1
|
Sun Y, Zhao J, Rong J. Tyrosinase inhibition by natural stilbenoid glycosides: Critical role of the vinyl moiety in piceid for melanogenesis suppression. Arch Biochem Biophys 2025; 768:110405. [PMID: 40158648 DOI: 10.1016/j.abb.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Skin hyperpigmentation due to UV-induced tyrosinase activation and melanin overproduction is an ongoing challenge in cosmetic and dermatological applications. While resveratrol analogues show anti-melanogenic potential, the structure-activity relationships of their glycosylated derivatives remain underexplored. Here, we investigate how the vinyl moiety in the food-derived stilbenoid glycoside piceid (resveratrol-3-O-β-glucoside) affects tyrosinase inhibition. We reduced the vinyl moiety to yield dihydropiceid by catalytic hydrogenation and systematically assessed both compounds for anti-melanogenic effects. As results, piceid exhibited superior monophenolase inhibition over dihydropiceid in enzyme kinetics, while both compounds showed comparable diphenolase inhibition. Cellular assays revealed that piceid reduced melanin production by 59.2 % at 25 μM in α-MSH-stimulated B16F10 melanoma cells, whereas dihydropiceid showed weaker activity (<25 % reduction). MolgpKa analysis indicated that the vinyl moiety lowered the 4'-OH pKa (9.7 vs. 9.9), while UV-vis spectroscopy validated that the vinyl moiety enhanced the copper chelation capacity of piceid (ΔOD: 0.459) over dihydropiceid (ΔOD: 0.233). Molecular docking revealed that 4'-OH in piceid closely coordinated the tyrosinase binuclear copper center, whereas molecular dynamics simulation validated that hydrogen bonding supports the binding of both compounds to tyrosinase. Collectively, this study establishes the vinyl moiety in dietary stilbenoids as a critical pharmacophore for tyrosinase inhibition and thereby provides a molecular basis for developing natural anti-hyperpigmentation functional foods or cosmeceuticals.
Collapse
Affiliation(s)
- Yilu Sun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, China.
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, China.
| |
Collapse
|
2
|
Li J, Guo H, Ji W, Chen H, Zhao F, Yang W, Guo L, Qian J. Detection of Tyrosinase Activity and Inhibitor Validation Based on N-GQDs Fluorescence Sensor. J Fluoresc 2025; 35:3615-3626. [PMID: 38874823 DOI: 10.1007/s10895-024-03788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Tyrosinase inhibitors have the ability to resist melanin formation and can be used for clinical and cosmetic, so it is becoming extremely crucial to search a rapid and effective method for detecting t the activity of tyrosinase. In this study, a sensing probe based on Nitrogen-doped graphene quantum dots (N-GQDs) were prepared with carbamide and citric acid. Tyrosinase can oxidize dopamine to dopamine quinone, which can quench the fluorescence of N-GQDs based on the principle of fluorescence resonance energy transfer (FRET) process, and then the detection of tyrosinase activity can be achieved. The result demonstrated that the fluorescence intensity of N-GQDs was a linear correlation with the activity of tyrosinase. Wide detection linear ranges between 0.05 and 5 U/mL and high selectivity. The detection range of tyrosinase was 0.05 to 5 U/mL and LOD of 0.005 U/mL. According to the above, the fluorescence method established in this work could be successfully used for the trace analysis of tyrosinase and it was verified that KA is an inhibitor of tyrosinase.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| | - Weiwei Ji
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hanqi Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Fengju Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wei Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lili Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
3
|
Shoombuatong W, Schaduangrat N, Homdee N, Ahmed S, Chumnanpuen P. Advancing the accuracy of tyrosinase inhibitory peptides prediction via a multiview feature fusion strategy. Sci Rep 2025; 15:4762. [PMID: 39922825 PMCID: PMC11807091 DOI: 10.1038/s41598-024-81807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/29/2024] [Indexed: 02/10/2025] Open
Abstract
Tyrosinase plays a crucial role as an enzyme in the production of melanin, which is the pigment accountable for determining the color of the hair, eyes, and skin. Tyrosinase inhibitory peptides (TIPs), mainly designed to regulate the activity of the enzyme tyrosinase, are of interest in various domains, including cosmetics, dermatology, and pharmaceuticals, due to their potential applications in controlling skin pigmentation. To date, a few machine learning-based models have been proposed for predicting TIPs, but their predictive performance remains unsatisfactory. In this study, we propose an innovative computational approach, named TIPred-MVFF, to accurately predict TIPs using only sequence information. Firstly, we established an up-to-date and high-quality dataset by collecting samples from various sources. Secondly, we applied a multi-view feature fusion (MVFF) strategy to extract and explore probability and category information embedded in TIPs, employing several machine learning (ML) algorithms coupled with different commonly used sequence-based feature encodings. Then, we employed resampling approaches to address the class imbalance issue. Finally, to maximize the utility of each feature, we fused probability-based and sequence-based features, generating more informative feature that were used to develop the final prediction model. Based on the independent test, experimental results showed that TIPred-MVFF outperformed several conventional ML classifiers and existing methods in terms of prediction accuracy and robustness, achieving an accuracy of 0.937 and a Matthew's correlation coefficient of 0.847. This new computational approach is anticipated to aid community-wide efforts in rapidly and cost-effectively discovering novel peptides with strong tyrosinase inhibitory activities.
Collapse
Affiliation(s)
- Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Nutta Homdee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Saeed Ahmed
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
- Department of Computer Science, University of Swabi, Swabi, 23561, Pakistan
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Ni X, Luo X, Jiang X, Chen W, Bai R. Small-Molecule Tyrosinase Inhibitors for Treatment of Hyperpigmentation. Molecules 2025; 30:788. [PMID: 40005101 PMCID: PMC11858095 DOI: 10.3390/molecules30040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Increasing attention is being focused on skin health currently, especially the excessive deposition of melanin in the skin. Tyrosinase, the rate-limiting enzyme in melanin biosynthesis, is a crucial enzyme in melanin synthesis. However, existing tyrosinase inhibitors pose some degree of toxicity to humans. Therefore, the development of more efficient and low-toxicity tyrosinase inhibitors is urgently needed. This review briefly depicts the melanin biosynthesis process and the crystal structure and catalytic mechanism of tyrosinase. The latest research progress regarding small-molecule tyrosinase inhibitors is also reviewed. Moreover, the structure-function relationships are analyzed and summarized. This is expected to provide new and more scientific insights to enable researchers to explore safer and more potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Jian Y, Xiao X, Qian X, Liang M, Chen H, Song W. Preservative effects and mechanism of condensed tannins from Cercis chinensis Bunge leaves on fresh-cut lotus root. J Food Sci 2025; 90:e17638. [PMID: 39731732 DOI: 10.1111/1750-3841.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to investigate the potential of condensed tannins isolated from Cercis chinensis Bunge leaves as natural preservatives for fruits and vegetables. The research demonstrated that C. chinensis leaves condensed tannins (CLCT) significantly delay the browning process and reduce nutritional loss in fresh-cut lotus roots. Prodelphinidins were identified as the primary component of CLCT through electrospray ionization mass spectrometry and high-performance liquid chromatography analyses, with minor proportions of procyanidins and high levels of galloylation. The structural units predominantly consisted of (epi)gallocatechin. CLCT exhibited substantial inhibitory activity against tyrosinase, which may involve interactions with copper ions at the enzyme's active site and alterations in enzyme conformation, resulting in reversible inhibition. Additionally, CLCT displayed remarkable antioxidant and antibacterial properties, effectively scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and significantly inhibiting the growth of Pseudomonas aeruginosa and Staphylococcus aureus. Overall, the potential of CLCT as a natural preservative and tyrosinase inhibitor underscores its promising application in preserving fruits and vegetables.
Collapse
Affiliation(s)
- Yanbo Jian
- College of Life Science, Yangtze University, Jingzhou, China
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Xiaoxue Xiao
- College of Life Science, Yangtze University, Jingzhou, China
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Xufeng Qian
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Meng Liang
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Hui Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Chai W, Yu X, Lin Y, Bai QH, Wu YF, Wu WJ, Ou-Yang HY, Pan QX, Shu HL. 7-(Diethylamino) coumarin-3-carboxylic acid as a novel antibrowning agent: Activity and mechanism. Int J Biol Macromol 2024; 282:137286. [PMID: 39510471 DOI: 10.1016/j.ijbiomac.2024.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Browning caused by polyphenol oxidase (PPO) and microorganisms significantly impacts the nutritional quality of fruits and vegetables. This study identified 7-(Diethylamino) coumarin-3-carboxylic acid (7-DCCA) as an effective inhibitor of both PPO and bacteria. Enzyme assays revealed that 7-DCCA competitively inhibits PPO activity with an IC50 value of 0.275 ± 0.002 mM. Fluorescence and molecular simulation methods demonstrated that 7-DCCA forms a complex with PPO through hydrogen bonding and hydrophobic interactions, altering the enzyme's structure and reducing its activity. Thermogravimetric and differential scanning calorimetry (DSC) assays showed that 7-DCCA stabilizes PPO, delaying its thermal decomposition. Antibacterial tests proved that 7-DCCA inhibits Staphylococcus aureus and Escherichia coli by disrupting cell membranes. Additionally, 7-DCCA suppressed PPO and peroxidase activities, delaying phenolic oxidation and preventing browning in fruits and vegetables. Cytotoxicity assays confirmed its safety, with over 85 % cell viability at concentrations up to 0.1 mM. Stability experiments verified that 7-DCCA had greatly light and thermal stability. This study highlighted 7-DCCA as a promising antibrowning agent with potential application in food preservation.
Collapse
Affiliation(s)
- Weiming Chai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Xia Yu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan Lin
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiu-Han Bai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yi-Feng Wu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Jing Wu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui-Ying Ou-Yang
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiu-Xia Pan
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui-Lin Shu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
7
|
Azimi F, Mahdavi M, Khoshneviszadeh M, Shafiee F, Azimi M, Hassanzadeh F, Haji Ashrafee F. Kinetic studies, molecular docking, and antioxidant activity of novel 1,3-diphenyl pyrazole-thiosemicarbazone with anti-tyrosinase and anti-melanogenesis properties. Bioorg Chem 2024; 152:107722. [PMID: 39213796 DOI: 10.1016/j.bioorg.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | - Mahin Azimi
- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farshid Hassanzadeh
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | | |
Collapse
|
8
|
Ashooriha M, Khoshneviszadeh M, Kabiri M, Dehshahri A, Hassani B, Ansari M, Emami S. Multi-functional tyrosinase inhibitors derived from kojic acid and hydroquinone-like diphenols for treatment of hyperpigmentation: Synthesis and in vitro biological evaluation. Arch Pharm (Weinheim) 2024:e2400380. [PMID: 39466938 DOI: 10.1002/ardp.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
A series of multi-functional tyrosinase inhibitors derived from kojic acid (KA) and hydroquinone-like diphenols were designed and synthesized using click chemistry. The in vitro enzymatic assay revealed that all compounds containing a free enolic structure showed excellent activity against tyrosinase (IC50 = 0.14-3.7 µM), being significantly more potent than KA. The most active compounds were catechol (6c) and α-naphthol (6i) analogs with 138- and 96-fold higher potency than KA. On the other hand, all free phenolic compounds (6a-c and 6g-j) derived from aromatic diols showed outstanding free radical scavenging activities superior to KA. Certainly, the α-naphthol derivative 6i with IC50 = 10.1 µM was the most active anti-oxidant, being as potent as quercetin. The SAR analysis indicated that the enolic head of the conjugate molecules mainly contributes to the anti-tyrosinase activity, and the free phenolic part of the molecules can offer anti-oxidant potency. The anti-melanogenic assay of the most promising derivative, 6i, against melanoma (B16F10) cells demonstrated that the prototype compound 6i can significantly reduce the melanin content, more effectively than KA. By using a conjugation strategy, we have improved the tyrosinase inhibitory and radical scavenging activity in the multi-functional agents such as 6i over the parent compound KA, being potentially useful in the treatment of hyperpigmentation and other skin disorders.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York City, New York, USA
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Ansari
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Liu J, Xu T, Ding J, Wen H, Meng J, Liu Q, Liu X, Zhang W, Zhu GY, Jiang ZH, Gao J, Bai LP. Discovery of anti-melanogenic components in persimmon (Diospyros kaki) leaf using LC-MS/MS-MN, AlphaFold2-enabled virtual screening and biological validation. Food Chem 2024; 455:139814. [PMID: 38824735 DOI: 10.1016/j.foodchem.2024.139814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Persimmon (Diospyros kaki) leaf is widely used as a tea substitute in East Asia, offering potential health benefits. Although studies have highlighted their effects on hyperpigmentation disorders, the active components remain unidentified. This study introduces a novel approach combining LC-MS/MS-based molecular networking with AlphaFold2-enabled virtual screening to expedite the identification of bioactive components in persimmon leaf. A total of 105 compounds were identified by MS/MS analysis. Further, virtual screening identified five flavonoids with potential anti-melanogenic properties. Bioassays confirmed myricetin, quercetin, and kaempferol inhibited melanogenesis in human melanocytes in a dose-dependent manner. Biolayer interferometry assays revealed strong binding affinity between these flavonols and hsTYR, with KD values of 23.26 ± 11.77 for myricetin, 12.43 ± 0.37 for quercetin, and 14.99 ± 3.80 μM for kaempferol. Molecular dynamics simulations provided insights into the binding interactions of these flavonols with hsTYR, particularly highlighting the essential role of the 3-OH group on the C-ring. This study elucidates the bioactive components responsible for the anti-melanogenic effects of persimmon leaf, supporting their use in product development.
Collapse
Affiliation(s)
- Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haoyue Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Jieru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiaomei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| | - Jin Gao
- Increasepharm (Hengqin) Institute Co., Ltd., Zhuhai, Guangdong, China.
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
10
|
Chen H, Wu Y, Wang B, Kui M, Xu J, Ma H, Li J, Zeng J, Gao W, Chen K. Skin healthcare protection with antioxidant and anti-melanogenesis activity of polysaccharide purification from Bletilla striata. Int J Biol Macromol 2024; 262:130016. [PMID: 38365139 DOI: 10.1016/j.ijbiomac.2024.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
In this study, we investigated the structural characterization and biological activities of Bletilla striata polysaccharides (BSPs) for their role as antioxidants and anti-melanogenesis agents in skin healthcare protection. Three neutral polysaccharides (BSP-1, BSP-2, and BSP-3) with molecular weights of 269.121 kDa, 57.389 kDa, and 28.153 kDa were extracted and purified. Their structural characteristics were analyzed by ion chromatography, GC-MS, and 1D/2D NMR. The results showed that BSP-1, which constitutes the major part of BSPs, was composed of α-D-Glcp, β-D-Glcp, β-D-Manp, and 2-O-acetyl-β-D-Manp, with the branched-chain accompanied by β-D-Galp and α-D-Glcp. BSP-1, BSP-2, and BSP-3 can enhance the total antioxidant capacity of skin fibroblasts with non-toxicity. Meanwhile, BSP-1, BSP-2, and BSP-3 could significantly inhibit the proliferative activity of melanoma cells. Among them, BSP-1 and BSP-2 showed more significance in anti-melanogenesis, tyrosinase inhibition activity, and cell migration inhibition. BSPs have effective antioxidant capacity and anti-melanogenesis effects, which should be further emphasized and developed as skin protection components.
Collapse
Affiliation(s)
- Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China.
| | - Minghong Kui
- Guangdong Guanhao High-Tech Co., Ltd., No. 313 Donghai Avenue, Donghai Island, Zhanjiang 524072, PR China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Hongsheng Ma
- Guangdong Guanhao New Material R & D Co., Ltd., Xiangjiang Financial Business Center, Nansha District, Guangzhou 511457, PR China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Yoon D, Jung HJ, Lee J, Kim HJ, Park HS, Park YJ, Kang MK, Kim GY, Kang D, Park Y, Chun P, Chung HY, Moon HR. In vitro and in vivo anti-pigmentation effects of 2-mercaptobenzimidazoles as nanomolar tyrosinase inhibitors on mammalian cells and zebrafish embryos: Preparation of pigment-free zebrafish embryos. Eur J Med Chem 2024; 266:116136. [PMID: 38244374 DOI: 10.1016/j.ejmech.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recently, 10 2-mercaptobenzo[d]imidazole (2-MBI) compounds (1-10) were synthesized. Although all 2-MBI compounds are tyrosinase inhibitors that inhibit mushroom tyrosinase at extremely low concentrations (IC50 values: 20-740 nM) and effectively inhibit the browning of apples, to our knowledge, no studies have determined whether 2-MBI compounds inhibit mammalian tyrosinase. Mammalian tyrosinase is different from mushroom tyrosinase in its distribution within the cell and has structural characteristics that are different from mushroom tyrosinase in amino acid sequence and in the presence of a quaternary structure. Thus, the effect of the 10 2-MBI compounds on mammalian tyrosinase activity was investigated in B16F10 cells. Six compounds (1-6) exhibited stronger intracellular tyrosinase inhibition than that of kojic acid and phenylthiourea (PTU), which are known to be the most potent tyrosinase inhibitors; their strong tyrosinase inhibitory activity robustly inhibited intracellular melanin production in B16F10 cells. None of the tested 2-MBI compounds exhibited appreciable cytotoxicity in HaCaT and B16F10 cells. To confirm the anti-melanogenic efficacy of the 2-MBI compounds in vivo, a zebrafish embryo model was used. At concentrations 100 times lower than kojic acid, most 2-MBI compounds demonstrated much stronger depigmentation efficacy than that of kojic acid, and three 2-MBI compounds (2-4) showed depigmentation activity similar to or more potent than that of PTU, resulting in nearly pigment-free zebrafish embryos. These results suggest that 2-MBI compounds may be potential therapeutic agents for hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Mullaivendhan J, Ahamed A, Arif IA, Raman G, Akbar I. Mushroom tyrosinase enzyme catalysis: synthesis of larvicidal active geranylacetone derivatives against Culex quinquesfasciatus and molecular docking studies. Front Chem 2024; 11:1303479. [PMID: 38268759 PMCID: PMC10806150 DOI: 10.3389/fchem.2023.1303479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
The grindstone process, which uses tyrosinase as a catalyst, was used to create analogues of geranylacetone. Tyrosinase was used to prepare the Mannich base under favourable reaction conditions, resulting in a high yield. All synthesized compounds were characterized using FTIR, Nuclear magnetic resonance, and mass spectral analyses. The active geranylacetone derivatives (1a-l) were investigated for larvicidal activity against Culex quinquefasciatus; compound 1b (LD50:20.7 μg/mL) was noticeably more effective than geranylacetone (LD50: >100 μg/mL) and permethrin (LD50: 24.4 μg/mL) lead compounds because of their ability to kill larvae and use them as pesticides. All compounds (1a-1l) were found to be low toxic, whereas compounds 1b, 1d, and 1k were screened for antifeedant screening of non -aquatic target for the toxicity measurement against marine fish Oreochromis mossambicus at 100 μg/mL caused 0% mortality in within 24 h. Molecular docking studies of synthesised compound 1b and permethrin docked with 3OGN, compound 1b demonstrated a greater binding affinity (-9.6 kcal/mol) compared to permethrin (-10.5 kcal/mol). According to these results, the newly synthesised geranylacetone derivatives can serve as lead molecules of larvicides agents.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Arif
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gurusamy Raman
- Department of Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, India
| |
Collapse
|
13
|
Chen J, Zhang Z, Li H, Tang H. Exploring the effect of a series of flavonoids on tyrosinase using integrated enzyme kinetics, multispectroscopic, and molecular modelling analyses. Int J Biol Macromol 2023; 252:126451. [PMID: 37619686 DOI: 10.1016/j.ijbiomac.2023.126451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The control of food browning can be achieved by inhibiting tyrosinase (TY) activity, but current studies on the interaction of flavonoids as potent inhibitors with TY are inadequate. Herein, the effect of a library of flavonoids on TY was investigated using enzyme kinetics, multispectroscopic methods, and molecular modelling. Some flavonoids including 4, 8, 10, 17, 18, 28, 30, 33, and 34 exhibited potent TY inhibitory activity, with compound 10 demonstrating reversible inhibition in a mixed-competitive manner. Ultraviolet-visible spectral changes confirmed the formation of flavonoid-TY complexes. Fluorescence quenching analysis suggested effective intrinsic fluorescence quenching by flavonoids through static quenching with the ground-state complex formation. Synchronous fluorescence spectra showed the microenvironment change around the fluorophores induced by flavonoids. ANS-binding fluorescence assay indicated TY's surface hydrophobicity change by flavonoids and highlighted the change in secondary structure conformation, which was further confirmed by Fourier-transform infrared spectra. Molecular modelling results helped visualize the preferred binding conformation at the active site of TY, and demonstrated the important role of hydrophobic interaction and hydrogen bonding in stabilizing the flavonoid-TY complexes. These findings prove that diverse flavonoid structures distinctly impact their binding behavior on TY and contribute to understanding flavonoids' potential as TY inhibitors in controlling food browning.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
14
|
Zengin Kurt B, Altundağ Ö, Tokgöz MN, Öztürk Civelek D, Tuncay FO, Cakmak U, Kolcuoğlu Y, Akdemir A, Sönmez F. Synthesis of flurbiprofen thiadiazole urea derivatives and assessment of biological activities and molecular docking studies. Chem Biol Drug Des 2023; 102:1458-1468. [PMID: 37653693 DOI: 10.1111/cbdd.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Totally 15 novel flurbiprofen urea derivatives were synthesized bearing the thiadiazole ring. Their inhibition effects on tyrosinase were determined. 3c was found to be the strongest inhibitor with the IC50 value of 68.0 μM against tyrosinase. The enzyme inhibition types of the synthesized compounds were determined by examining the kinetic parameters. The inhibition type of 3c was determined as uncompetitive and the Ki value was calculated as 36.3 μM. Moreover, their cytotoxic effects on hepatocellular carcinoma (HepG2), colorectal carcinoma (HT-29), and melanoma (B16F10) cell lines were evaluated. According to the cytotoxicity results, 3l (IC50 = 14.11 μM) showed the highest cytotoxicity on the HT-29 cells, while 3o (IC50 = 4.22 μM) exhibited the strongest cytotoxic effect on HepG2 cell lines. Also, 3j (IC50 = 7.55 μM strongly affected B16F10. The effects of synthesized compounds on the healthy cell line were evaluated on the CCD-986Sk cell line. Molecular modelling studies have indicated the potential binding interactions of the uncompetitive inhibitor 3c with the enzyme-substrate complex.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Özlem Altundağ
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Merve Nur Tokgöz
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Dilek Öztürk Civelek
- Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Fulya Oz Tuncay
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Ummuhan Cakmak
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Yakup Kolcuoğlu
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Istanbul, Türkiye
| | - Fatih Sönmez
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Türkiye
| |
Collapse
|
15
|
Mermer A, Demirci S. Recent advances in triazoles as tyrosinase inhibitors. Eur J Med Chem 2023; 259:115655. [PMID: 37482020 DOI: 10.1016/j.ejmech.2023.115655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, İstanbul, Turkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Turkiye.
| | - Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkiye
| |
Collapse
|
16
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
17
|
Rezapour Niri D, Sayahi MH, Behrouz S, Moazzam A, Rasekh F, Tanideh N, Irajie C, Seif Nezhad M, Larijani B, Iraji A, Mahdavi M. Design, synthesis, in vitro, and in silico evaluations of kojic acid derivatives linked to amino pyridine moiety as potent tyrosinase inhibitors. Heliyon 2023; 9:e22009. [PMID: 38034733 PMCID: PMC10682633 DOI: 10.1016/j.heliyon.2023.e22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
In the present study, novel series of kojic acid derivatives conjugated to amino pyridine moiety were designed and synthesized to explore their inhibitory activity against tyrosinase. To this end, the structure of all derivatives was characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. Next, all derivatives were evaluated against tyrosinase compared to the kojic acid as positive control and exhibited different inhibitory potencies. Furthermore, the antioxidant potential of all derivatives was determined. The kinetic analysis of the most active agent revealed that 3-hydroxy-6-(hydroxymethyl)-2-((3-nitrophenyl)(pyridin-2-ylamino)methyl)-4H-pyran-4-one (4h) binds to the enzyme in the uncompetitive mode of action. The docking analysis and molecular dynamic simulations showed considerable binding affinity and significant interactions with tyrosinase enzyme to target the melanogenesis pathway, proposing them as potent candidates to control hyperpigmentation in the future.
Collapse
Affiliation(s)
- Davood Rezapour Niri
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Somayeh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| | - Fatemeh Rasekh
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Seif Nezhad
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran
| |
Collapse
|
18
|
Li J, Min X, Zheng X, Wang S, Xu X, Peng J. Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid-Eugenol Esters. Molecules 2023; 28:5969. [PMID: 37630220 PMCID: PMC10460039 DOI: 10.3390/molecules28165969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Tyrosinase plays crucial roles in mediating the production of melanin pigment; thus, its inhibitors could be useful in preventing melanin-related diseases. To find potential tyrosinase inhibitors, a series of cinnamic acid-eugenol esters (c1~c29) was synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, HRMS, and FT-IR, respectively. The biological evaluation results showed that all compounds c1~c29 exhibited definite tyrosinase inhibitory activity; especially, compound c27 was the strongest tyrosinase inhibitor (IC50: 3.07 ± 0.26 μM), being ~4.6-fold stronger than the positive control, kojic acid (IC50: 14.15 ± 0.46 μM). Inhibition kinetic studies validated compound c27 as a reversible mixed-type inhibitor against tyrosinase. Three-dimensional fluorescence and circular dichroism (CD) spectra results indicated that compound c27 could change the conformation and secondary structure of tyrosinase. Fluorescence-quenching results showed that compound c27 quenched tyrosinase fluorescence in the static manner with one binding site. Molecular docking results also revealed the binding interactions between compound c27 and tyrosinase. Therefore, cinnamic acid-eugenol esters, especially c27, could be used as lead compounds to find potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jianping Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Xiaofeng Min
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Shaohua Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Jinbao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| |
Collapse
|
19
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
20
|
Zhan F, Zhu J, Xie S, Xu J, Xu S. Advances of bioorthogonal coupling reactions in drug development. Eur J Med Chem 2023; 253:115338. [PMID: 37037138 DOI: 10.1016/j.ejmech.2023.115338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Currently, bioorthogonal coupling reactions have garnered considerable interest due to their high substrate selectivity and less restrictive reaction conditions. During recent decades, bioorthogonal coupling reactions have emerged as powerful tools in drug development. This review describes the current applications of bioorthogonal coupling reactions in compound library building mediated by the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and in situ click chemistry or conjunction with other techniques; druggability optimization with 1,2,3-triazole groups; and intracellular self-assembly platforms with ring tension reactions, which are presented from the viewpoint of drug development. There is a reasonable prospect that bioorthogonal coupling reactions will accelerate the screening of lead compounds, the designing strategies of small molecules and expand the variety of designed compounds, which will be a new trend in drug development in the future.
Collapse
|
21
|
Benslama O, Lekmine S, Mansouri N. Phytochemical constituents of Astragalus monspessulanus and integrative analysis for its antioxidant, photoprotective, and antityrosinase activities: Experimental and computational investigation. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol 2023; 107:2111-2130. [PMID: 36912905 DOI: 10.1007/s00253-023-12451-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use.
Collapse
Affiliation(s)
- Shifali Chib
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Lakshmi Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit G Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Xue S, Li Z, Ze X, Wu X, He C, Shuai W, Marlow M, Chen J, Scurr D, Zhu Z, Xu J, Xu S. Design, Synthesis, and Biological Evaluation of Novel Hybrids Containing Dihydrochalcone as Tyrosinase Inhibitors to Treat Skin Hyperpigmentation. J Med Chem 2023; 66:5099-5117. [PMID: 36940414 DOI: 10.1021/acs.jmedchem.3c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Excessive melanin deposition may lead to a series of skin disorders. The production of melanin is carried out by melanocytes, in which the enzyme tyrosinase performs a key role. In this work, we identified a series of novel tyrosinase inhibitor hybrids with a dihydrochalcone skeleton and resorcinol structure, which can inhibit tyrosinase activity and reduce the melanin content in the skin. Compound 11c possessed the most potent activity against tyrosinase, showing IC50 values at nanomolar concentration ranges, along with significant antioxidant activity and low cytotoxicity. Furthermore, in vitro permeation tests, supported by HPLC analysis and 3D OrbiSIMS imaging visualization, revealed the excellent permeation of 11c. More importantly, compound 11c reduced the melanin content on UV-induced skin pigmentation in a guinea pig model in vivo. These results suggest that compound 11c may serve as a promising potent tyrosinase inhibitor for the development of a potential therapy to treat skin hyperpigmentation.
Collapse
Affiliation(s)
- Songtao Xue
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhiwei Li
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Xiaotong Ze
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Xiuyuan Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Wen Shuai
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Maria Marlow
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jian Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, P. R. China
| | - David Scurr
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, P. R. China
| |
Collapse
|
24
|
Manh Khoa N, Viet Phong N, Yang SY, Min BS, Kim JA. Spectroscopic analysis, kinetic mechanism, computational docking, and molecular dynamics of active metabolites from the aerial parts of Astragalus membranaceusBunge as tyrosinase inhibitors. Bioorg Chem 2023; 134:106464. [PMID: 36921361 DOI: 10.1016/j.bioorg.2023.106464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
A new isoflavane derivative (2), a new natural isoflavane (6), four new oleanane-type triterpenoid saponins (23, 25, 28, and 29), and twenty three known secondary metabolites (1, 3-5, 7-22, 24, 26, and 27) were isolated from the aerial parts of Astragalus membranaceus Bunge. The chemical structures of these compounds were elucidated through spectroscopic analysis and compared with those identified in previous studies. Tyrosinase inhibition ability of isolated compounds (1-29) was evaluated. Of these, compounds 3, 4, 6, and 14 exhibited inhibitory effects, with IC50 values ranging from 24.6 to 59.2 μM. According to kinetic analysis, compounds 3 and 4 were non-competitive inhibitors of tyrosinase, whereas compounds 6 and 14 inhibited tyrosinase in uncompetitive and competitive modes, respectively. Molecular docking analysis identified that compounds 3, 4, and 6 could bind to allosteric sites and compound 14 could bind to the catalytic site of tyrosinase, which is consistent with the results of kinetic studies. Molecular dynamics behaviors of the active compounds in complex with tyrosinase were investigated via 60 ns simulation which demonstrated their high stability. These findings indicate that the aerial parts of A. membranaceus are a potential source of natural tyrosinase inhibitors.
Collapse
Affiliation(s)
- Nguyen Manh Khoa
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
25
|
Shojazadeh T, Zolghadr L, JafarKhani S, Gharaghani S, Farasat A, Piri H, Gheibi N. Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme. J Biomol Struct Dyn 2023; 41:1378-1387. [PMID: 34974821 DOI: 10.1080/07391102.2021.2020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperpigmentation is a disorder caused by increased melanin deposition and changes in skin pigmentation. Inhibition of tyrosinase activity contributes to the control of food browning and skin pigmentation diseases. The effects of arachidonic acid (AA) on tyrosinase activity were examined using different spectroscopy methods including UV-VIS spectrophotometry, fluorescence spectroscopy, circular dichroism (CD) differential scanning calorimetry, and molecular dynamics (MD) simulations. Based on the kinetic results, arachidonic acid showed mixed-type of inhibition with Ki = 4.7 µM. Fluorescence and CD studies showed changes of secondary and tertiary structures of enzyme and a reduction of α-helix* amino acids after its incubation with different concentrations of AA, which is also confirmed by DSSP analysis. In addition, differential scanning calorimetry (DSC) studies showed a decrease in thermodynamic stability of enzyme from Tm = 338.65k for sole enzyme after incubation with AA in comparison with complex enzyme with Tm= 334.26k, ΔH =7.52 kJ/mol, and ΔS = 0.15 kJ/mol k. Based on the theoretical methods, it was found that the interaction between enzyme and AA follows an electrostatic manner with ΔG = -8.314 kJ/mol and ΔH = -12.9 kJ/mol. The MD results showed the lowest flexibility in the complex amino acids and minimal fluctuations in AA interaction with tyrosinase in Residue 240 to 260 and 66 to 80. Thus, AA inhibitory and structural and thermodynamic instability of tyrosinase supported advantages of this fatty acid for prevention of medical hyperpigmentation. Therefore, it is a good candidate for cosmetic applications. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Shojazadeh
- Department of Clinical Biochemistry and Genetic, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University Qazvin, Qazvin, Iran
| | - Saeed JafarKhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
26
|
Divar M, Tadayyon S, Khoshneviszadeh M, Pirhadi S, Attarroshan M, Mobaraki K, Damghani T, Mirfazli S, Edraki N. Benzyl‐Triazole Derivatives of Hydrazinecarbothiamide Derivatives as Potent Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Structure‐Activity Relationship and Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Somayeh Tadayyon
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Kourosh Mobaraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Sara Mirfazli
- Department of Medicinal Chemistry School of Pharmacy Iran University of Medical Sciences 1475886671 Tehran Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| |
Collapse
|
27
|
Lu L, Zhang X, Kang Y, Xiong Z, Zhang K, Xu XT, Bai LP, Li HG. Novel coumarin derivatives as potential tyrosinase inhibitors: Synthesis, binding analysis and biological evaluation. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
28
|
Exploring the Co-Crystallization of Kojic Acid with Silver(I), Copper(II), Zinc(II), and Gallium(III) for Potential Antibacterial Applications. Molecules 2023; 28:molecules28031244. [PMID: 36770910 PMCID: PMC9920434 DOI: 10.3390/molecules28031244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Co-crystallization of kojic acid (HKA) with silver(I), copper(II), zinc(II), or gallium(III) salts yielded three 1D coordination polymers and one 0D complex in which kojic acid was present as a neutral or anionic terminal or bridging ligand. All reactions were conducted mechanochemically via ball milling and manual grinding, or via slurry. All solids were fully characterized via single-crystal and/or powder X-ray diffraction. As kojic acid is a mild antimicrobial compound that is widely used in cosmetics, and the metal cations possess antibacterial properties, their combinations were tested for potential antibacterial applications. The minimal inhibition concentrations (MICs) and minimal biocidal concentrations (MBCs) for all compounds were measured against standard strains of the bacteria P. aeruginosa, S. aureus, and E. coli. All compounds exerted appreciable antimicrobial activity in the order of silver, zinc, copper, and gallium complexes.
Collapse
|
29
|
Yousefnejad F, Iraji A, Sabourian R, Moazzam A, Tasharoie S, Sara Mirfazli S, Zomorodian K, Alireza Akhlagh S, Hosseini S, Larijani B, Tehrani MB, Hajimahmoodi M, Mahdavi M. Ugi Bis-Amide Derivatives as Tyrosinase Inhibitor; Synthesis, Biology Assessment, and in Silico Analysis. Chem Biodivers 2023; 20:e202200607. [PMID: 36538729 DOI: 10.1002/cbdv.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Herein, a straightforward synthetic strategy mediated by Ugi reaction was developed to synthesize novel series of compounds as tyrosinase inhibitors. The structures of all compounds were confirmed by FT-IR, 1 H-NMR, 13 C-NMR, and CHNOS techniques. The tyrosinase inhibitory activities of all synthesized derivatives 5a-m were determined against mushroom tyrosinase and it was found that derivative 5c possesses the best inhibition with an IC50 value of 69.53±0.042 μM compared to the rest of the synthesized derivatives. Structure-activity relationships (SARs) showed that the presence of 4-MeO or 4-NO2 at the R2 position plays a key role in tyrosinase inhibitory activities. The enzyme kinetics studies showed that compound 5c is an noncompetitive inhibitor. For in silico study, the allosteric site detection was first applied to find the appropriate binding site and then molecular docking and molecular dynamic studies were performed to reveal the position and interactions of 5c as the most potent inhibitor within the tyrosinase active site. The results showed that 5c bind well with the proposed binding site and formed a stable complex with the target protein.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tasharoie
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Samensadst Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Inhibition of Aflatoxin Production by Citrinin and Non-Enzymatic Formation of a Novel Citrinin-Kojic Acid Adduct. J Fungi (Basel) 2022; 9:jof9010029. [PMID: 36675850 PMCID: PMC9861921 DOI: 10.3390/jof9010029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
Screening for microorganisms that inhibit aflatoxin production from environments showed that Penicillium citrinum inhibited aflatoxin production by Aspergillus parasiticus. The inhibitory substance in the culture medium of P. citrinum was confirmed to be citrinin (CTN). RT-PCR analyses showed that CTN did not inhibit expressions of aflatoxin biosynthetic genes (aflR, pksL1, and fas-1) of A. parasiticus, whereas feeding experiments using A. parasiticus showed that CTN inhibited the in vivo conversion of dihydrosterigmatocystin to AFB2·AFG2. These results suggest that CTN inhibits a certain post-transcriptional step in aflatoxin biosynthesis. CTN in the culture medium of A. parasiticus was found to be decreased or lost with time, suggesting that a certain metabolite produced by A. parasiticus is the cause of the CTN decrease; we then purified, characterized, and then analyzed the substance. Physico-chemical analyses confirmed that the metabolite causing a decrease in CTN fluorescence was kojic acid (KA) and the resulting product was identified as a novel substance: (1R,3S,4R)-3,4-dihydro-6,8-dihydroxy-1-(3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl)-3,4,5-trimethyl-1H-isochromene-7-carboxylic acid, which was named "CTN-KA adduct". Our examination of the metabolites' toxicities revealed that unlike CTN, the CTN-KA adduct did not inhibit aflatoxin production by A. parasiticus. These results indicate that CTN's toxicity was alleviated with KA by converting CTN to the CTN-KA adduct.
Collapse
|
31
|
Gatabi ZR, Saeedi M, Morteza-Semnani K, Rahimnia SM, Yazdian-Robati R, Hashemi SMH. Green preparation, characterization, evaluation of anti-melanogenesis effect and in vitro/ in vivo safety profile of kojic acid hydrogel as skin lightener formulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2270-2291. [PMID: 35856432 DOI: 10.1080/09205063.2022.2103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The local treatment of kojic acid (KA) as a tyrosinase inhibitor results in inadequate skin absorption and a number of side effects. The current study aims to maximize KA skin delivery. To produce KA-hydrogel, 1% KA was injected into a Chitosan/alginate hydrogel. The impacts of biopolymer proportion on the KA-hydrogel preparations were investigated. Swelling analysis, weight loss analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), UV absorption spectroscopy, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were used to evaluate the KA-hydrogel. The swelling percentages of KA-hydrogel increased significantly after 4 h. After two weeks, up to 60% of the primary mass of the KA- hydrogel has been removed. By alternation in biopolymer proportion, the drug release profile of KA-hydrogel demonstrated a sustained pattern. According to the skin absorption experiment, KA-hydrogel had higher skin deposition (25.630 ± 3.350%) than KA-plain gel (5.170 ± 0.340%). Moreover, an in vitro cytotoxicity analysis for the modified KA-hydrogel preparations revealed no cytotoxic effects on HFF cell line (90%). Moreover, KA hydrogel had inhibitory effect on melanin synthesis and are comparable with KA. Furthermore, KA-hydrogel had higher inhibitory effect on L-dopa auto oxidation (94.84 ± 2.41%) in comparison KA solution (73.95 ± 3.28%). Also, the dermal irritation study on Wistar rat revealed that the hydrogel constituent used did not irritate the skin. These results revealed that the KA-hydrogel might be employed as KA local administration, thus opening up new prospects for the therapies of hyperpigmentation problems.
Collapse
Affiliation(s)
- Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Centre, Heamoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mobin Rahimnia
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
32
|
Shirvani P, Fayyazi N, Van Belle S, Debyser Z, Christ F, Saghaie L, Fassihi A. Design, synthesis, in silico studies, and antiproliferative evaluations of novel indolin-2-one derivatives containing 3-hydroxy-4-pyridinone fragment. Bioorg Med Chem Lett 2022; 70:128784. [PMID: 35569690 DOI: 10.1016/j.bmcl.2022.128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 μM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Neda Fayyazi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siska Van Belle
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Frauke Christ
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| |
Collapse
|
33
|
Design, synthesis, in vitro, and in silico studies of novel benzylidene 6-methoxy-1-tetralone linked to benzyloxy and benzyl -1,2,3- triazole rings as potential tyrosinase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Zhou BB, Liu D, Qian JC, Tan RX. Vegetable-derived indole enhances the melanoma-treating efficacy of chemotherapeutics. Phytother Res 2022; 36:4278-4292. [PMID: 35883268 DOI: 10.1002/ptr.7565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Collapse
Affiliation(s)
- Bei Bei Zhou
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Brtko J. Biological functions of kojic acid and its derivatives in medicine, cosmetics, and food industry: Insights into health aspects. Arch Pharm (Weinheim) 2022; 355:e2200215. [DOI: 10.1002/ardp.202200215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Julius Brtko
- Department of Endocrine Regulations and Psychopharmacology, Biomedical Research Center of the Slovak Academy of Sciences Institute of Experimental Endocrinology Bratislava Slovak Republic
| |
Collapse
|
36
|
Whole Cell-mediated Biocatalytic Synthesis of Helicid Cinnamylate and Its Biological Evaluation as a Novel Tyrosinase Inhibitor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
38
|
Hajimiri M, Khosravikia M, Khoshneviszadeh M, Pedrood K, Hosseini SZ, Asgari MS, Pirhadi S, Attarroshan M, Mobaraki K, Hosseini S, Behnammanesh H, Biglar M, Karimian S, Rastegar H, Hamedifar H, Larijani B, Mahdavi M, Iraji A. Rational Design, Synthesis, in Vitro, and in Silico Studies of Chlorophenylquinazolin-4(3H)-One Containing Different Aryl Acetohydrazides as Tyrosinase Inhibitors. Chem Biodivers 2022; 19:e202100964. [PMID: 35675562 DOI: 10.1002/cbdv.202100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/18/2022] [Indexed: 11/07/2022]
Abstract
Tyrosinase plays a pivotal role in the hyperpigmentation and enzymatic browning of fruit and vegetable. Therefore, tyrosinase inhibitors can be of interest in industries as depigmentation compounds as well as anti-browning agents. In the present study, a series of chlorophenylquinazolin-4(3H)-one derivative were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1 H-NMR, 13 C-NMR, and elemental analysis. Among the synthesized derivatives, compound 8l was proved to be the most potent inhibitor with an IC50 value of 25.48±1.19 μM. Furthermore, the results of the molecular docking study showed that this compound fitted well in the active site of tyrosinase with the binding score of -10.72.
Collapse
Affiliation(s)
- Mirhamed Hajimiri
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Khosravikia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Somayeh Pirhadi
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Attarroshan
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Koroush Mobaraki
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Behnammanesh
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Karimian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Song Y, Chen S, Li L, Zeng Y, Hu X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules 2022; 27:molecules27092710. [PMID: 35566061 PMCID: PMC9103514 DOI: 10.3390/molecules27092710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including SOD, CAT, and GSH-Px to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase. More importantly, peptides reduce the tyrosinase expression content, primarily through the cAMP/PKA/CREB pathway, with PI3K/AKT/GSK3β, MEK/ERK/MITF and p38 MAPK/CREB/MITF as side pathways. The objective of this overview is to recap three main mechanisms for peptides to inhibit tyrosinase and the emerging bioinformatic technologies used in developing new inhibitors.
Collapse
Affiliation(s)
- Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
40
|
Molecular Docking, Tyrosinase, Collagenase, and Elastase Inhibition Activities of Argan By-Products. COSMETICS 2022. [DOI: 10.3390/cosmetics9010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The argan tree (Argania spinosa (L.) Skeels) is one of the most important floristic resources in Morocco. This Moroccan endemic tree is known for its numerous therapeutic and medicinal uses. In addition to some medicinal and cosmetic uses, argan fruit pulp and press cake are traditionally used by the Berber population for heating and feeding livestock. Molecular docking is an in silico approach that predicts the interaction between a ligand and a protein. This approach is mainly used in chemistry and pharmacology of natural products as a prediction tool with the purpose of selecting plant extracts or fractions for in vitro tests. The aim of this research is to study the evaluation of potential tyrosinase, collagenase, and elastase inhibitory activities of argan fruit press-cake and pulp extracts. Extracts were evaluated for their total phenolic content (TPC), and the major polyphenols of both press-cake and pulp extracts were submitted to molecular docking in order to determine the mechanisms of action of these compounds. Obtained results revealed that fruit pulp had the strongest dermocosmetic activities, as well as the highest TPC, with values above 55 mg gallic-acid equivalent per gram of dry matter (mgeq AG/gDM). Moreover, those results were positively correlated with the docking findings, suggesting that the pulp lead compounds have higher affinity with tyrosinase, collagenase, and elastase action sites. The results here presented are very promising and open new perspectives for the exploitation of argan-tree by-products as cosmetic agents towards the development of new anti-aging products.
Collapse
|
41
|
Three New Isoprenylated Flavones from Artocarpus chama Stem and Their Bioactivities. Molecules 2021; 27:molecules27010003. [PMID: 35011235 PMCID: PMC8746328 DOI: 10.3390/molecules27010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Phytochemical investigation of Artocarpus chama stem was performed by chromatographic techniques, resulting from the isolation and structure elucidation of three new compounds, namely 3′-farnesyl-apigenin (1), 3-(hydroxyprenyl) isoetin (2), and 3-prenyl-5,7,2′,5′-tetrahydroxy-4′-methoxyflavone (3), and five known compounds, namely homoeriodictyol (4), isocycloartobilo-xanthone (5), artocarpanone (6), naringenin (7), and artocarpin (8). From the screening result, A. chama extract showed a potent tyrosinase inhibitory effect. Ihe isolated compounds 1, 4 and 6 also exhibited tyrosinase inhibition with IC50 of 135.70, 52.18, and 38.78 µg/mL, respectively. Moreover, compounds 3, 4, 5, 6, and 8 showed strong activity against Staphylococcus epidermidis, S. aureus, methicillin-resistant S. aureus, and Cutibacterium acnes. This study is the first report on phytochemical investigation with new compounds and biological activities of A. chama. Skin infection can cause dark spots or hyperpigmentation. The isolated compounds that showed both anityrosinase and antimicrobial activities will be further studied in in vivo and clinical trials in order to develop treatment for hyperpigmentation, which is caused by infectious diseases by microorganisms.
Collapse
|
42
|
Sim J, Lanka S, Jo JW, Chaudhary CL, Vishwanath M, Jung CH, Lee YH, Kim EY, Kim YS, Hyun SS, Lee HS, Lee K, Seo SY, Viji M, Jung JK. Inhibitory Effect of Chlorogenic Acid Analogues Comprising Pyridine and Pyrimidine on α-MSH-Stimulated Melanogenesis and Stability of Acyl Analogues in Methanol. Pharmaceuticals (Basel) 2021; 14:1176. [PMID: 34832958 PMCID: PMC8622415 DOI: 10.3390/ph14111176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
In continuation of studies for α-MSH stimulated melanogenesis inhibitors, we have evaluated the design, synthesis, and activity of a new series of chlorogenic acid (CGA) analogues comprising pyridine, pyrimidine, and diacyl derivatives. Among nineteen synthesized compounds, most of them (fifteen) exhibited better inhibitions of melanin formation in B16 melanoma cells. The results illustrated that a pyridine analogue 6f and a diacyl derivative 13a of CGA showed superior inhibition profiles (IC50: 2.5 ± 0.7 μM and 1.1 ± 0.1 μM, respectively) of α-MSH activities than positive controls, kojic acid and arbutin (IC50: 54 ± 1.5 μM and 380 ± 9.5 μM, respectively). The SAR studies showed that both -CF3 and -Cl groups exhibited better inhibition at the meta position on benzylamine than their ortho and para positions. In addition, the stability of diacyl analogues of CGA in methanol monitored by HPLC for 28 days indicated the steric bulkiness of acyl substituents as a key factor in their stability.
Collapse
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Srinu Lanka
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Jeong-Woong Jo
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Manjunatha Vishwanath
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Chan-Hyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Young-Hee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
- Samjin Central Research Institute, Samjin Pharma Co., Ltd., Cheongju 28158, Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong 30019, Korea; (E.-Y.K.); (K.L.)
| | - Young-Soo Kim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Soon-Sil Hyun
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Hee-Soon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea; (E.-Y.K.); (K.L.)
| | - Seung-Yong Seo
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| |
Collapse
|
43
|
Dotsenko VV, Guz DD, Tebiev DT, Kindop VK, Aksenov NA, Aksenova IV, Netreba EE. Synthesis and Some Properties of New 5-Hydroxy-2-[(hetarylthio)methyl]-4H-pyran-4-ones. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s107036322109005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The reaction of 2-thioxoazines with chlorokojic acid in the presence of KOH in DMF led to the formation of new hybrid molecules containing fragments of kojic acid and azaheterocycle linked by the SCH2 spacer. In silico prediction of bioavailability parameters was carried out, possible protein targets were predicted by the protein ligand docking method.
Collapse
|
44
|
Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. BIOSENSORS 2021; 11:290. [PMID: 34436092 PMCID: PMC8393227 DOI: 10.3390/bios11080290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.
Collapse
Affiliation(s)
- Yu-Fan Fan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Si-Xing Zhu
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Fan-Bin Hou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Dong-Fang Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Qiu-Sha Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| |
Collapse
|
45
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
46
|
New Benzimidazothiazolone Derivatives as Tyrosinase Inhibitors with Potential Anti-Melanogenesis and Reactive Oxygen Species Scavenging Activities. Antioxidants (Basel) 2021; 10:antiox10071078. [PMID: 34356311 PMCID: PMC8301170 DOI: 10.3390/antiox10071078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Thirteen (Z)-2-(substituted benzylidene)benzimidazothiazolone analogs were synthesized and evaluated for their inhibitory activity against mushroom tyrosinase. Among the compounds synthesized, compounds 1–3 showed greater inhibitory activity than kojic acid (IC50 = 18.27 ± 0.89 μM); IC50 = 3.70 ± 0.51 μM for 1; IC50 = 3.05 ± 0.95 μM for 2; and IC50 = 5.00 ± 0.38 μM for 3, and found to be competitive tyrosinase inhibitors. In silico molecular docking simulations demonstrated that compounds 1–3 could bind to the catalytic sites of tyrosinase. Compounds 1–3 inhibited melanin production and cellular tyrosinase activity in a concentration-dependent manner. Notably, compound 2 dose-dependently scavenged ROS in B16F10 cells. Furthermore, compound 2 downregulated the protein kinase A (PKA)/cAMP response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling pathways, which led to a reduction in microphthalmia-associated transcription factor (MITF) expression, and decreased tyrosinase, tyrosinase related protein 1 (TRP1), and TRP2 expression, resulting in anti-melanogenesis activity. Hence, compound 2 may serve as an anti-melanogenic agent against hyperpigmentation diseases.
Collapse
|
47
|
Hosseinpoor H, Moghadam Farid S, Iraji A, Askari S, Edraki N, Hosseini S, Jamshidzadeh A, Larijani B, Attarroshan M, Pirhadi S, Mahdavi M, Khoshneviszadeh M. Anti-melanogenesis and anti-tyrosinase properties of aryl-substituted acetamides of phenoxy methyl triazole conjugated with thiosemicarbazide: Design, synthesis and biological evaluations. Bioorg Chem 2021; 114:104979. [PMID: 34140181 DOI: 10.1016/j.bioorg.2021.104979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
A series of aryl phenoxy methyl triazole conjugated with thiosemicarbazides were designed, synthesized, and evaluated for their tyrosinase inhibitory activities in the presence of l-dopa and l-tyrosine as substrates. All the compounds showed tyrosinase inhibition in the sub-micromolar concentration. Among the derivatives, compound 9j bearing benzyl displayed exceptionally high potency against tyrosinase with IC50 value of 0.11 μM and 0.17 μM in the presence of l-tyrosine and l-dopa as substrates which is significantly lower than that of kojic acid as the positive control with an IC50 value of 9.28 μM for l-tyrosine and 9.30 μM for l-dopa. According to Lineweaver-Burk plot, 9j demonstrated an uncompetitive type of inhibition in the kinetic assay. Also, in vitro antioxidant activities determined by DPPH assay recorded an IC50 value of 68.43 μM for 9i. The melanin content of 9j was determined on B16F10 melanoma human cells which demonstrated a significant reduction of the melanin content. Moreover, the binding energies corresponding to the same ligand as well as computer-aided drug-likeness and pharmacokinetic studies were also carried out. Compound 9j also possessed metal chelation potential correlated to its high anti-TYR activity.
Collapse
Affiliation(s)
- Hona Hosseinpoor
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, 71345 Shiraz, Iran
| | - Sara Moghadam Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348 Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Askari
- Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348 Shiraz, Iran
| | - Samanesadat Hosseini
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348 Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348 Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, 71345 Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348 Shiraz, Iran.
| |
Collapse
|
48
|
A rapid method and mechanism to identify the active compounds in Malus micromalus Makino fruit with spectrum-effect relationship, components knock-out and molecular docking technology. Food Chem Toxicol 2021; 150:112086. [DOI: 10.1016/j.fct.2021.112086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
|
49
|
Wu Y, Huo D, Chen G, Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:85-110. [PMID: 33517778 DOI: 10.1080/1062936x.2020.1862297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Tyrosinase is a key rate-limiting enzyme in the process of melanin synthesis, which is closely related to human pigmentation disorders. Tyrosinase inhibitors can down-regulate tyrosinase to effectively reduce melanin synthesis. In this work, we conducted structure-activity relationship (SAR) study on 1097 diverse mushroom tyrosinase inhibitors. We applied five kinds of machine learning methods to develop 15 classification models. Model 5B built by fully connected neural networks and ECFP4 fingerprints achieved the highest prediction accuracy of 91.36% and Matthews correlation coefficient (MCC) of 0.81 on the test set. The applicability domains (AD) of classification models were defined by d S T D - P R O method. Moreover, we clustered the 1097 inhibitors into eight subsets by K-Means to figure out inhibitors' structural features. In addition, 10 quantitative structure-activity relationship (QSAR) models were constructed by four machine learning methods based on 813 inhibitors. Model 6 J, the best QSAR model, was developed by fully connected neural networks with 50 RDKit descriptors. It resulted in a coefficient of determination (r 2) of 0.770 and a root mean squared error (RMSE) of 0.482 on the test set. The AD of Model 6 J was visualized by Williams plot. The models built in this study can be obtained from the authors.
Collapse
Affiliation(s)
- Y Wu
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - D Huo
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - G Chen
- College of Life Science and Technology, Beijing University of Chemical Technology , Beijing, China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| |
Collapse
|
50
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|