1
|
Qu S, Dai H. Conjugated STING agonists. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102530. [PMID: 40291379 PMCID: PMC12032345 DOI: 10.1016/j.omtn.2025.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An innate immune system is the first line of defense and prevents the host from infection and attacks the invading pathogens. Stimulator of interferon genes (STING) plays a vital role in the innate immune system. STING activation by STING agonists leads to phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) with the release of type I interferons and proinflammatory cytokines, further promoting the adaptive immune response and activating T cells by increased antigen presentation. Natural STING agonist cyclic dinucleotides (CDNs) encounter many defects such as high polarity by negative charges, low stability and circulative half-life, off-target systemic toxicity, and low response efficacy in clinical trials. To overcome these challenges, massive efforts have addressed chemical modifications of CDNs, development of non-CDN STING agonists, and delivery of these STING agonists either by conjugation or liposomes/nanoparticles. Considering there have been a great number of reports regarding nanosystem-aided delivery, here, we examine the development of STING agonists, especially for non-CDNs and their delivery specifically by conjugation strategy, with a focus on the STING agonists in clinical trials and current challenges of their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuhao Qu
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Basu S, Middya S, Shrivastava R, Pryde DC, Ghosh R, Yadav DB, Banerjee M, Surya A. Synthesis and structure-activity evaluation of a series of novel tricyclic STING activators. Eur J Med Chem 2025; 290:117577. [PMID: 40179614 DOI: 10.1016/j.ejmech.2025.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
A novel small molecule tricyclic series of STING activators was designed, synthesized and evaluated for human STING activity. These STING agonists were optimized from an initial set of structures with low potency through iterative cycles of design, synthesis and biological evaluation to yield compounds with potent human STING activity. The binding and functional properties of 68, an exemplar from the series were determined. Further, while 68 activated major variants of human STING it did not activate murine STING. Treatment of human PBMCs led to pathway engagement and the release of pro-inflammatory cytokines. When administered intra-tumorally, 68 caused robust retardation in the growth of MCA205 mouse fibrosarcoma tumors in human STING knock-in mice.
Collapse
Affiliation(s)
- Sourav Basu
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Ritesh Shrivastava
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - David C Pryde
- Curadev Pharma Ltd., Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent, CT13 9ND, UK
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Dharmendra B Yadav
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Monali Banerjee
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Arjun Surya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India.
| |
Collapse
|
3
|
Hou S, Chang J, Xing C, Ye Z, Li W, Zhang Y, Zheng Z, Xiao J, Li S. Design, Synthesis, and Biological Evaluation of Selective STING Synergists That Enhance cGAMP-STING Pathway Activation without Inherent Agonist Activity. J Med Chem 2025; 68:9407-9430. [PMID: 40298091 DOI: 10.1021/acs.jmedchem.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The cGAS-STING pathway is pivotal for innate immunity and antitumor responses. However, the challenge of selectively targeting the diseased tissue without harming the healthy tissue has impeded the development of STING agonists. In this article, we tackle this issue by developing novel STING synergists that target the STING C-terminal domain pocket. Our findings indicate that agonist 12B can boost the cGAMP-STING pathway synergistically. Through reverse optimization of 12B, we synthesized three series of compounds, with compounds 55, 66, and 67 emerging as selective STING synergists that amplify cGAMP-induced pathway activation without inherent agonist properties. Compound 67 emerged as the most potent (EC50 = 20.53 μM), displaying a broad binding affinity across STING-CTD alleles and potent antitumor efficacy in vivo. Notably, it exhibited excellent safety profiles in both in vitro and in vivo models, along with favorable pharmacokinetics. These findings highlight the therapeutic potential of novel STING synergists for cancer immunotherapy.
Collapse
Affiliation(s)
- Shi Hou
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jiajia Chang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Cheng Xing
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ze Ye
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Li
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhibing Zheng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Song Li
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
4
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025; 13:2235-2260. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
5
|
Chen X, Zhuo SH, Li YM. Oligomerization of STING and Chemical Regulatory Strategies. Chembiochem 2025; 26:e202400888. [PMID: 39900536 DOI: 10.1002/cbic.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in innate immunity. Upon the recognition of cytosolic dsDNA, STING undergoes several structural changes, with oligomerization playing a key role in initiating a cascade of immune responses. Therefore, controlling the STING pathway by manipulating STING oligomerization is a practical strategy. This review focuses on the detailed mechanism of STING oligomerization, highlighting its decisive role. It also describes oligomerization-based strategies to regulate STING protein, such as the use of small-molecule agonists and biomacromolecules, highlighting their interaction modes and potential therapeutic applications. This knowledge may lead to the development of innovative approaches for treating cancer and immune disorders.
Collapse
Affiliation(s)
- Xi Chen
- Zhili College, Tsinghua University, Beijing, 100084, P. R. China
| | - Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Gharpure A, Sulpizio A, Loeffler JR, Fernández-Quintero ML, Tran AS, Lairson LL, Ward AB. Distinct oligomeric assemblies of STING induced by non-nucleotide agonists. Nat Commun 2025; 16:3440. [PMID: 40216780 PMCID: PMC11992164 DOI: 10.1038/s41467-025-58641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
STING plays essential roles coordinating innate immune responses to processes that range from pathogenic infection to genomic instability. Its adaptor function is activated by cyclic dinucleotide (CDN) secondary messengers originating from self (2'3'-cGAMP) or bacterial sources (3'3'-CDNs). Different classes of CDNs possess distinct binding modes, stabilizing STING's ligand-binding domain (LBD) in either a closed or open conformation. The closed conformation, induced by the endogenous ligand 2'3'-cGAMP, has been extensively studied using cryo-EM. However, significant questions remain regarding the structural basis of STING activation by open conformation-inducing ligands. Using cryo-EM, we investigate potential differences in conformational changes and oligomeric assemblies of STING for closed and open conformation-inducing synthetic agonists. While we observe a characteristic 180° rotation for both classes, the open-LBD inducing agonist diABZI-3 uniquely induces a quaternary structure reminiscent but distinct from the reported autoinhibited state of apo-STING. Additionally, we observe slower rates of activation for this ligand class in functional assays, which collectively suggests the existence of a potential additional regulatory mechanism for open conformation-inducing ligands that involves head-to-head interactions and restriction of curved oligomer formation. These observations have potential implications in the selection of an optimal class of STING agonist in the context of a defined therapeutic application.
Collapse
Affiliation(s)
- Anant Gharpure
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ariana Sulpizio
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | | | - Andy S Tran
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
7
|
Poddar S, Chauvin SD, Archer CH, Qian W, Castillo-Badillo JA, Yin X, Disbennett WM, Miner CA, Holley JA, Naismith TV, Stinson WA, Wei X, Ning Y, Fu J, Ochoa TA, Surve N, Zaver SA, Wodzanowski KA, Balka KR, Venkatraman R, Liu C, Rome K, Bailis W, Shiba Y, Cherry S, Shin S, Semenkovich CF, De Nardo D, Yoh S, Roberson EDO, Chanda SK, Kast DJ, Miner JJ. ArfGAP2 promotes STING proton channel activity, cytokine transit, and autoinflammation. Cell 2025; 188:1605-1622.e26. [PMID: 39947179 PMCID: PMC11928284 DOI: 10.1016/j.cell.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Stimulator of interferon genes (STING) transmits signals downstream of the cytosolic DNA sensor cyclic guanosine monophosphate-AMP synthase (cGAS), leading to transcriptional upregulation of cytokines. However, components of the STING signaling pathway, such as IRF3 and IFNAR1, are not essential for autoinflammatory disease in STING gain-of-function (STING-associated vasculopathy with onset in infancy [SAVI]) mice. Recent discoveries revealed that STING also functions as a proton channel that deacidifies the Golgi apparatus. Because pH impacts Golgi enzyme activity, protein maturation, and trafficking, we hypothesized that STING proton channel activity influences multiple Golgi functions. Here, we show that STING-mediated proton efflux non-transcriptionally regulates Golgi trafficking of protein cargos. This process requires the Golgi-associated protein ArfGAP2, a cell-type-specific dual regulator of STING-mediated proton efflux and signaling. Deletion of ArfGAP2 in hematopoietic and endothelial cells markedly reduces STING-mediated cytokine and chemokine secretion, immune cell activation, and autoinflammatory pathology in SAVI mice. Thus, ArfGAP2 facilitates STING-mediated signaling and cytokine release in hematopoietic cells, significantly contributing to autoinflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher H Archer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - W Miguel Disbennett
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xiaochao Wei
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Trini A Ochoa
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shivam A Zaver
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Canyu Liu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Rome
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Will Bailis
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sunnie Yoh
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elisha D O Roberson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Wang Y, Liu S, Zhou Q, Feng Y, Xu Q, Luo L, Lv H. Bioinformatics for the Identification of STING-Related Genes in Diabetic Retinopathy. Curr Eye Res 2025; 50:320-333. [PMID: 39704112 DOI: 10.1080/02713683.2024.2430223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is the most common complication of diabetes mellitus. Stimulator of interferon genes (STING) plays an important regulatory role in the transcription of several genes. This study aimed to mine and identify hub genes relevant to STING in DR. METHODS The STING-related genes (STING-RGs) were extracted from MSigDB database. Differentially expressed STING-RGs (DE-STING-RGs) were filtered by overlapping differentially expressed genes (DEGs) between DR and NC specimens and STING-RGs. A PPI network was established to mine hub genes. The ability of the hub genes to differentiate between DR and NC specimens was evaluated. Additionally, a ceRNA network was established to investigate the regulatory mechanisms of hub genes. Subsequently, the discrepancies in immune infiltration between DR and NC specimens were further explored. Additionally, we performed drug predictions. Finally, RT-qPCR of peripheral blood samples was used to validate the bioinformatics results. RESULTS A grand total of four genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING were identified for DR. The AUC values of all four hub genes were greater than 0.7, which indicated that the diagnostic value was acceptable. The ceRNA network contained four hub genes, 170 miRNAs, and 135 lncRNAs. In addition, immunoinfiltration analysis demonstrated that the abundance of activated B cells was notably different between the DR and NC specimens. Moreover, 32 drugs were included in the drug-gene network, with twelve drugs targeting STAT6, nine drugs targeting NFKBIA, four drugs targeted IKBKG, and seven drugs targeted FCGR2A. The expression of the four hub genes in blood samples determined by RT-qPCR was consistent with our analysis. CONCLUSION In conclusion, four hub genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING with a diagnostic value for DR were identified by bioinformatics analysis, which might provide new insights into the evaluation and treatment of DR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Siyan Liu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qi Zhou
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Yalin Feng
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qin Xu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Linbi Luo
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| |
Collapse
|
9
|
Fischer TD, Bunker EN, Zhu PP, Le Guerroué F, Hadjian M, Dominguez-Martin E, Scavone F, Cohen R, Yao T, Wang Y, Werner A, Youle RJ. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NF-κB signaling. EMBO J 2025; 44:141-165. [PMID: 39578541 PMCID: PMC11696098 DOI: 10.1038/s44318-024-00291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
STING activation by cyclic dinucleotides induces IRF3- and NF-κB-mediated gene expression in mammals, as well as lipidation of LC3B at Golgi-related membranes. While mechanisms of the IRF3 response are well understood, the mechanisms of NF-κB activation via STING remain unclear. We report here that STING activation induces linear/M1-linked ubiquitin chain (M1-Ub) formation and recruitment of the LUBAC E3 ligase, HOIP, to LC3B-associated Golgi membranes where ubiquitin is also localized. Loss of HOIP prevents formation of M1-Ub chains and reduces STING-induced NF-κB and IRF3 signaling in human THP1 monocytes and mouse bone marrow-derived macrophages, without affecting STING activation. STING-induced LC3B lipidation is not required for M1-Ub chain formation or for immune-related gene expression, but the recently reported STING function in neutralizing Golgi pH may be involved. Thus, LUBAC synthesis of M1-linked ubiquitin chains mediates STING-induced innate immune signaling.
Collapse
Affiliation(s)
- Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Eric N Bunker
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peng-Peng Zhu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - François Le Guerroué
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mahan Hadjian
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eunice Dominguez-Martin
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Robert Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Wang
- Mass Spectrometry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Zhi H, Fu H, Zhang Y, Fan N, Zhao C, Li Y, Sun Y, Li Y. Progress of cGAS-STING signaling pathway-based modulation of immune response by traditional Chinese medicine in clinical diseases. Front Immunol 2024; 15:1510628. [PMID: 39737190 PMCID: PMC11683013 DOI: 10.3389/fimmu.2024.1510628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The cGAS-STING signaling pathway is a critical component of the innate immune response, playing a significant role in various diseases. As a central element of this pathway, STING responds to both endogenous and exogenous DNA stimuli, triggering the production of interferons and pro-inflammatory cytokines to enhance immune defenses against tumors and pathogens. However, dysregulated activation of the STING pathway is implicated in the pathogenesis of multiple diseases, including autoinflammation, viral infections, and cancer. Traditional Chinese Medicines (TCMs), which have a long history of use, have been associated with positive effects in disease prevention and treatment. TCM formulations (e.g., Lingguizhugan Decoction, Yi-Shen-Xie-Zhuo formula) and active compounds (e.g., Glabridin, Ginsenoside Rd) can modulate the cGAS-STING signaling pathway, thereby influencing the progression of inflammatory, infectious, or oncological diseases. This review explores the mechanisms by which TCMs interact with the cGAS-STING pathway to regulate immunity, focusing on their roles in infectious diseases, malignancies, and autoimmune disorders.
Collapse
Affiliation(s)
- Hui Zhi
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunxin Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ni Fan
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Zhou R, Wang X, Zhang D, Zhan Z, Duan W. Design, synthesis, and STING-agonistic activity of benzo[b]thiophene-2-carboxamide derivatives. Mol Divers 2024; 28:3101-3110. [PMID: 37796389 DOI: 10.1007/s11030-023-10736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
STING is an important immune-associated protein that localizes in the endoplasmic reticulum membrane. Upon being activated by its agonists, STING triggers the IRF and NF-κB pathways, which generates type I interferons and proinflammatory cytokines, and ultimately primes the innate immune responses to achieve valid antitumor efficacy. We designed and synthesized a series of benzo[b]thiophene-2-carboxamide derivatives. Through STING-agonistic activity evaluation, compounds 12d and 12e exhibited marginal human STING-activating activities. Western blot analysis demonstrated that both 12d and 12e treatment increased the phosphorylation of the downstream signaling molecules (TBK1 and IRF3) of STING. The proposed binding mode of 12d/12e and STING protein displayed that two canonical hydrogen bonds, a π-π stacking interaction, as well as a π-cation interaction formed between the agonist and the CDN-binding domain of STING protein.
Collapse
Affiliation(s)
- Rongyao Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China
| | - Xiyuan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China
| | - Deqiang Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China
| | - Zhengsheng Zhan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Wenhu Duan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
12
|
Qu C, Shao X, Jia R, Song G, Shi D, Wang H, Wang J, An H. Hypoxia Reversion and STING Pathway Activation through Large Mesoporous Nanozyme for Near-Infrared-II Light Amplified Tumor Polymetallic-Immunotherapy. ACS NANO 2024; 18:22153-22171. [PMID: 39118372 DOI: 10.1021/acsnano.4c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn2+, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn2+ (Mn2+@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn2+@AuPdRh nanozyme decomposes the endogenous H2O2 into O2 to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn2+@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and •OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn2+ augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Chang Qu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 300130, Tianjin, People's Republic of China
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Ran Jia
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Liu Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater 2024; 176:51-76. [PMID: 38237711 DOI: 10.1016/j.actbio.2024.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Despite the current promise of immunotherapy, many cancer patients still suffer from challenges such as poor immune response rates, resulting in unsatisfactory clinical efficacy of existing therapies. There is an urgent need to combine emerging biomedical discoveries and innovations in traditional therapies. Modulation of the cGAS-STING signalling pathway represents an important innate immunotherapy pathway that serves as a crucial DNA sensing mechanism in innate immunity and viral defense. It has attracted increasing attention as an emerging target for cancer therapy. The recent advancements in nanotechnology have led to the significant utilization of nanomaterials in cancer immunotherapy, owing to their exceptional physicochemical properties such as large specific surface area and efficient permeability. Given the rapid development of cancer immunotherapy driven by the cGAS-STING activation, this study reviews the latest research progress in employing nanomaterials to modulate this signaling pathway. Based on the introduction of the main activation mechanisms of cGAS-STING pathway, this review focuses on nanomaterials that mediate the agonists involved and effectively activate this signaling pathway. In addition, combination nanotherapeutics based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as other immunomodulation in tumor targeting therapy. STATEMENT OF SIGNIFICANCE: Given the rapid development of cancer immunotherapy driven by the cGAS / STING activation, this study reviews the latest research advances in the use of nanomaterials to modulate this signaling pathway. Based on the introduction of key cGAS-STING components and their activation mechanisms, this review focuses on nanomaterials that can mediate the corresponding agonists and effectively activate this signaling pathway. In addition, combination nanotherapies based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as immunomodulation in cancer therapy,.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
14
|
Zhao M, Fan W, Wang Y, Qiang P, Zheng Z, Shan H, Zhang M, Liu P, Wang Y, Li G, Li M, Hong L. M335, a novel small-molecule STING agonist activates the immune response and exerts antitumor effects. Eur J Med Chem 2024; 264:116018. [PMID: 38091891 DOI: 10.1016/j.ejmech.2023.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
In the context of antitumor immune responses, the activation of the stimulator of interferon genes (STING) assumes a critical role and imparts enhanced immunogenicity. An effective strategy for exogenously activating the immune system involves the utilization of STING agonists, and prior investigations primarily concentrated on modifying endogenous cyclic dinucleotides (CDNs) to achieve this. Nevertheless, the practical utility of CDNs was restricted due to limitations associated with their physicochemical attributes and administration protocols. In this article, we present the discovery of a novel small-molecule agonist denoted as M335, identified through high-throughput screening using surface plasmon resonance (SPR). M335 demonstrates the ability to activate the TBK1-IRF3-IFN axis in a STING-dependent manner in vitro. Through experimentation on mouse models bearing tumors, we observed that the administration of M335 resulted in the activation of immune cells. Notably, significant antitumor effects were achieved with both intratumoral and intraperitoneal administration of M335. These findings suggest the potential of M335 as a promising agent for cancer immunotherapy, which will promote the development of STING agonists in anti-tumor applications.
Collapse
Affiliation(s)
- Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Weizhen Fan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Pengfei Qiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhihua Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Shan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pengyutian Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
16
|
Fan L, He M, Liu X, He F, Wu L, Yang G, Pan Z, Shi L, Wang C, Xu C. Direct access to carbamates via acylation of arylamines with dialkyl azodicarboxylates under metal-free conditions. Org Biomol Chem 2023; 21:9037-9048. [PMID: 37933527 DOI: 10.1039/d3ob01437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A novel C-N coupling of various arylamines with dialkyl azodicarboxylates under metal-free conditions for the rapid assembly of carbamates has been achieved. This established protocol features mild reaction conditions, simple operation, broad substrate scope, moderate to excellent yields and good tolerance of functional groups. Moreover, the potential synthetic utility of products was exemplified by a series of intriguing chemical operations.
Collapse
Affiliation(s)
- Liangxin Fan
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mengyang He
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xinyuan Liu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fangyu He
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lulu Wu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guoyu Yang
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhenliang Pan
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lijun Shi
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Caixia Wang
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Cuilian Xu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
17
|
Amirian R, Azadi Badrbani M, Izadi Z, Samadian H, Bahrami G, Sarvari S, Abdolmaleki S, Nabavi SM, Derakhshankhah H, Jaymand M. Targeted protein modification as a paradigm shift in drug discovery. Eur J Med Chem 2023; 260:115765. [PMID: 37659194 DOI: 10.1016/j.ejmech.2023.115765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Sarvari
- Department of Pharmaceutical Science, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Sara Abdolmaleki
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | - Seyed Mohammad Nabavi
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy.
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Zhou S, Cheng F, Zhang Y, Su T, Zhu G. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Acc Chem Res 2023; 56:2933-2943. [PMID: 37802125 PMCID: PMC10882213 DOI: 10.1021/acs.accounts.3c00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway is an emerging therapeutic target for the prophylaxis and therapy of a variety of diseases, ranging from cancer, infectious diseases, to autoimmune disorders. As a cytosolic double stranded DNA (dsDNA) sensor, cGAS can bind with relatively long dsDNA, resulting in conformational change and activation of cGAS. Activated cGAS catalyzes the conversion of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) into cGAMP, a cyclic dinucleotide (CDN). CDNs, including 2'3'-cGAMP, stimulate adapter protein STING on the endoplasmic membrane, triggering interferon regulatory factor 3 (IRF3) phosphorylation and nuclear factor kappa B (NF-κB) activation. This results in antitumor and antiviral type I interferon (IFN-I) responses. Moreover, cGAS-STING overactivation and the resulting IFN-I responses have been associated with a number of inflammatory and autoimmune diseases. This makes cGAS-STING appealing immunomodulatory targets for the prophylaxis and therapy of various related diseases. However, drug development of CDNs and CDN derivatives is challenged by their limited biostability, difficult formulation, poor pharmacokinetics, and inefficient tissue accumulation and cytosolic delivery. Though recent synthetic small molecular CDN- or non-CDN-based STING agonists have been reported with promising preclinical therapeutic efficacy, their therapeutic efficacy and safety remain to be fully evaluated preclinically and clinically. Therefore, it is highly desirable and clinically significant to advance drug development for cGAS-STING activation by innovative approaches, such as drug delivery systems and drug development for pharmacological immunomodulation of cGAS. In this Account, we summarize our recent research in the engineering and delivery of immunostimulatory or immunoregulatory modulators for cGAS and STING for the immunotherapy of cancer and autoimmune diseases. To improve the delivery efficiency of CDNs, we developed ionizable and pH-responsive polymeric nanocarriers to load STING agonists, aiming to improve the cellular uptake and facilitate the endosomal escape to induce efficient STING activation. We also codelivered STING agonists with complementary immunostimulatants in nanoparticle-in-hydrogel composites to synergetically elicit potent innate and adaptive antitumor responses that eradicate local and distant large tumors. Further, taking advantage of the simplicity of manufacturing and the established nucleic acid delivery system, we developed oligonucleotide-based cGAS agonists as immunostimulant immunotherapeutics as well as adjuvants for peptide antigens for cancer immunotherapy. To suppress the overly strong proinflammatory responses associated with cGAS-STING overactivation in some of the autoimmune disorders, we devised nanomedicine-in-hydrogel (NiH) that codelivers a cGAS inhibitor and cell-free DNA (cfDNA)-scavenging cationic nanoparticles (cNPs) for systemic immunosuppression in rheumatoid arthritis (RA) therapy. Lastly, we discussed current drug development by targeting cGAS-STING for cancer, infectious diseases, and autoimmune diseases, as well as the potential opportunities for utilizing cGAS-STING pathway for versatile applications in disease treatment.
Collapse
Affiliation(s)
- Shurong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan. Ann Arbor, Michigan 48109, United States
| | - Furong Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yu Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 31002, China
| | - Ting Su
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan. Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Dong M, Fitzgerald KA. STING channels its proton power. Mol Cell 2023; 83:3402-3403. [PMID: 37802022 DOI: 10.1016/j.molcel.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Induction of type I interferon by the STING pathway is a cornerstone of innate immunity. STING also turns on non-canonical autophagy and inflammasome activation although the underlying mechanisms remain ill defined. Liu et al.1 discovered that STING forms a channel that directs proton efflux from the Golgi to drive these responses.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Chen K, Liao J, Patel DJ, Xie W. Advances in structure-guided mechanisms impacting on the cGAS-STING innate immune pathway. Adv Immunol 2023; 159:1-32. [PMID: 37996205 DOI: 10.1016/bs.ai.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The metazoan cGAS-STING innate immunity pathway is triggered in response to cytoplasmic double-stranded DNA (dsDNA), thereby providing host defense against microbial pathogens. This pathway also impacts on autoimmune diseases, cellular senescence and anti-tumor immunity. The cGAS-STING pathway was also observed in the bacterial antiviral immune response, known as the cyclic oligonucleotide (CDN)-based anti-phage signaling system (CBASS). This review highlights a structure-based mechanistic perspective of recent advances in metazoan and bacterial cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway.
Collapse
Affiliation(s)
- Kexin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jialing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China; School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
21
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
22
|
Hsiao WC, Niu GH, Lo CF, Wang JY, Chi YH, Huang WC, Tung CW, Sung PJ, Tsou LK, Zhang MM. Marine diterpenoid targets STING palmitoylation in mammalian cells. Commun Chem 2023; 6:153. [PMID: 37463995 DOI: 10.1038/s42004-023-00956-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Natural products are important sources of therapeutic agents and useful drug discovery tools. The fused macrocycles and multiple stereocenters of briarane-type diterpenoids pose a major challenge to total synthesis and efforts to characterize their biological activities. Harnessing a scalable source of excavatolide B (excB) from cultured soft coral Briareum stechei, we generated analogs by late-stage diversification and performed structure-activity analysis, which was critical for the development of functional excB probes. We further used these probes in a chemoproteomic strategy to identify Stimulator of Interferon Genes (STING) as a direct target of excB in mammalian cells. We showed that the epoxylactone warhead of excB is required to covalently engage STING at its membrane-proximal Cys91, inhibiting STING palmitoylation and signaling. This study reveals a possible mechanism-of-action of excB, and expands the repertoire of covalent STING inhibitors.
Collapse
Affiliation(s)
- Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung, 944401, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 404394, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan.
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan.
| |
Collapse
|
23
|
Xie W, Patel DJ. Structure-based mechanisms of 2'3'-cGAMP intercellular transport in the cGAS-STING immune pathway. Trends Immunol 2023; 44:450-467. [PMID: 37147228 PMCID: PMC11824902 DOI: 10.1016/j.it.2023.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Upon activation by double-stranded DNA (dsDNA), the cytosolic dsDNA sensor cyclic GMP-AMP synthase (cGAS) synthesizes the diffusible cyclic dinucleotide 2'3'-cGAMP (cyclic GMP-AMP), which subsequently binds to the adaptor STING, triggering a cascade of events leading to an inflammatory response. Recent studies have highlighted the role of 2'3'-cGAMP as an 'immunotransmitter' between cells, a process facilitated by gap junctions as well as by specialized membrane-spanning importer and exporter channels. This review highlights recent advances from a structural perspective of intercellular trafficking of 2'3'-cGAMP, with particular emphasis on the binding of importer SLC19A1 to 2'3'-cGAMP, as well as the significance of associated folate nutrients and antifolate therapeutics. This provides a path forward for structure-guided understanding of the transport cycle in immunology, as well as for candidate targeting approaches towards therapeutic intervention in inflammation.
Collapse
Affiliation(s)
- Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 311027, China; Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Patel DJ, Yu Y, Xie W. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Nat Struct Mol Biol 2023; 30:245-260. [PMID: 36894694 PMCID: PMC11749898 DOI: 10.1038/s41594-023-00933-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
The metazoan cGAMP-activated cGAS-STING innate immunity pathway is triggered in response to genomic instability and DNA damage, thereby providing host defense against microbial pathogens. This pathway also impacts on autophagy, cellular senescence and antitumor immunity, while its overactivation triggers autoimmune and inflammatory diseases. Metazoan cGAS generates cGAMP containing distinct combinations of 3'-5' and 2'-5' linkages, which target the adaptor protein STING and activate the innate immune response through a signaling cascade leading to upregulation of cytokine and interferon production. This Review highlights a structure-based mechanistic perspective of recent advances in cGAMP-activated cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway. In addition, the Review addresses progress towards identification of inhibitors and activators targeting cGAS and STING, as well as strategies developed by pathogens to evade cGAS-STING immunity. Most importantly, it highlights cyclic nucleotide second messengers as ancient signaling molecules that elicit a potent innate immune response that originated in bacteria and evolved through evolutionary adaptation to metazoans.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - You Yu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Chin EN, Sulpizio A, Lairson LL. Targeting STING to promote antitumor immunity. Trends Cell Biol 2023; 33:189-203. [PMID: 35931610 DOI: 10.1016/j.tcb.2022.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
Abstract
Pharmacology-based methods that promote antitumor immunity have the potential to be highly efficacious while avoiding the systemic cytotoxicity associated with traditional chemotherapies. Activation of type I interferon (IFN) signaling in antigen-presenting cell types [e.g., macrophages and dendritic cells (DCs)] is critical, if not essential, for inducing a tumor-specific adaptive immune response, including the activation of cytolytic CD8 T cells. In the context of promoting antitumor immunity, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway has emerged as a principal regulator of essential type I IFN signaling. As such, STING represents a highly attractive target for developing a first-in-class immunotherapy, albeit one with a potential for significant cell type- and downstream pathway-dependent on-target toxicities, as well as conceivable pharmacogenomic liabilities.
Collapse
Affiliation(s)
- Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ariana Sulpizio
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
27
|
S-acylthioalkyl ester (SATE)-based prodrugs of deoxyribose cyclic dinucleotides (dCDNs) as the STING agonist for antitumor immunotherapy. Eur J Med Chem 2022; 243:114796. [DOI: 10.1016/j.ejmech.2022.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
|
28
|
Nanodelivery of cGAS-STING activators for tumor immunotherapy. Trends Pharmacol Sci 2022; 43:957-972. [PMID: 36089410 DOI: 10.1016/j.tips.2022.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has great potential to promote antitumor immunity. Development of activators for the cGAS-STING pathway (cGAS-STING activators) has profoundly revolutionized tumor immunotherapy. However, successful clinical application of cGAS-STING activators is contingent on having appropriate systems to achieve safe, effective, and specific delivery. There is an increasing emphasis on the design and application of nano drug delivery systems (NDDS) that can facilitate the delivery potential of cGAS-STING activators. In this review, we discuss barriers for translational development of cGAS-STING activators (DNA damaging drugs and STING agonists) and recent advances of NDDS for these agents in tumor immunotherapy.
Collapse
|
29
|
Shen A, Li X, Zhang Y, Ma J, Xiao R, Wang X, Song Z, Liu Z, Geng M, Zhang A, Xie Z, Ding C. Structure−Activity relationship study of benzothiophene oxobutanoic acid analogues leading to novel stimulator of interferon gene (STING) agonists. Eur J Med Chem 2022; 241:114627. [DOI: 10.1016/j.ejmech.2022.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
|
30
|
Niu J, Bai H, Li Z, Gao Y, Zhang Y, Wang X, Yang Y, Xu Y, Geng M, Xie Z, Zhou B. Discovery of novel Thieno[2,3-d]imidazole derivatives as agonists of human STING for antitumor immunotherapy using systemic administration. Eur J Med Chem 2022; 238:114482. [DOI: 10.1016/j.ejmech.2022.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
|
31
|
Yanase Y, Tsuji G, Nakamura M, Shibata N, Demizu Y. Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues. Int J Mol Sci 2022; 23:ijms23126847. [PMID: 35743289 PMCID: PMC9224868 DOI: 10.3390/ijms23126847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Stimulator of Interferon Genes (STING) is a type of endoplasmic reticulum (ER)-membrane receptor. STING is activated by a ligand binding, which leads to an enhancement of the immune-system response. Therefore, a STING ligand can be used to regulate the immune system in therapeutic strategies. However, the natural (or native) STING ligand, cyclic-di-nucleotide (CDN), is unsuitable for pharmaceutical use because of its susceptibility to degradation by enzymes and its low cell-membrane permeability. In this study, we designed and synthesized CDN derivatives by replacing the sugar-phosphodiester moiety, which is responsible for various problems of natural CDNs, with an amine skeleton. As a result, we identified novel STING ligands that activate or inhibit STING. The cyclic ligand 7, with a cyclic amine structure containing two guanines, was found to have agonistic activity, whereas the linear ligand 12 showed antagonistic activity. In addition, these synthetic ligands were more chemically stable than the natural ligands.
Collapse
Affiliation(s)
- Yuta Yanase
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Genichiro Tsuji
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Correspondence: (G.T.); (Y.D.); Tel.: +81-44-270-6579 (G.T.); +81-44-270-6578 (Y.D.)
| | - Miki Nakamura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
| | - Norihito Shibata
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
- Correspondence: (G.T.); (Y.D.); Tel.: +81-44-270-6579 (G.T.); +81-44-270-6578 (Y.D.)
| |
Collapse
|
32
|
Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-Translational Modifications of STING: A Potential Therapeutic Target. Front Immunol 2022; 13:888147. [PMID: 35603197 PMCID: PMC9120648 DOI: 10.3389/fimmu.2022.888147] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic-reticulum resident protein, playing essential roles in immune responses against microbial infections. However, over-activation of STING is accompanied by excessive inflammation and results in various diseases, including autoinflammatory diseases and cancers. Therefore, precise regulation of STING activities is critical for adequate immune protection while limiting abnormal tissue damage. Numerous mechanisms regulate STING to maintain homeostasis, including protein-protein interaction and molecular modification. Among these, post-translational modifications (PTMs) are key to accurately orchestrating the activation and degradation of STING by temporarily changing the structure of STING. In this review, we focus on the emerging roles of PTMs that regulate activation and inhibition of STING, and provide insights into the roles of the PTMs of STING in disease pathogenesis and as potential targeted therapy.
Collapse
Affiliation(s)
- Jiaqi Kang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Lu D, Shang G, Li J, Lu Y, Bai XC, Zhang X. Activation of STING by targeting a pocket in the transmembrane domain. Nature 2022; 604:557-562. [PMID: 35388221 PMCID: PMC9098198 DOI: 10.1038/s41586-022-04559-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Stimulator of interferon genes (STING) is an adaptor protein in innate immunity against DNA viruses or bacteria1-5. STING-mediated immunity could be exploited in the development of vaccines or cancer immunotherapies. STING is a transmembrane dimeric protein that is located in the endoplasmic reticulum or in the Golgi apparatus. STING is activated by the binding of its cytoplasmic ligand-binding domain to cyclic dinucleotides that are produced by the DNA sensor cyclic GMP-AMP (cGAMP) synthase or by invading bacteria1,6,7. Cyclic dinucleotides induce a conformational change in the STING ligand-binding domain, which leads to a high-order oligomerization of STING that is essential for triggering the downstream signalling pathways8,9. However, the cGAMP-induced STING oligomers tend to dissociate in solution and have not been resolved to high resolution, which limits our understanding of the activation mechanism. Here we show that a small-molecule agonist, compound 53 (C53)10, promotes the oligomerization and activation of human STING through a mechanism orthogonal to that of cGAMP. We determined a cryo-electron microscopy structure of STING bound to both C53 and cGAMP, revealing a stable oligomer that is formed by side-by-side packing and has a curled overall shape. Notably, C53 binds to a cryptic pocket in the STING transmembrane domain, between the two subunits of the STING dimer. This binding triggers outward shifts of transmembrane helices in the dimer, and induces inter-dimer interactions between these helices to mediate the formation of the high-order oligomer. Our functional analyses show that cGAMP and C53 together induce stronger activation of STING than either ligand alone.
Collapse
Affiliation(s)
- Defen Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guijun Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Henning NJ, Boike L, Spradlin JN, Ward CC, Liu G, Zhang E, Belcher BP, Brittain SM, Hesse MJ, Dovala D, McGregor LM, Valdez Misiolek R, Plasschaert LW, Rowlands DJ, Wang F, Frank AO, Fuller D, Estes AR, Randal KL, Panidapu A, McKenna JM, Tallarico JA, Schirle M, Nomura DK. Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat Chem Biol 2022; 18:412-421. [PMID: 35210618 PMCID: PMC10125259 DOI: 10.1038/s41589-022-00971-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Many diseases are driven by proteins that are aberrantly ubiquitinated and degraded. These diseases would be therapeutically benefited by targeted protein stabilization (TPS). Here we present deubiquitinase-targeting chimeras (DUBTACs), heterobifunctional small molecules consisting of a deubiquitinase recruiter linked to a protein-targeting ligand, to stabilize the levels of specific proteins degraded in a ubiquitin-dependent manner. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48-ubiquitin-specific deubiquitinase OTUB1. We showed that a DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR), robustly stabilized ΔF508-CFTR protein levels, leading to improved chloride channel conductance in human cystic fibrosis bronchial epithelial cells. We also demonstrated stabilization of the tumor suppressor kinase WEE1 in hepatoma cells. Our study showcases covalent chemoproteomic approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.
Collapse
Affiliation(s)
- Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Carl C Ward
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gang Liu
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Erika Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Bridget P Belcher
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Scott M Brittain
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Matthew J Hesse
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Dustin Dovala
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Lynn M McGregor
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Feng Wang
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Andreas O Frank
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Daniel Fuller
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Abigail R Estes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Katelyn L Randal
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Anoohya Panidapu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - John A Tallarico
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Markus Schirle
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
35
|
Basu S, Middya S, Banerjee M, Ghosh R, Pryde DC, Yadav DB, Shrivastava R, Surya A. The discovery of potent small molecule cyclic urea activators of STING. Eur J Med Chem 2022; 229:114087. [PMID: 34998056 DOI: 10.1016/j.ejmech.2021.114087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 01/08/2023]
Abstract
STING mediates innate immune responses that are triggered by the presence of cytosolic DNA. Activation of STING to boost antigen recognition is a therapeutic modality that is currently being tested in cancer patients using nucleic-acid based macrocyclic STING ligands. We describe here the discovery of 3,4-dihydroquinazolin-2(1H)-one based 6,6-bicyclic heterocyclic agonists of human STING that activate all known human variants of STING with high potency.
Collapse
Affiliation(s)
- Sourav Basu
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Monali Banerjee
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - David C Pryde
- Curadev Pharma Ltd., Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent, CT13 9ND, UK
| | - Dharmendra B Yadav
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Ritesh Shrivastava
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India
| | - Arjun Surya
- Curadev Pharma Pvt. Ltd., B-87, Sector 83, Noida, 201305, Uttar Pradesh, India.
| |
Collapse
|
36
|
Van Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev 2021; 179:114020. [PMID: 34756942 DOI: 10.1016/j.addr.2021.114020] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Adjuvant is an essential component in subunit vaccines. Many agonists of pathogen recognition receptors have been developed as potent adjuvants to optimize the immunogenicity and efficacy of vaccines. Recently discovered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has attracted much attention as it is a key mediator for modulating immune responses. Vaccines adjuvanted with STING agonists are found to mediate a robust immune defense against infections and cancer. In this review, we first discuss the mechanisms of STING agonists in the context of vaccination. Next, we present recent progress in novel STING agonist discovery and the delivery strategies. We next highlight recent work in optimizing the efficacy while minimizing toxicity of STING agonist-assisted subunit vaccines for protection against infectious diseases or treatment of cancer. Finally, we share our perspectives of current issues and future directions in further developing STING agonists for adjuvanting subunit vaccines.
Collapse
Affiliation(s)
- Simon Van Herck
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Bing Feng
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|