1
|
Chasák J, Janicki I, Brulíková L. The Liebeskind-Srogl cross-coupling reaction towards the synthesis of biologically active compounds. Eur J Med Chem 2025; 290:117526. [PMID: 40184777 DOI: 10.1016/j.ejmech.2025.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
In this review, we emphasize the significance of the Liebeskind-Srogl cross-coupling reaction, a palladium-catalyzed process involving the reaction between a thioester and a boronic acid. This reaction has emerged as a fundamental technique in synthetic methodologies aimed at the development of biologically active compounds. The Liebeskind-Srogl cross-coupling method has become an essential approach in chemistry, facilitating the diversification of complex structures that would be significantly more challenging to synthesize through alternative approaches. In this review, we aim to outline the numerous possibilities for preparing a wide range of derivatives, each with notable biological potential.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Ignacy Janicki
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Chasák J, Brulíková L. Solid-phase synthesis of aryl squaramides using Liebeskind-Srogl cross-coupling. RSC Adv 2025; 15:14337-14353. [PMID: 40322251 PMCID: PMC12047450 DOI: 10.1039/d5ra02225h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
We present a method for the synthesis of aryl-substituted squaramides through the Liebeskind-Srogl cross-coupling reaction performed on solid support. This approach offers a unique application for the cross-coupling reaction, allowing for the rapid and efficient production of a diverse range of substituted analogs within a combinatorial framework. Through our technique, we successfully synthesized derivatives that were previously unattainable. Additionally, the optimized conditions have been effectively applied in a scale-up reaction. The derivatives show potential for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University 17. listopadu 12 Olomouc 77146 Czech Republic
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University 17. listopadu 12 Olomouc 77146 Czech Republic
| |
Collapse
|
3
|
Nguyen T, Decker AM, Barrus DG, Song CH, Liu J, Gamage TF, Harris DL, Li JX, Zhang Y. Development of Squaramides as Allosteric Modulators of the CB 1 Receptor: Synthesis, Computational Studies, Biological Characterization, and Effects against Cocaine-Induced Behavioral Sensitization and Reinstatement in Rats. J Med Chem 2025; 68:8694-8712. [PMID: 40198119 DOI: 10.1021/acs.jmedchem.5c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cannabinoid receptor type 1 (CB1) negative allosteric modulators have emerged as an alternate approach to CB1 orthosteric antagonists/inverse agonists for cocaine addiction treatment. This study explores aryl-alkyl squaramides as CB1 allosteric modulators, featuring RTICBM-262 (3) with good in vitro potencies in CB1 calcium mobilization, [35S]GTPγS binding, and cAMP assays. Molecular modeling studies suggest 3 bound in a similar pocket as Org27569, forming π-stacking with key residues H1542.41 and W2414.50, and the potential C98-C107 disulfide bond had limited impact on its binding or receptor activation. ADME and in vivo pharmacokinetic studies suggest that 3 had reasonable metabolic stability, brain penetration, and selectivity against a panel of ∼ 50 targets but poor solubility and high protein binding. At 5.6 mg/kg (i.p.), 3 significantly attenuated both cocaine-seeking behavior specific to cue-induced reinstatement and cocaine-induced behavioral sensitization without altering locomotor activity. These results support squaramides as promising candidates for further investigation for cocaine addiction treatment.
Collapse
Affiliation(s)
- Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Daniel G Barrus
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Chi Hyuck Song
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Thomas F Gamage
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York 13210, United States
| | - Danni L Harris
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| |
Collapse
|
4
|
Lenière AC, Upadhyay A, Follet J, O'Sullivan TP. Effect of urea and squaramide IMPDH inhibitors on C. parvum: in vitro trial design impacts the assessment of drug efficacy. Int J Parasitol Drugs Drug Resist 2025; 28:100592. [PMID: 40319744 DOI: 10.1016/j.ijpddr.2025.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 05/07/2025]
Abstract
The protozoan parasite Cryptosporidium is the etiological agent of cryptosporidiosis, a ubiquitous diarrheic disease affecting humans and animals. Treatment options are limited, highlighting an urgent need for novel therapeutics. Despite decades of research and a wide diversity of strategies to tackle parasite metabolic pathways, no completely effective drug has been identified to date. Within targeted parasite enzymatic and metabolic pathways, the synthesis of nucleotide mediated by the inosine 5'-monophosphate dehydrogenase (IMPDH) enzyme is the focus of significant research efforts. Based on our prior studies of bacterial IMPDH inhibitors, we report herein the development and characterisation of novel inhibitors targeting Cryptosporidium parvum IMPDH (CpIMPDH). Specifically, we synthesised heteroaryl-containing urea and squaramide analogues to evaluate their potential in vitro anti-Cryptosporidium activity. Initial screening identified nine active compounds with the most potent candidates achieving IC50 values as low as 2.2 μM. Subsequent time-course experiments revealed that the molecules effectively inhibit parasite invasion and early intracellular development but failed to tackle C. parvum growth when introduced at 30 h post infection. The present work introduces a new family of squaramide-derived IMPDH inhibitors and also interrogates the need to standardise commonly accepted protocols used for assessing anti-cryptosporidial drug activity.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F59000, Lille, France
| | - Amit Upadhyay
- School of Chemistry, University College Cork, Cork, T12 YN60, Ireland; School of Pharmacy, University College Cork, Cork, T12 YN60, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 YN60, Ireland
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F59000, Lille, France.
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, T12 YN60, Ireland; School of Pharmacy, University College Cork, Cork, T12 YN60, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
5
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
6
|
Przybył AK, Janczak J, Huczyński A. Synthesis and Structural Analysis of New (-)-Cytisine Squaramides. Molecules 2025; 30:1135. [PMID: 40076358 PMCID: PMC11901779 DOI: 10.3390/molecules30051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Derivatives of squaric acid are valuable building blocks with promising applications in the investigation of various bioactivities. In this study, we focus on squaramides functionalized with the (-)-cytisine moiety, an alkaloid known for its bioactivity as a nicotinic acetylcholine receptor agonist and its application in nicotine addiction treatment. Reactions of cytisine-monosquarate with several amines, such as ammonia, propargylamine, and morpholine, led to the formation of novel conjugates of cytisine-squaramides. Additionally, squaramide containing two cytisine moieties was synthesized via the reaction of diethyl squarate with cytisine at a 1:2 molar ratio. All obtained squaramides were thoroughly characterized by MS, FT-IR, and NMR methods and by single-crystal X-ray diffraction analysis. To gain deeper insights into their structural properties and intermolecular interactions, geometry optimizations were performed using DFT calculations, complemented with 3D molecular electrostatic potential maps.
Collapse
Affiliation(s)
- Anna K. Przybył
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Str., 50-422 Wrocław, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Tirolski G, Momekov G, Cherneva E. Squaric acid derivatives with cytotoxic activity-a review. Chem Biol Interact 2025; 406:111344. [PMID: 39647808 DOI: 10.1016/j.cbi.2024.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
3,4-Dihydroxycyclobut-3-ene-1,2-dione (squaric acid, SQ) is the most important representative of the oxocarbon acids family. Squaric acid derivatives can be promising pharmaceutical agents, due to their unique structural properties, from which novel drugs benefit: a planar aromatic ring, the ability to form hydrogen bonds, good reactivity and similarity with carboxylate, phosphate and amide groups. These properties make it suitable for three major applications in cancer treatment. Firstly, due to their excellent ion binding ability, the halogenated squaramides can be used as artificial ion transporters or mobile carriers to disrupt Na+/Cl- gradients in cancer cells, thus hindering lysosomal function and inducing apoptosis. Another advantage of this class is their bioisosteric properties. Such molecules have been reported to be selective inhibitors of HDACs, FAK, SNM1A, MMP and kinases, involved in tumor growth and metastasis. Finally, the cyclobutenedione moiety proves to be a great linker in complex radiopharmaceuticals, used in theranostics. Its aromaticity and good reactivity make the generation and stability of these drugs easy and efficient. Multiple derivatives containing the squamide motif have been the subject of in-vitro investigations and have demonstrated anti-cancer activity in the nanomolar range against tumor cell lines, including colorectal adenocarcinoma, breast cancer, gastric carcinoma and cervical cancer. On the other hand, squaric acid derivative-Navarixin, has already been evaluated in Phase II clinical trials for its potential efficacy in the treatment of solid tumors. In this context this review is the first looking into the potential applications of squaric acid derivatives as anticancer therapies. It analyzes experimental studies presented in articles published between 2000 and 2024.
Collapse
Affiliation(s)
- Georgi Tirolski
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000, Sofia, Bulgaria; Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria.
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000, Sofia, Bulgaria
| | - Emiliya Cherneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000, Sofia, Bulgaria
| |
Collapse
|
8
|
Chen L, Zhou C, Jiang F, Zhang L, Xu C. Squaraine-Linked Magnetic Covalent Organic Framework as a Solid-Phase Extraction Absorbent to Determine Trace Phenylpyrazoles. SMALL METHODS 2024; 8:e2400777. [PMID: 39225439 DOI: 10.1002/smtd.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Phenylpyrazoles are widely used pesticides in the food industry. It is highly desirable to develop efficient pre-treatment and analysis methods to extract and detect phenylpyrazoles in complex food matrices. Herein, the study reports novel squaraine-linked zwitterionic core-shell magnetic covalent organic frameworks (MCOFs), which are found to be excellent pretreatment materials for the detection of trace phenylpyrazoles in samples. By coupling MCOFs to magnetic solid-phase extraction (MSPE) with Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis, the detection of phenylpyrazoles (fipronil, fipronil sulfone, fipronil sulfide, fipronil de-sulfoxide, fipronil desulfinyl, ethiprole, and flufiprole) is achieved and shows good linearity at concentrations of 1-800 µg L-1 (R2 ≥ 0.9930). The limit of detection (LOD), limit of quantification (LOQ), and recovery rates are 0.01-0.50 µg kg-1, 0.04-1.72 µg kg-1, and 70.96-115.32%, respectively. More importantly, this method is successfully applied to determine the phenylpyrazoles in commercial egg, poultry, milk, jujube, cabbage, tea, and rice with a detection rate of ≈0.04%. Therefore, the developed method may contribute to a new strategy for the purification and multi-target extraction of complex food matrices.
Collapse
Affiliation(s)
- Li Chen
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Cuiyun Zhou
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Feng Jiang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
9
|
Nguyen LH, Cho YE, Kim S, Kim Y, Kwak J, Suh JS, Lee J, Son K, Kim M, Jang ES, Song N, Choi B, Kim J, Tak Y, Hwang T, Jo J, Lee EW, Kim SB, Kim S, Kwon OB, Kim S, Lee SR, Lee H, Kim TJ, Hwang S, Yun H. Discovery of N-Aryl- N'-[4-(aryloxy)cyclohexyl]squaramide-Based Inhibitors of LXR/SREBP-1c Signaling Pathway Ameliorating Steatotic Liver Disease: Navigating the Role of SIRT6 Activation. J Med Chem 2024; 67:17608-17628. [PMID: 39259827 DOI: 10.1021/acs.jmedchem.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily attributed to the abnormal upregulation of hepatic lipogenesis, which is especially caused by the overactivation of the liver X receptor/sterol regulatory element-binding protein-1c (LXR/SREBP-1c) pathway in hepatocytes. In this study, we report the rational design and synthesis of a novel series of squaramides via bioisosteric replacement, which was evaluated for its inhibitory activity on the LXR/SREBP-1c pathway using dual cell-based assays. Compound 31 was found to significantly downregulate LXR, SREBP-1c, and their target genes associated with lipogenesis. Further investigation revealed that compound 31 may indirectly inhibit the LXR/SREBP-1c pathway by activating the upstream regulator sirtuin 6 (SIRT6). Encouragingly, compound 31 substantially attenuated lipid accumulation in HepG2 cells and in the liver of high-fat-diet-fed mice. These findings suggest that compound 31 holds promise as a candidate for the development of treatments for MASLD and other lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Long Huu Nguyen
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jinsook Kwak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyuwon Son
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Minseong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Seo Jang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Naghyun Song
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - BuChul Choi
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jiah Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yealin Tak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Taeyeon Hwang
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sanghyun Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sangok Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Skopinska-Wisniewska J, Tuszynska M, Kaźmierski Ł, Bartniak M, Bajek A. Gelatin-Sodium Alginate Hydrogels Cross-Linked by Squaric Acid and Dialdehyde Starch as a Potential Bio-Ink. Polymers (Basel) 2024; 16:2560. [PMID: 39339023 PMCID: PMC11435377 DOI: 10.3390/polym16182560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Hydrogels as biomaterials possess appropriate physicochemical and mechanical properties that enable the formation of a three-dimensional, stable structure used in tissue engineering and 3D printing. The integrity of the hydrogel composition is due to the presence of covalent or noncovalent cross-linking bonds. Using various cross-linking methods and agents is crucial for adjusting the properties of the hydrogel to specific biomedical applications, e.g., for direct bioprinting. The research subject was mixtures of gel-forming polymers: sodium alginate and gelatin. The polymers were cross-linked ionically with the addition of CaCl2 solutions of various concentrations (10%, 5%, 2.5%, and 1%) and covalently using squaric acid (SQ) and dialdehyde starch (DAS). Initially, the polymer mixture's composition and the hydrogel cross-linking procedure were determined. The obtained materials were characterized by mechanical property tests, swelling degree, FTIR, SEM, thermal analysis, and biological research. It was found that the tensile strength of hydrogels cross-linked with 1% and 2.5% CaCl2 solutions was higher than after using a 10% solution (130 kPa and 80 kPa, respectively), and at the same time, the elongation at break increased (to 75%), and the stiffness decreased (Young Modulus is 169 kPa and 104 kPa, respectively). Moreover, lowering the concentration of the CaCl2 solution from 10% to 1% reduced the final material's toxicity. The hydrogels cross-linked with 1% CaCl2 showed lower degradation temperatures and higher weight losses than those cross-linked with 2.5% CaCl2 and therefore were less thermally stable. Additional cross-linking using SQ and DAS had only a minor effect on the strength of the hydrogels, but especially the use of 1% DAS increased the material's elasticity. All tested hydrogels possess a 3D porous structure, with pores of irregular shape and heterogenic size, and their swelling degree initially increased sharply to the value of approx. 1000% during the first 6 h, and finally, it stabilized at a level of 1200-1600% after 24 h. The viscosity of 6% gelatin and 2% alginate solutions with and without cross-linking agents was similar, and they were only slightly shear-thinning. It was concluded that a mixture containing 2% sodium alginate and 6% gelatin presented optimal properties after gel formation and lowering the concentration of the CaCl2 solution to 1% improved the hydrogel's biocompatibility and positively influenced the cross-linking efficiency. Moreover, chemical cross-linking by DAS or SQ additionally improved the final hydrogel's properties and the mixture's printability. In conclusion, among the tested systems, the cross-linking of 6% gelatin-2% alginate mixtures by 1% DAS addition and 1% CaCl2 solution is optimal for tissue engineering applications and potentially suitable for 3D printing.
Collapse
Affiliation(s)
- Joanna Skopinska-Wisniewska
- Chair of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
| | - Marta Tuszynska
- Chair of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
- Department of Tissue Engineering, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Mateusz Bartniak
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Lukasiewicza 1, 85-821 Bydgoszcz, Poland
| |
Collapse
|
11
|
Seidel RW, Kolev TM. Crystal structure of propane-1,3-diaminium squarate dihydrate. Acta Crystallogr E Crystallogr Commun 2024; 80:973-975. [PMID: 39267879 PMCID: PMC11389676 DOI: 10.1107/s2056989024008235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Propane-1,3-diaminium squarate dihydrate, C3H12N2 2+·C4O4 2-·2H2O, results from the proton-transfer reaction of propane-1,3-di-amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra-gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D 4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C 2v -symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra-molecular structure features a triperiodic network of strong hydrogen bonds of the N-H⋯O and O-H⋯O types.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Tsonko M Kolev
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
| |
Collapse
|
12
|
Chasák J, Van Moll L, Matheeussen A, De Vooght L, Cos P, Brulíková L. The Liebeskind-Srogl Cross-Coupling Reaction as a Crucial Step in the Synthesis of New Squaramide-Based Antituberculosis Agents. ACS OMEGA 2024; 9:34808-34828. [PMID: 39157083 PMCID: PMC11325506 DOI: 10.1021/acsomega.4c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
The synthesis of an extensive series of new squaramides with high potential in treating drug-resistant tuberculosis employing the Liebeskind-Srogl cross-coupling reaction is presented. Using the protocol given and various substrates, we assessed the scope and limitations of our methodology and prepared an extensive range of desired compounds. Moreover, 1H NMR spectra in solution show the presence of two rotational conformers (rotamers) in special cases. The results of antimycobacterial activity demonstrate the highly selective substrate specificity of the tested squaramides, requiring an efficient and widely applicable synthetic approach needed for the discovery of lead compounds. Our synthetic strategy confirms the versatility of squaramides that can be easily transformed into diverse functionalized molecules.
Collapse
Affiliation(s)
- Jan Chasák
- Department
of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech
Republic
| | - Laurence Van Moll
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, 2610 Wilrijk, Belgium
| | - Lucie Brulíková
- Department
of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech
Republic
| |
Collapse
|
13
|
Patyk-Kaźmierczak E, Izquierdo-Ruiz F, Lobato A, Kaźmierczak M, Moszczyńska I, Olejniczak A, Recio JM. The curious case of proton migration under pressure in the malonic acid and 4,4'-bipyridine cocrystal. IUCRJ 2024; 11:168-181. [PMID: 38275161 PMCID: PMC10916288 DOI: 10.1107/s2052252524000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA-) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2-. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.
Collapse
Affiliation(s)
- Ewa Patyk-Kaźmierczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Fernando Izquierdo-Ruiz
- MALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain
| | - Alvaro Lobato
- MALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain
| | - Michał Kaźmierczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Ida Moszczyńska
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Anna Olejniczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - J. Manuel Recio
- MALTA-Consolider Team and Departamento de Química Física y Analítica, University of Oviedo, Julián Clavería n° 8, Oviedo 33006, Spain
| |
Collapse
|
14
|
Sato K, Fujita T, Takeuchi T, Suzuki T, Ikeuchi K, Tanino K. Alcohol synthesis based on the S N2 reactions of alkyl halides with the squarate dianion. Org Biomol Chem 2024; 22:1369-1373. [PMID: 38232248 DOI: 10.1039/d3ob01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A convenient method has been developed for transforming alkyl halides into the corresponding alcohols via an SN2 reaction. Treatment of an alkyl halide with the squarate dianion at high temperature produces mono-alkyl squarate, and a one-pot basic hydrolysis of the intermediate affords the alcohol in good yield.
Collapse
Affiliation(s)
- Kazuto Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Fujita
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Takeuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
15
|
Long N, Le Gresley A, Wozniak A, Brough S, Wren SP. Synthesis and evaluation of druglike parameters via in silico techniques for a series of heterocyclic monosquarate-amide derivatives as potential carboxylic acid bioisosteres. Bioorg Med Chem 2024; 98:117565. [PMID: 38142561 DOI: 10.1016/j.bmc.2023.117565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Herein, we present a synthetic compound library comprising of 13 structurally diverse heterocyclic monosquarate-amide derivatives. The compounds featured in this library were designed as potential bioisosteric replacements carboxylic acid moiety's. A good selection of the compounds presented exhibit unique molecular architecture and have shown promising results following in silico evaluation of 'druglike properties' using Swiss ADME. The research presented in this work focuses on the preparation of derivatives of 3,4-dihydroxycyclobut-3-ene-1,2-dione, a known carboxylic acid bioisostere.
Collapse
Affiliation(s)
- N Long
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Penrhyn Road, Kingston, Surrey KT1 2EE, United Kingdom.
| | - A Le Gresley
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Penrhyn Road, Kingston, Surrey KT1 2EE, United Kingdom
| | - A Wozniak
- Asynt, Unit 29 Hall Barn Road Industrial Estate, Isleham, Cambridgeshire CB7 5RJ, United Kingdom
| | - S Brough
- Key Organics Ltd, Highfield Road Industrial Estate Camelford, Cornwall PL32 9RA, United Kingdom
| | - S P Wren
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Penrhyn Road, Kingston, Surrey KT1 2EE, United Kingdom.
| |
Collapse
|
16
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
17
|
Ruseva N, Atanasova M, Sbirkova-Dimitrova H, Marković A, Šmelcerović Ž, Šmelcerović A, Cherneva E, Bakalova A. Chloro-substituted pyridine squaramates as new DNase I inhibitors: Synthesis, structural characterization, in vitro evaluation and molecular docking studies. Chem Biol Interact 2023; 386:110772. [PMID: 37898285 DOI: 10.1016/j.cbi.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Having continued our recent study on the synthesis and DNase I inhibition of several monosquaramides, two new chloro-substituted pyridine squaramates were synthesized and their structure was identified by X-ray. Their inhibitory properties towards deoxyribonuclease I (DNase I) and xanthine oxidase (XO) were evaluated in vitro. 3-(((6-Chloropyridin-3-yl)methyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (compound 3a) inhibited DNase I with an IC50 value of 43.82 ± 6.51 μM, thus standing out as one of the most potent small organic DNase I inhibitors tested to date. No cytotoxicity to human tumor cell lines (HL-60, MDA-MB-231 and MCF-7) was observed for the tested compounds. In order to investigate the drug-likeness of the squaramates, the ADME profile and pharmacokinetic properties were evaluated. Molecular docking was performed to reveal the binding mode of the studied compounds on DNase I.
Collapse
Affiliation(s)
- Nina Ruseva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Mariyana Atanasova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Hristina Sbirkova-Dimitrova
- Institute of Mineralogy and Crystallography "Akad. Ivan Kostov", Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 107, 1113, Sofia, Bulgaria
| | - Ana Marković
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Zorana Ðindića 81, 18000, Niš, Serbia
| | - Žaklina Šmelcerović
- Center for Biomedicinal Science, Faculty of Medicine, University of Niš, Bulevar Zorana Ðindića 81, 18000, Niš, Serbia
| | - Andrija Šmelcerović
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Zorana Ðindića 81, 18000, Niš, Serbia.
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria; Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria
| | - Adriana Bakalova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria.
| |
Collapse
|
18
|
Chasák J, Oorts L, Dak M, Šlachtová V, Bazgier V, Berka K, De Vooght L, Smiejkowska N, Calster KV, Van Moll L, Cappoen D, Cos P, Brulíková L. Expanding the squaramide library as mycobacterial ATP synthase inhibitors: Innovative synthetic pathway and biological evaluation. Bioorg Med Chem 2023; 95:117504. [PMID: 37871508 DOI: 10.1016/j.bmc.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Milan Dak
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Veronika Šlachtová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Václav Bazgier
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Geurs S, Clarisse D, De Bosscher K, D'hooghe M. The Zinc-Binding Group Effect: Lessons from Non-Hydroxamic Acid Vorinostat Analogs. J Med Chem 2023. [PMID: 37276138 DOI: 10.1021/acs.jmedchem.3c00226] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Histone deacetylases (HDACs) are enzymes pursued as drug targets in various cancers and several non-oncological conditions, such as inflammation and neurodegenerative disorders. In the past decade, HDAC inhibitors (HDACi) have emerged as relevant pharmaceuticals, with many efforts devoted to the development of new representatives. However, the growing safety concerns regarding the established hydroxamic acid-based HDAC inhibitors tend to drive current research more toward the design of inhibitors bearing alternative zinc-binding groups (ZBGs). This Perspective presents an overview of all non-hydroxamic acid ZBGs that have been incorporated into the clinically approved prototypical HDACi, suberoylanilide hydroxamic acid (vorinostat). This provides the unique opportunity to compare the inhibition potential and biological effects of different ZBGs in a direct way, as the compounds selected for this Perspective differ only in their ZBG. To that end, different strategies used to select a ZBG, its properties, activity, and liabilities are discussed.
Collapse
Affiliation(s)
- Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
20
|
Wang X, Chen Y, Xiong Y, Zhang L, Wang B, Liu Y, Cui M. Design and Characterization of Squaramic Acid-Based Prostate-Specific Membrane Antigen Inhibitors for Prostate Cancer. J Med Chem 2023; 66:6889-6904. [PMID: 37161996 DOI: 10.1021/acs.jmedchem.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Prostate-specific membrane antigen (PSMA) overexpressed on prostate cancer (PCa) cells is a satisfactory theranostic target in PCa. To seek novel non-glutamate-urea-based PSMA inhibitors by the strategy of bioisosterism, 10 ligands were designed, synthesized, and characterized. Among them, ligands 17, 18, and 21-24 bearing the squaramic acid moiety proved to be potent PSMA inhibitors, with Ki values ranging from 0.40 to 2.49 nM, which are comparable or higher in inhibitory potency compared to previously reported glutamate-urea-based inhibitors. Docking studies of 15, 17, and 19 were carried out to explore their binding mode in the active site of PSMA. Two near-infrared (NIR) probes, 23 (λEM = 650 nm) and 24 (λEM = 1088 nm), displayed favorable in vivo NIR imaging and successful NIR-II image-guided tumor resection surgery in PSMA-positive tumor-bearing mice, which demonstrated the effectiveness of these new squaramic acid-based inhibitors.
Collapse
Affiliation(s)
- Xinlin Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yuqing Xiong
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Beibei Wang
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Yajun Liu
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
21
|
Abe J, Takeda Y, Kikuma T, Kizuka Y, Kajiura H, Kajihara Y, Ito Y. Squaryl group-modified UDP analogs as inhibitors of the endoplasmic reticulum-resident folding sensor enzyme UGGT. Chem Commun (Camb) 2023; 59:2803-2806. [PMID: 36790024 DOI: 10.1039/d2cc06634c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UDP-Glc:glycoprotein glucosyltransferase (UGGT) has a central role to retain quality control of correctly folded N-glycoprotein in the endoplasmic reticulum (ER). A selective and potent inhibitor against UGGT could lead to elucidation of UGGT-related events, but such a molecule has not been identified so far. Examples of small molecules with UGGT inhibitory activity are scarce. Here, we report squaryl group-modified UDP analogs as a promising UGGT inhibitor. Among these, the compound possessing a 2'-amino group of the uridine moiety and hydroxyethyl-substituted squaramide exhibited the highest potency, suggesting its relevance as a molecule for further optimization.
Collapse
Affiliation(s)
- Junpei Abe
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yoichi Takeda
- College of Life Sciences, Ritsumeikan University, Kusastu, 525-8577, Japan
| | - Takashi Kikuma
- College of Life Sciences, Ritsumeikan University, Kusastu, 525-8577, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, 565-0871, Japan
| | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| |
Collapse
|
22
|
Li F, Li HM, Xiu RF, Zhang JK, Cui BD, Wan NW, Chen YZ, Han WY. Palladium-Catalyzed Domino Reaction for the Assembly of Norbornane-Containing Chromones with Dimethyl Squarate as the Solid C1 Source. Org Lett 2022; 24:9392-9397. [PMID: 36524990 DOI: 10.1021/acs.orglett.2c03713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reported herein is a novel palladium-catalyzed [2 + 2 + 1] domino annulation of 3-iodochromones, bridged olefins, and dimethyl squarate allowing the construction of chromone-containing polycyclic compounds in good to high yields. Importantly, dimethyl squarate is first employed as the solid C1 source in organic synthesis. Gram-scale experiments, late-stage modification of natural products, as well as transformations of products show potential for further synthetic elaborations.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Hui-Min Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Ren-Feng Xiu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Jin-Ke Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| |
Collapse
|
23
|
Preparation of an Antioxidant Assembly Based on a Copolymacrolactone Structure and Erythritol following an Eco-Friendly Strategy. Antioxidants (Basel) 2022; 11:antiox11122471. [PMID: 36552679 PMCID: PMC9774145 DOI: 10.3390/antiox11122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in suspension in water by opening the cycle of ethylene brassylate macrolactone, followed by condensation with squaric acid. The compound synthesised in suspension was characterised by comparison with the polymer obtained by polymerisation in solution. The investigations revealed that, with the exception of the molecular masses, the compounds generated by the two synthetic procedures present similar properties, including good thermal stability, with a Tpeak of 456 °C, and the capacity for network formation. In addition, the investigation by dynamic light scattering techniques evidenced a mean diameter for PEBSA particles of around 596 nm and a zeta potential of -25 mV, which attests to their stability. The bio-based copolymacrolactone was used as a matrix for erythritol encapsulation. The new PEBSA-Eryt compound presented an increased sorption/desorption process, compared with the PEBSA matrix, and a crystalline morphology confirmed by X-ray diffraction analysis. The bioactive compound was also characterised in terms of its biocompatibility and antioxidant behaviour.
Collapse
|
24
|
Squaric acid driven supramolecular metallogels of Cd(II) and Zn(II): Sensitive inhibitors for multi-drug resistance ESKAPE pathogens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Antibacterial Activity of Squaric Amide Derivative SA2 against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11111497. [DOI: 10.3390/antibiotics11111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-caused infection is difficult to treat because of its resistance to commonly used antibiotic, and poses a significant threat to public health. To develop new anti-bacterial agents to combat MRSA-induced infections, we synthesized novel squaric amide derivatives and evaluated their anti-bacterial activity by determining the minimum inhibitory concentration (MIC). Additionally, inhibitory activity of squaric amide 2 (SA2) was measured using the growth curve assay, time-kill assay, and an MRSA-induced skin infection animal model. A scanning electron microscope and transmission electron microscope were utilized to observe the effect of SA2 on the morphologies of MRSA. Transcriptome analysis and real-time PCR were used to test the possible anti-bacterial mechanism of SA2. The results showed that SA2 exerted bactericidal activity against a number of MRSA strains with an MIC at 4–8 µg/mL. It also inhibited the bacterial growth curve of MRSA strains in a dose-dependent manner, and reduced the colony formation unit in 4× MIC within 4–8 h. The infective lesion size and the bacterial number in the MRSA-induced infection tissue of mice were reduced significantly within 7 days after SA2 treatment. Moreover, SA2 disrupted the bacterial membrane and alanine dehydrogenase-dependent NAD+/NADH homeostasis. Our data indicates that SA2 is a possible lead compound for the development of new anti-bacterial agents against MRSA infection.
Collapse
|
26
|
Greifenstein L, Kramer CS, Moon ES, Rösch F, Klega A, Landvogt C, Müller C, Baum RP. From Automated Synthesis to In Vivo Application in Multiple Types of Cancer-Clinical Results with [ 68Ga]Ga-DATA 5m.SA.FAPi. Pharmaceuticals (Basel) 2022; 15:1000. [PMID: 36015148 PMCID: PMC9415298 DOI: 10.3390/ph15081000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Radiolabeled FAPI (fibroblast activation protein inhibitors) recently gained attention as widely applicable imaging and potential therapeutic compounds targeting CAF (cancer-associated fibroblasts) or DAF (disease-associated fibroblasts in benign disorders). Moreover, the use of FAPI has distinct advantages compared to FDG (e.g., increased sensitivity in regions with high glucose metabolism, no need for fasting, and rapid imaging). In this study, we wanted to evaluate the radiochemical synthesis and the clinical properties of the new CAF-targeting tracer [68Ga]Ga-DATA5m.SA.FAPi. The compound consists of a (radio)chemically easy to use hybrid chelate DATA.SA, which can be labeled at low temperatures, making it an interesting molecule for 'instant kit-type' labeling, and a squaric acid moiety that provides distinct advantages for synthesis and radiolabeling. Our work demonstrates that automatic synthesis of the FAP inhibitor [68Ga]Ga-DATA5m.SA.FAPi is feasible and reproducible, providing convenient access to this new hybrid chelator-based tracer. Our studies demonstrated the diagnostic usability of [68Ga]Ga-DATA5m.SA.FAPi for the unambiguous detection of cancer-associated fibroblasts of various carcinomas and their metastases (NSCLC, liposarcoma, parotid tumors, prostate cancer, and pancreas adenocarcinoma), while physiological uptake in brain, liver, intestine, bone, and lungs was very low.
Collapse
Affiliation(s)
- Lukas Greifenstein
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Carsten S. Kramer
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Euy Sung Moon
- Department of Chemistry–TRIGA, Institute of Nuclear Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Frank Rösch
- Department of Chemistry–TRIGA, Institute of Nuclear Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Andre Klega
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Christian Landvogt
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Corinna Müller
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| |
Collapse
|
27
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
28
|
Abstract
Lead optimization represents the tedious process of fine-tuning lead compounds from biologically active hits to suitable drug candidates for clinical trials. By chemically modifying a hit structure, an improved compound can be obtained in terms of activity, selectivity, and pharmacokinetic ADME (absorption, distribution, metabolism, and excretion) properties. The carboxylic acid moiety is known to be a crucial functionality in many pharmaceutically active compounds. Despite its common use as a key functionality in drugs, its presence in a lead molecule is often associated with poor pharmacokinetic properties and toxicity. In this literature overview, we discuss how the shortcomings of a carboxylic acid can be circumvented by replacing this functionality with bioisosteres. In this way, the positive aspects of this moiety, such as its activity, for example, by virtue of its capacity to form hydrogen bonds, can be maintained or even improved. To that end, we provide an overview of the most promising carboxylic acid bioisosteres and discuss a selection of synthetic routes towards the main functionalities.
Collapse
|
29
|
Tian J, Jiang YX, Yu XQ, Yu SS. Rapid chiral assay of amino compounds using diethyl squarate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120871. [PMID: 35151169 DOI: 10.1016/j.saa.2022.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The versatility and importance of chiral compounds make it urgent to develop fast and efficient methods to detect the absolute configuration, enantiomeric excess(ee), and concentration of chiral compounds. In this study, we demonstrate that commercially available diethyl squarate can rapidly react with various types of chiral amino compounds and exhibit characteristic ultraviolet (UV) and circular dichroism (CD) signals. The UV and CD signals can determine the total concentration of the two enantiomers and ee value of the sample, respectively. The probe showed a broad substrate scope, applicable to 39 tested chiral amino compounds, including chiral amino acids, amino alcohols, and amines. Additionally, the probe accurately detected 10 samples of phenylalanine, phenylglycinol, and phenethylamine with the error range less than 8%, demonstrating the practicability of this method.
Collapse
Affiliation(s)
- Jun Tian
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Yi-Xuan Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| | - Shan-Shan Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| |
Collapse
|
30
|
Tobrman T, Oeser P, Petrenko A, Edlová T, Čubiňák M, Koudelka J. Halocyclobutanol Dehydration En Route to Halocyclobutenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA new method for the preparation of halocyclobutenes is described. The developed process involves the dehydration of halocyclobutanols by using tetrafluoroboric acid–diethyl ether complex in dichloromethane at room temperature. The process allows for high yields of halocyclobutenes to be achieved by using alcohols that do not trigger the formation of isomeric allylic halides.
Collapse
|
31
|
Salification Controls the In-Vitro Release of Theophylline. CRYSTALS 2022. [DOI: 10.3390/cryst12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sustained released formulation is the most used strategy to control the efficacy and the adverse reactions of an API (active pharmaceutical ingredient) with a narrow therapeutic index. In this work, we used a different way to tailor the solubility and diffusion of a drug. Salification of Theophylline with Squaric Acid was carried out to better control the absorption of Theophylline after administration. Salification proved to be a winning strategy decreasing the dissolution of the APIs up to 54% with respect to Theophylline. Most importantly, this was accomplished in the first 10 min of the dissolution process, which are the most important for the API administration. Two polymorphs were identified and fully characterized. Theophylline squarate was discovered as trihydrate (SC-XRD) and as a metastable anhydrous form. Indeed, during the Variable Temperature-XRPD experiment, the trihydrate form turned back into the two starting components after losing the three molecules of water. On the other hand, the synthesis of the trihydrate form was observed when a simple mixing of the two starting components were exposed to a high humidity relative percentage (90% RH).
Collapse
|
32
|
Gołdyn M, Skowronek J, Komasa A, Bartoszak-Adamska E, Lewandowska A, Dega-Szafran Z, Cofta G. Synthesis and structural characteristic of pyridine carboxylic acid adducts with squaric acid. CrystEngComm 2022. [DOI: 10.1039/d2ce00760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Squaric acid was used as a coformer to pyridine carboxylic acid cocrystallization. Adducts were obtained by evaporation from solution. Spectroscopic and theoretical studies were also performed. Thermal analysis reveals the high thermal stability of the obtained complexes.
Collapse
Affiliation(s)
- Mateusz Gołdyn
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Julia Skowronek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Anna Komasa
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | | | - Aneta Lewandowska
- Department of Polymers, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznań 60-965, Poland
| | - Zofia Dega-Szafran
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Grzegorz Cofta
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, Poznań 60-637, Poland
| |
Collapse
|
33
|
Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules 2021; 26:4739. [PMID: 34443327 PMCID: PMC8402075 DOI: 10.3390/molecules26164739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.
Collapse
Affiliation(s)
- Duc Hoàng Lande
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tim W. Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
34
|
Zhang J, Xu L, Xiao W, Chen Y, Dong Z, Xu J, Lei C. Ring-opening polymerization of ε-caprolactone with recyclable and reusable squaric acid organocatalyst. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|