous epithelium, and is the most common histological subtype of esophageal cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and mortality rates in China are both higher than the world average. Current treatments of ESCC are surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus surgical resection is recommended for advanced patients. However, it does not work in the significant promotion of overall survival (OS) after such therapy. Research on targeted therapy in ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is an important survival pathway in tumor cells, associated with its aggressive growth and malignant progression. Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this pathway have been investigated in ESCC, such as PI3K, AKT and mTOR-rpS6K. Therefore, the PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which targeting at different parts of this pathway. In this work, we reviewed the research progress on the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed the interaction between signals downstream of this pathway, especially eukaryotic translation initiation factors (eIFs) and the development and progression of ESCC, to provide reference for the identification of new therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ruixue Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
41
|
Gupta S, Panda PK, Hashimoto RF, Samal SK, Mishra S, Verma SK, Mishra YK, Ahuja R. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals numerous DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep 2022; 12:4911. [PMID: 35318393 PMCID: PMC8941124 DOI: 10.1038/s41598-022-08900-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Transfection of tumor suppressor miRNAs such as miR-34a, miR-449a, and miR-16 with DNA damage can regulate apoptosis and senescence in cancer cells. miR-16 has been shown to influence autophagy in cervical cancer. However, the function of miR-34a and miR-449a in autophagy remains unknown. The functional and persistent G1/S checkpoint signaling pathways in HeLa cells via these three miRNAs, either synergistically or separately, remain a mystery. As a result, we present a synthetic Boolean network of the functional G1/S checkpoint regulation, illustrating the regulatory effects of these three miRNAs. To our knowledge, this is the first synthetic Boolean network that demonstrates the advanced role of these miRNAs in cervical cancer signaling pathways reliant on or independent of p53, such as MAPK or AMPK. We compared our estimated probability to the experimental data and found reasonable agreement. Our findings indicate that miR-34a or miR-16 may control senescence, autophagy, apoptosis, and the functional G1/S checkpoint. Additionally, miR-449a can regulate just senescence and apoptosis on an individual basis. MiR-449a can coordinate autophagy in HeLa cells in a synergistic manner with miR-16 and/or miR-34a.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP, 05508-090, Brazil.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP, 05508-090, Brazil
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Suman Mishra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Suresh Kr Verma
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden.
| |
Collapse
|
42
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer's disease pathogenesis. Neurochem Int 2022; 155:105311. [PMID: 35218870 DOI: 10.1016/j.neuint.2022.105311] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR) belongs to the phosphatidylinositol kinase-related kinase (PIKK) family. mTOR signaling is required for the commencement of essential cell functions including autophagy. mTOR primarily governs cell growth in response to favourable nutrients and other growth stimuli. However, it also influences aging and other aspects of nutrient-related physiology such as protein synthesis, ribosome biogenesis, and cell proliferation in adults with very limited growth. The major processes for survival such as synaptic plasticity, memory storage and neuronal recovery involve a significant mTOR activity. mTOR dysregulation is becoming a prevalent motif in a variety of human diseases, including cancer, neurological disorders, and other metabolic syndromes. The use of rapamycin to prolong life in different animal models may be attributable to the multiple roles played by mTOR signaling in various processes involved in ageing, protein translation, autophagy, stem cell pool turnover, inflammation, and cellular senescence. mTOR activity was found to be altered in AD brains and rodent models, supporting the notion that aberrant mTOR activity is one of the key events contributing to the onset and progression of AD hallmarks This review assesses the molecular association between the mTOR signaling pathway and pathogenesis of Alzheimer's disease. The research data supporting this theme are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61614, USA.
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, Gaborone, 0022, Botswana.
| |
Collapse
|
43
|
Rahman MA, Ahmed KR, Rahman MDH, Park MN, Kim B. Potential Therapeutic Action of Autophagy in Gastric Cancer Managements: Novel Treatment Strategies and Pharmacological Interventions. Front Pharmacol 2022; 12:813703. [PMID: 35153766 PMCID: PMC8834883 DOI: 10.3389/fphar.2021.813703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC), second most leading cause of cancer-associated mortality globally, is the cancer of gastrointestinal tract in which malignant cells form in lining of the stomach, resulting in indigestion, pain, and stomach discomfort. Autophagy is an intracellular system in which misfolded, aggregated, and damaged proteins, as well as organelles, are degraded by the lysosomal pathway, and avoiding abnormal accumulation of huge quantities of harmful cellular constituents. However, the exact molecular mechanism of autophagy-mediated GC management has not been clearly elucidated. Here, we emphasized the role of autophagy in the modulation and development of GC transformation in addition to underlying the molecular mechanisms of autophagy-mediated regulation of GC. Accumulating evidences have revealed that targeting autophagy by small molecule activators or inhibitors has become one of the greatest auspicious approaches for GC managements. Particularly, it has been verified that phytochemicals play an important role in treatment as well as prevention of GC. However, use of combination therapies of autophagy modulators in order to overcome the drug resistance through GC treatment will provide novel opportunities to develop promising GC therapeutic approaches. In addition, investigations of the pathophysiological mechanism of GC with potential challenges are urgently needed, as well as limitations of the modulation of autophagy-mediated therapeutic strategies. Therefore, in this review, we would like to deliver an existing standard molecular treatment strategy focusing on the relationship between chemotherapeutic drugs and autophagy, which will help to improve the current treatments of GC patients.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- ABEx Bio-Research Center, East Azampur, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
44
|
Leclercq G, Haegel H, Toso A, Zimmermann T, Green L, Steinhoff N, Sam J, Pulko V, Schneider A, Giusti AM, Challier J, Freimoser-Grundschober A, Larivière L, Odermatt A, Stern M, Umana P, Bacac M, Klein C. JAK and mTOR inhibitors prevent cytokine release while retaining T cell bispecific antibody in vivo efficacy. J Immunother Cancer 2022; 10:jitc-2021-003766. [PMID: 35064010 PMCID: PMC8785208 DOI: 10.1136/jitc-2021-003766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background T cell engaging therapies, like chimeric antigen receptor T cells and T cell bispecific antibodies (TCBs), efficiently redirect T cells towards tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing, a process that is accompanied by the release of cytokines. Despite their promising efficacy in the clinic, treatment with TCBs is associated with a risk of cytokine release syndrome (CRS). The aim of this study was to identify small molecules able to mitigate cytokine release while retaining T cell-mediated tumor killing. Methods By screening a library of 52 Food and Drug Administration approved kinase inhibitors for their impact on T cell proliferation and cytokine release after CD3 stimulation, we identified mTOR, JAK and Src kinases inhibitors as potential candidates to modulate TCB-mediated cytokine release at pharmacologically active doses. Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of mTOR, JAK and Src kinase inhibitors combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB and CD19-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. The combination of mTOR, JAK and Src kinase inhibitors together with CD19-TCB was evaluated in vivo in non-tumor bearing stem cell humanized NSG mice in terms of B cell depletion and in a lymphoma patient-derived xenograft (PDX) model in humanized NSG mice in terms of antitumor efficacy. Results The effect of Src inhibitors differed from those of mTOR and JAK inhibitors with the suppression of CD19-TCB-induced tumor cell lysis in vitro, whereas mTOR and JAK inhibitors primarily affected TCB-mediated cytokine release. Importantly, we confirmed in vivo that Src, JAK and mTOR inhibitors strongly reduced CD19-TCB-induced cytokine release. In humanized NSG mice, continuous treatment with a Src inhibitor prevented CD19-TCB-mediated B cell depletion in contrast to mTOR and JAK inhibitors, which retained CD19-TCB efficacy. Ultimately, transient treatment with Src, mTOR and JAK inhibitors minimally interfered with antitumor efficacy in a lymphoma PDX model. Conclusions Taken together, these data support further evaluation of the use of Src, JAK and mTOR inhibitors as prophylactic treatment to prevent occurrence of CRS.
Collapse
Affiliation(s)
- Gabrielle Leclercq
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
- Department of Pharmaceutical Sciences, Division Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
| | - Hélène Haegel
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Alberto Toso
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Tina Zimmermann
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Luke Green
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nathalie Steinhoff
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Johannes Sam
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Vesna Pulko
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Anneliese Schneider
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - John Challier
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Laurent Larivière
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, Division Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
| | - Martin Stern
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umana
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
45
|
Teh YM, Mualif SA, Lim SK. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 2021; 143:106153. [PMID: 34974186 DOI: 10.1016/j.biocel.2021.106153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5'AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.
Collapse
Affiliation(s)
- Yoong Mond Teh
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Siti Aisyah Mualif
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Medical Device and Technology Centre (MEDiTEC), Universiti Teknologi Malaysia, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Zhang S, Dubois W, Feng X, Nguyen JT, Young NS, Mock BA. Conditional deletion of mTOR discloses its essential role in early B-cell development. Mol Carcinog 2021; 61:408-416. [PMID: 34964999 DOI: 10.1002/mc.23386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase and central regulator of cell growth, differentiation, and survival. mTOR is commonly hyperactivated in a diverse number of cancers and critical roles for mTOR in regulating immune cell differentiation and function have been demonstrated. However, there is little work investigating the roles of mTOR in early B-cell development. Here we demonstrate that conditional disruption of mTOR in developing mouse B cells results in reduced pre-B-cell proliferation and survival, as well as a developmental block at the pre-B-cell stage, with a corresponding lack of peripheral B cells. Upon immunization with NP-CGG antigen, mice with Mtor conditional disruption in early B cells lost their ability to form germinal centers and produce specific antibodies. In competitive BM repopulation assays, donor BM cells from conditional knock-out mice were completely impaired in their ability to reconstitute B cells. Our data reveal the essential role of mTOR in early pre-B-cell development and survival.
Collapse
Affiliation(s)
- Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute; National Institutes of Health, Bethesda, Maryland, USA
| | - Joe T Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute; National Institutes of Health, Bethesda, Maryland, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
48
|
Chen X, Sun H, Cassady K, Yang S, Chen T, Wang L, Yan H, Zhang X, Feng Y. The Addition of Sirolimus to GVHD Prophylaxis After Allogeneic Hematopoietic Stem Cell Transplantation: A Meta-Analysis of Efficacy and Safety. Front Oncol 2021; 11:683263. [PMID: 34568015 PMCID: PMC8458935 DOI: 10.3389/fonc.2021.683263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Objective The objective of this study was to evaluate the safety and efficacy of sirolimus (SRL) in the prevention of graft-versus-host disease (GVHD) in recipients following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods Randomized controlled trials (RCTs) evaluating the safety and efficacy of SRL-based prophylaxis regimens in patients receiving allo-HSCT were obtained from PubMed, Embase, and the Cochrane database. Following specific inclusion and exclusion criteria, studies were selected and screened by two independent reviewers who subsequently extracted the study data. The Cochrane risk bias evaluation tool was used for quality evaluation, and RevMan 5.3 software was used for statistical analysis comparing the effects of SRL-based and non–SRL-based regimens on acute GVHD, chronic GVHD, overall survival (OS), relapse rate, non-relapse mortality (NRM), thrombotic microangiopathy (TMA), and veno-occlusive disease (VOD). Results Seven studies were included in this meta-analysis, with a total sample size of 1,673 cases, including 778 cases of patients receiving SRL-based regimens and 895 cases in which patients received non-SRL-based regimens. Our data revealed that SRL containing prophylaxis can effectively reduce the incidence of grade II–IV acute GVHD (RR = 0.75, 95% CI: 0.68∼0.82, p < 0.0001). SRL-based prophylaxis was not associated with an improvement of grade III–IV acute GVHD (RR = 0.78, 95% CI: 0.59∼1.03, p = 0.08), chronic GVHD (p = 0.89), OS (p = 0.98), and relapse rate (p = 0.16). Despite its immunosuppressant effects, SRL-based regimens did not increase bacterial (p = 0.68), fungal (p = 0.70), or CMV (p = 0.10) infections. However, patients receiving SRL-based regimens had increased TMA (p < 0.00001) and VOD (p < 0.00001). Conclusions This meta-analysis indicates that addition of sirolimus is an effective alternative prophylaxis strategy for II–IV aGVHD but may cause endothelial cell injury and result in secondary TMA or VOD events.
Collapse
Affiliation(s)
- Xiaoli Chen
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Hengrui Sun
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Shijie Yang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Ting Chen
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Li Wang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Hongju Yan
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| | - Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
| |
Collapse
|
49
|
Kaur K, Anant A, Asati V. Structural Aspects of mTOR Inhibitors: In Progress to Search Potential Compounds. Anticancer Agents Med Chem 2021; 22:1037-1055. [PMID: 34288843 DOI: 10.2174/1871520621666210720121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
mTOR (mammalian target of rapamycin) is a catalytic subunit composed of two multi-protein complexes that indicate mTORC1, mTORC2. It plays a crucial role in various fundamental cell processes like cell proliferation, metabolism, survival, cell growth, etc. Various first line mTOR inhibitors such as Rapamycin, Temsirolimus, Everolimus, Ridaforolimus, Umirolimus, Zotarolimus have been used popularly. Whereas, several mTOR inhibitors such as Gedatolisib (PF-05212384) are under phase 2 clinical trials studies for the treatment of triple-negative breast cancer. The mTOR inhibitors bearing heterocyclic moieties such as quinazoline, thiophene, morpholine, imidazole, pyrazine, furan, quinoline are under investigation against various cancer cell lines (U87MG, PC-3, MCF-7, A549, MDA-231). In this review, we summarized updated research related to mTOR inhibitors, their structure-activity relationship which may help scientists for the development of potent inhibitors against cancer.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Arjun Anant
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| |
Collapse
|
50
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|